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SUMMARY
This article is a sequel to articles by Abrahamse and Koerts [1971]
" and Abrahamse and Louter [1971]. An a priori fixed covariance matrix of
the disturbance estimator in the linear model is established on gmpirical
data from the field of economic time series analysis. The empirical
results agree with theoretical results of spectral analysis. In practice

this appears to be too great a burden for a single fixed covariance matrix

1
to sati%fy in all test cases. Selection of a matrix from a given set of

fixed covariance matrices according to a device generally gives very good

results.

1. INTRODUCTION
Consider the linear model A
(1.1) y=XB +u

where y is an n-element vector of values teken by the dependent variable, X
is an n x k' matrix of n values taken by each of the k' explanatory variables,

B is a column vector of k' unknown perameters, and u is an n-element column




vector of non-observable disturbances. It is assumed that X has rank

k, k < k', and the distribution of u is N(O, T), where ' is an n x n
symmetric pdsitive definite matrix. Let w be a linear unbiased estimator
of u, so that w = B'y with B' independent of y and B'y = B'u, and regard

a test statistic T of the form
(1.2)

where A and C are arbitrary n x n real symmetric nonzero matrices. The

distribution function F(t) of T is

?
F(t) = Prl3oa¥ < £] = Pr [u'B(A - £C)B'u < 0]

Write T = SS' and define v = §™'u, then v is N(0, I) end

F(t) = Pr [v'S'B(A - +C)B'Sv < 0]

Write S'B(A - tC)B'S = LDL' with L' = L‘1 and D diagonal, and define
= L'v, then z is N(0, I) and

F(t) = Pr [v'ILDL'v < 0] = Pr [z'Dz < ol
or finally,
.

. n
(1.3) Pr[ I d.2° < 0]
i1 T 1T
where d,, i=1, 2, ..., n, are the eigenvalues of S'B(A - tC)B'S and
the 22 are independent x (1) variables.

Slnce the nonzero elgenvalues of S'B(A - tC)B'S are equal to those
of (A - tC)B'RB, it is clear that the distribution of T is 1ndependent of
X if and only if B'TB is independent of X. Abrahamse and Koerts L1971
have solved the problem of finding an estimator w, which fulfills this
independence. Notice that B'TB is the covariance matrix of W = B'u.
Abrahamse and Koerts considered the following problem. Let w = B'y bve
a linear unblased estimator of the disturbances in the linear model (1.1)
with I = ¢ I, such that B'B = Q = KK', K'K = I(n-k)’ which minimizes

E(w - u)'(w - u). The solution is




(1.4) K(K'MK) ™ 2Ky

where

(1.5) I - RR'

R is an orthonormal basis of M(X), the space spanned by the columns of X.
The more general estimation problem, where I is not assumed to be equal
to 021, where @ is not assumed to be idempotent, and where

E(w - u)'(v - u) is replaced by E(w - u)'Q(w - u) with Q positive
definite, is solved in Dubbelman, Abrahamse and Koerts (1970).

The crucial point is the choice of Q. The purpose of this paper
is to establish some idempotent Q for some brénch of science, namely
economic time series analysis, on the basis of empirical data. In the
following sections a "best criterion" for Q is chosen, and a measure
‘is derived for handling the data. The empirical results are idealized
and generalized. A selection device is introduced to choose one § from
a set of admissible Q's. The estimagor w, defined in (1.4), is used in
tests for autocorrelation and heterovariance, and the powers are compared
with powers of the exact Durbin-Watson test and other tests.

We denote the n x k orthonormal complement to K by P, thus having
=1~ PP'. An expression for w in X and P only is derived in the
appendix;

-

2. MEASURES FOR LEAST-SQUARES APPROXIMATION

Suppose that a test, using a test statistic T as in (1.2) with
w defined in (1.4), is such that the null hypothesis, E(uu') = 021, is
rejected when T takes a value below some critical point ta’ and is
not rejected in the opposite case. Let the alternative hypothesis be
E(uu') = 0°T. The significance level of the test is o = F(ta), and
tOl depends on Q via the eigenvalues of K'(A - tC)K. The power of
the test is

F(ta/r) = Pr [.
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where the d! are the eigenvalues of (A - taC)B'PB. From the point

of view of the theory of statistical hypothesis testing, it is
natural to call that Q best, for which the power is maximal, given

a fixed significance level a. Though F(t) is independent of X, F(t/r)
is not, so that maximal power fdr barying X would lead to varying Q.
Even if the variation from X to X is negligible, derivation of Q

by maximization of a power function generally involves extremely
complicated mathematics. We therefore abandon the power meximization
criterion, and return to the estimation problem of w, with the hope
thﬁ£ good estimators give good testing results.

The objective function E(w - u)'(w - u) is uniquely minimized
by w, given 2, the minimum value being (apart from the multiplicative
scalar 02)

k ,

. 1 k 1 -
tr (@) +tr (L)) - 2tr (KMK)* =n -k+n-2[n-2k+z 471 = 3k-2 £ a?
B | : i=1 i=1

wvhere di’ 0 < di.i 1,i=1,2, ..., k are the eigenvalues of P'RR'P,

see the appendix. We define

s 3

V=k - di

i=1
and we have 0 < ¥ < k, while ¢ = 0 only if PP' = RR', or Q = M. Therefore
when comparing alternative specifications of © with respect to a
pagticular X, the specification which makes ¥ minimal gives the best
estimator w, according to the estimation criterion. An alternative

measure is defined as
k

$ =k - .Z di
1=1 .
It measures the‘sum of squared differences between the elements of M
and , this sum being tr [(M - Q)(M - Q)] = 2¢. Also, 0 < ¢ < k.
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The measures of least-squares approximation ¥ and ¢ seem very alike,
and in fact behave very alike. The latter is preferred to the former

because of its manageability:
¢ =k -“tr, (P'"RR'P) = tr (P'MP)

It can be interpreted as the sum of squared cosines of all angles between
the column vectors of K on the one hand and those of R on the other
hand, tr (K'RR'K). A ¢ equal to zero means that all cosines are zero,

or ¥(K) 4 M(R), or equivalently, M(P) = M(R).

3. A BEST Q FROM EMPIRICAL DATA

Suppose X5 X2, ooy X is the (hypothetical) population of all X
matrices with rank k and n rows, occurring in some branch of research.
Let Z* denote the matrix éonsistiﬁg of all N orthonormal bases to the
X-matrices, '

zx = [R, ! R, é e s Ryl

We vant @ = I - PP' with PP' close to R;R!{, i =1, 2, ..., N. Write

¢; = tr [P'(I - Riﬁi)P]

A . N
1 . - .
and adopt minimization of § = 1 I ¢, as a criterion for finding the

i=q

N : .
- 1 .
- P'R.R! = - — /A VA 1
¢ =3 izl tr tI(k) P R1R1P] 'k ¥ tr [P'Z%z%'pP]

i

Hence, ve look for P which maximizes tr [P'Z#Z#'P], with the provision
P'P = I(k)' This is the well-known Principal components problem, see
Anderson [1958], Chapter 11. Writing 1? for the i-th eigenvalue of Z¥z%'
A% 3_13 2 .o 2A%>0, and h# for the eigenvector of Z#z#! defined by
A?, gives hf as the i-th pripcipal component of Z*, The solution to our

problem of minimization of § is P =[n% - BE Louaitl h#]




We collected sixty vectors, each consisting of n = 15 subsequent
annual observations on economic variables. We combined two of them and
added a constant term vector, so that we got m = 30 X-matrices with
k=3 columné. The data include both stock and flow variables, deflated
and undeflated, price indices and}rdtios, and also logarithmic series.
Every vector covers a 15-year period between 1920 and 1969, and contains
either American, English or Dutch data. First and higher order differences

are excluded. Then a matrix Z
2=[Ry + Ry : «ev i Ryl

can be constructed, as indicafed above. We computed all 15 eigenvalues Ai
and eigenvectors h, of zz', Ay 2as 2 .e 3_A15 > 0. Defining Z* as the
hypothetical set of all 15 x 3 X-matrices occurring in economic time series
analysis, we regard Z as a sgmple from Z*, and we regard hi as an estimate
of hg. The eigenvalue As is often interpreted as an indicator of the
contribution of h, to the explanation of Z. A convenient definition of

the percentage contribution of g to the explanation of Z appears to be

100g'Z2Z"
tr |ZZ'|g'g

Then

. 15
(3.1Y ' . 1oo>.i/j£1 As
is the percentage contribution of hi to the explanation of Z. In Table 1
the first six principal components of Z are presented, together with
their explanatory contributions. The vectors are graphically displayed
in Figure 1.

The empirical matrix P is [h1 E h, 5 h3] and it explains
33.3 + 27.1 + 17.5 = T7.9 per cent of Z. This corresponds to

tr [P'2Z'P]

tr LZ2' }k = {1 - 0.779}3 = 0.663

(3.2) $ =k - é-tr (P'zz'P] = {1 -




Notice that 33.3is a maximum for s since for any real n-vector g we

have

' = ! - '
0 2e'Me=g (I - R;R!)g

and hence
] ] ]
g'R;Rig/g'e < 1

so that m

100 g'RiR

_ _100g'22'g _ i=1
M E % (22 g'g

tr [ I R.R!lg'g
i=1

]
ig

TABLE 1. THE FIRST SIX PRINCIPAL COMPONENTS OF Z

h1 h2 h3 hh hS

W N OV U =W N -
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FIGURE 1. DIAGRAM OF THE FIRST SIX PRINCIPAL COMPONENTS OF Z
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L. IDEALIZATION OF THE EMPIRICAL RESULTS

We regard Z as a sample from Z¥*. It stands to reason that a
different sample would yield dlfferent numerical outcomes. Both from
this point of view and from the standp01nt of tractability the vectors
hl are streamlined in this section.

It is interesting to consider a successive computation of the
principal components, which were actually computed simultaneously.

To derive h1 we write Z as

Z=hhiZ + (I-h h')Z = hhiZ + Z,
The part Z lies in M(h ) » hence no part of Z can be spanned, or
explained, by h . Therefore we call Z the remalnder of Z after

explanation by h The method of pr1nc1pa1 components makes the sum

of squared eleme;ts of Z1 minimal, or h'ZZ'h maximal. The solution

is, that h is the eigenvector of ZZ' deflned by its largest eigenvalue.
(We dlsregard multiple eigenvalues). The second principal component, h2,
is the eigenvector of Z1Z; defined by the largest eigenvalue of z,z;,
whlch is the second largest eigenvalue of ZZ'. Naturally héh = 0,

since h lies in AKZ ) and z, lies in AKh ) . In the same way h3 results

from 22, the remalnder of Z after explanatlon by both h1 and h2,

-

= - ! = - | ]
(I h,h) )z (1 hihy - hyh 2)z

A
i

and so on.

If Z is not an ideal sample from Z* then each h generally deviates
from its ideal counterpart h*. But that is not all. From the above
considerations it is clear that hi is affected by all its predecessors
hj’ J=1,2, ..., i-1, since h is allowed to explain the part of 2
that should have been explained by h through h -1 and h cannot explain
its own part of Z insofar it has been explalned already by its predecessors.

This makes h1 more and more unreliable as i increases.




Returning to Figure 1, we notice a remarkable regularity. The
structure of h1 is fixed, given the inclusion of a constant-term vector
in all X-matrices. Column vector h2 shows mainly a trend. There is no
reason to assume that economic time series diverge from a perfect trend in
the way h2 does. As a first step, we .idealize h2 to a perfect trend, and
h3 through h15 are replaced by the principal components of the remainder
of Z after explanation by h, and the idealized h2. The result is visualized
in Figure 2 (again the first six vectors only). The explanatory contri-
butions of these vectors are 33.3, 24.2, 20.0, 8.6, 4.1, and 3.8. A matrix
P, consisting of the first three vectors, explains 7.5 per cent of Z, a
loss of only 0.4 per cent compared with P based on Table 1. Therefore
h2 can be replaced by a perfect trend at very low cost. The third vector
is no longer disturbed by its predecessors, provided that the idealization
is correct. It shows a much more pronounced downward-upward movement,
which is stylized in Figure 3. The figure is completed in the same sense
as Figure 2. The explanatory contributions now are 33. 3, 2k.2, 18.1, 8.6, 5.0,
and h~1 When compering Figures 1 and 3, we conclude that (h h ) can be
replaced at low cost as has been done in Flgure 3, and that hh’ 5, and h6
are very stable, hs and h6 being interchanged.

We discontinue this type of idealization. Some aspects of the
priﬁcipal components are illustrated and data for comparitive purposes
are provided. In accordance with most economic theories, we look for
curved idealizations. We considered sets of polynomials, see Abramovitz
and Stegun [1965], p. T78. The Chebyshev polynomials look appropriate. Such
a polﬁhomial of degree k is defined as

Tk(x) = cos (k arceos x)

This polynomial is zero for X, = cos [(j + %)1/k], J=0,1,2, ..., k - 1.

It is known that Chebyshev polynomials are orthogonal in the following sense.

jio Tk(xj)Tz(xj) 0 if k$2

=n if k=42=0
nf2 if k=12%0

where xj, j=0,1,2, ..., n~ 1, are the values for
which Tn(x) is zero, end k, £ =0, 1, 2, ..., n - 1.
See Hildebrand [1956], p. 390. Since x5_q = cos [(j - 2)n/n], we have
_ . s 1
T1_1(xj_1) =cos [(i - 1)(j - 3)n/nl.
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FIGURE 2. STYLIZED h1 AND h2’ AND THE FIRST FOUR PRINCIPAL COMPONENTS OF Z

2
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FIGURE 3. STYLIZED h1, h2, AND h3, AND THE FIRST THREE PRINCIPAL COMPONENTS OF Z

3
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We define the j-th element of h?, which is the i-th column of H*,

as

(4.2) ‘hgl =ccos [(i-1)(§ - 3)n/n]

The n x n matrlx His orthonormal, which follows from the orthogonality
theorem (% 1). Figure L shows h* through hg for n = 15. They explain
33.3, 24.3, 18.7, 8.2, 3.8, and h 2 per cent of Z, respectively. The
first three vectors together explain 76.3 per cent of Z, even more
than in the case of Figure 3.

The vectors hf happen to be eigenvectors of A, the matrix occurring

in the numerator of the Von Neumann ratio,

1 -1
-1 2
0 -1

The i-th eigenvector h? is defined by the eigenvalue 2[1 - cos (i » 1)n/n]
The vectors h*, hg, and h§ were adopted and applied by Abrshamse and
Louter [1971] on the basis of remarks made by Hannan [1960].

Avallablllty of a generation formula for h*-vectors is very
advantageous. A 51mple computer subroutine is needed to generate h“
for any i, i < n, and for any n. We adopt h" as the i-th pr1nc1pal

component of Z*




FIGURE L. THE FIRST SIX h*-VECTORS FOR n = 15




5. GENERALIZATION FOR k AND n

Write Z (m; n, k) for the n X (mk) matrix consisting of m R-matrices,
each of order n X k. In the preceding sections we investigated 7
(30; 15, 2 + 1), where 2 + 1 indicates that the original X-matrices
contain two time series columns and a constant term column. By
rearrangement of our sixty data vectors we got Z (20; 15, 3) and
Z (20; 15, 3 + 1), the only difference being the addition of a
constant term to all X-matrices; Z (15; 15, 4) and Z (15; 15, 4 + 1)
with the same difference; and Z (12; 15, 5). Write uf for the percentage
contribution of h?, defined in (L4.2), to the explanation of Z (m; n, k);

for M, see (3.1)

TABLE 2. PERCENTAGE CONTRIBUTIONS TO THE EXPLANATION OF Z (m; n, k)
BY PRINCIPAL COMPONENTS OF Z (m; n, k) AND h*-VECTORS

7(30;15,241)

Z(20;15,3+1)

lJi Ui

Z(15515,4+1)

Ui Ui

2(20;15,3)

Ui U;-.'

2(15515,4)

ui Ui‘

z(12;15,5)

. i
My ul

25.0
22.0
18.1
11.8
T.2
2.9

25.0
21.6
17.2
1.4
6.3
6.4

20.0
18.4

16.0

13.2

7.9
6.5

33.1 33.1
25.5 25.2
17.€ 16.1
8.4 8.4
5.0 3.8
L.o 5.0

2k.9 2L4.8
21.4 21.1
20.7 18.7
13.4 13.3
5.2 3.k
4.1 5.8

20.0 20.0
18.5 18.3
17.1 15.8
12.8 12.9
9.2 7.0
7.0 8.1

76.9

76.3 Th.3

80.5 77.9

77.5 Th.0

It is seen that the subcolumns below ui‘and u? are pairwise very much

alike. The conclusion is that P, consisting of the first K h¥-vectors
a good idealization of P, consisting of the first k principal components
of Z (mj n, k) for n = 15, at least for k = 3, 4, 5. The idealized P
roughly explains 75 per cent of Z in all cases. This means, see (3.2),

¢ =(1-0.75)k = 0.25k
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Before stating a general hypothesis, we investigate the effect of some

variations of n.

Reconsider the X-matrices underlying Z (30; 15, 2 + 1). We examine
four types of submatrices: delete (a) the first three, (b) the first
five, (c) the last three, and (d) the last five rows of each X. For
each type we computed a matrix Z (30; n, 2 + 1): Zgs Zys Z,> and Z,,
say, with n = 12, 10, 12, 10, respectively .

TABLE 3. PERCENTAGE CONTRIBUTIONS TO THE EXPLANATION OF Zj
BY PRINCIPAL COMPONENTS OF Zj AND h*-VECTORS

As in Table 2 we find a high correlation between the subcolumns of Table 3,
suggesting the following hypothesis.

In economic time series analysis the best ideméotent @ of order
n xn and rank (n - k) is I - PP', where P is the n x k leading submatrix
of the n x n matrix H*, defined by (h.2).

The adjective "best" means: on the average, Q 'is as close as possible
to M in a least-squares sense, while the only thing we know about X is,

that it contains annual data.




6. TEST CASES; A SELECTION DEVICE

We computed powers of tests for both autocorrelation and hetero-
variance on éach of the six 15 x 3 matrices XC, XK XS, XL’ XT’ and XA
described below, with alternative specifications of Q. At the suggestion
of Durbin [1970], we compared his alternative exact test for auto-

correlation, which uses the disturbance estimator Z,
-1\ L Y
= [0 - o¥(X'a¥) X'a + oxP, P My

A . v N .
where Q2 = I(n) - PP', P'P = I(k)’ P = [h? . Pl, Xis the n x (k - 1)

matrix obtained from X by deleting the constant term vector, and P1

NN -
- and P, are the lower triangular matrices such that P1P; = (X. 0X) !

P P' = (B Mﬁ) - Both estimators, z and w, are linear in y and unbiased,
hav1ng the same covariance matrix, 029 when taking the same P. Durbin takes
[h§ E §] in his applications. He does not indicate in which sense
z is best, if any. It is not clear why orthonormal transformations of
P1 and P2 are disregarded.
All six X-matrices contain a constant term vector. The time series

data are taken from literature, as follows.

X Chow [1957], Table 1, log automobile stock per capita and

: log personal money stock per capita for the United States,
1921-1935. .
Klein [1950], p.135, profits and wages for the United States,
1923-1937.
Sato [1970], p. 203, capital and man hours for the United
States, 1946-1960.
Log transform of the Sato data.
Theil and Nagar [1961], Table L4, log real income per head and
log relative price for the Netherlands, 1923-1937.
Koerts and Abrahamse [1969], p. 153-15k, artificial data.

For all tests the maintained hypothesis is that u is normally
distributed with zero mean and the null hypothesis is E(uu') = ogl The
alternative hypothesis is E(uu') = 02?(15) with p = 0.8 when testing for
autocorrelation, and it is E(uu') =0 (15) with Y = 0.5 when testing for

heterovariance,




We use the autocorrelation test statistic Q and the heterovariance test

statistic T

w'Cw
(15)

T= - C)w

w' (I
where A is the 15 x 15 natrix given in (4.3) and C is the 15 x 15 matrix with
leading submatrix 1(7), all other elements being zero. The statistic ? has
been proposed by Theil [1968]. Both test statistics are of the form (1.2),

so using an estimator w = B'u with B'B = I - PP', their distributions under
.the null hypothesis depend on P alone.

Though we did not use a power maximization criterion, but, instead, an
estimation criterion to arrive at P = [hﬁ ; hg E hgj,‘testing procedures
nevertheless should mainly be evaluated by means of their relative powers.
Relativ§5 since we are generally unaware of the maximum attainable. On the
other héﬁd,‘a test with relatively high powers may be disqualified by

computational inconvenience.

To each of the six X-matrices some alternative specifications of P are
taken as follows. '

(I) P equals R. Then Q@ = M, w reduces to the ordinary least-squares
estimator and Q becomes the Durbin-Watson test statistic. Durbin and Watson
[1971] prove that their test for autocorrelation is locally most powerful
invariant.

(II) P = [h? : hg : hg]. This is the specification according to the
hypothesis at the end of the previous section.

(III) P = [h? : h% 1 h%]. Same specification as II, but now Durbin's

estimator z is used,
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(Iv) P = [e 5 eg E e9], where e, is a 15 element vector with 1 at place
i, all other elements zero. Here 2 becomes a diagonal matrix, with diagonal
elements equal to unity apart from the three central elements, which are
zero. Therefore w is a modified BLUS-estimator, modified in the sense that
its three central elements are not deleted.

(v) p= [h? . h? Z'h§3. The subscripts i and j depend on X and are

determined by a selection device, defined below.

From Table 4 we learn the following:

(a) ¢ versus y. Ranking the rows of Table T according to increasing ¢
is identical to ranking these rows according to increasing Y. This is what
we meant by saying that the behaviour of ¢ and ¢ is very alike, see Section 2.

(b) Durbin's estimator (z) versus BLUS estimator (e7e8e9). Apart from
the autocorrelation test on XA’ where the difference is relatively small,
the BLUS estimator scores higher powers in all cases.

(c) Durbin's estimator versus w (h?hghg ). Apart from the autocorrelation
test on the Sato data, where the difference is relatively small, the Durbin
estimator scores lower powers in all cases.

(d) BLUS estimator versus w. Apart from the tests on the Sato data
and the heterovariance test on XT’ where the difference is relatively small,
the BLUS estimator scores lower powers in all cases.

(e) Least-squares estimator (R) versus both Durbin's estimator and
BLUS estimator. L-s estimator scores higher powers in all cases, particularly
in the autocorrelation tests.

(f) L-s estimator versus w. In the heterovariance tests there is no
systeﬁﬁtical winner; in the autocorrelation tests the 1-s. estimator scores

higher powers in all cases, though the difference is small for XK, XT, and XA’

(g) There is no simple relation between the approximation measure values

and the powers computed.

The power levels of the tests are not essential for our purpose: the
comparison of different P's, For instance, the powers for Q are determined
by @ (significance level), p (specification of the alternative hypothesis),

R (least-squares regression space), and P (a priori fixed regression space).




TABLE 4. APPROXIMATION MEASURES, AND POWERS FOR Q AND T AT SIGNIFICANCE LEVEL o

‘ Approx. measures Powers for Q at Powers for T at
¢ ] 1/ ~a=0.05 a=0.10 a=0,05 a=0.10

RC . .536 .665 . 131 0.230

h’1‘h’2‘h§' . .L66 .595 .132 0.231

(z) . .372 195 .115 0.206

ereg8g . 42k .564 127 0.224

RK . .629 T34 k2 0.245

h¥hihy .027 .605 .715 .12 0.245
(z) : . 371 .501 .121 0.215
e egeg X .501 .631 .139 0.240

h’fhghfi 0. .610 .T19 .138 0.239

.628 .738 L1kh 0.248
.355 L79 137 0.238
.367 .49o .13k 0.233
136 .586 L1 0.2k43
.625 .734 .135 0.235

.636 LThh <143 '0.246
.357 482 <137 0.238
.3Th .500 .132 0.231
1455 .603 .139 0.2ko
.632 .ThO .13h 0.233

.508 .633 .143 0.247
k99 .625 .138 0.241
.335 RN .103 0.186
.360 .510 L1 0.243

.628 .726 <1l 0.245
.626 .725 .143 0.2k6
545 .652 .103 0.166
.532 .6L6 .13k 0.233

.628 .726 .135 0.233




We carried out a lot of computations, and the results suggest that

power ratios of the form

Power for 'Q, given o, p, R, Po

Power for Q, given a, p, R, P1

are approximately constant for varying a, p, and R. :
From Table 4 it is evident that the spaces M(RS) and M(RL) differ
too much from M(h?, hg, hg), in one respect or another, relevant to
the test performed. The latter space is recommended as being best on
the average, as long as X is unknown. low we must allow for other
P-matrices. The selection of a specification from a given set of
P-matrices in a particular case then depends on X. Taking into account
that monthly or quarterly economic time series data, for instance,
usually show a different fluctuation pattern over time, we propose
to admit P to consist of higher frequency h*-vectors.
We adopt ¢ as a criterion for the selection of k h¥-vectors. For
a given X-matrix of order n x k, we choose that P for which ¢ is

minimal. This leads to the following selection device

Compose P of the k h¥-vectors corresponding to the k

smallest values of h?'Mh?, i=1,2, ..., n.
i

-

If X contains a constant term, the device prescribes inclusion
of hﬁ, for h?Mhﬁ = 0. Exclusion would mean P'X singular, in which
case W does not exist. Application of this device selects

= %, = PRI > = BRI
P [h1h2h3] for X, and X, P [h1h2hh] for X, P [h1h2h8] for

Xy and X5 P = [h?hghﬁ] for X,. Powers are also presented in Table 4
for these specifications. It appears that the heterovariance tests

are not improved, while the powers for G are very close to the
Durbin-Watson power.

We computed ¥ for all admissible P-matrices for each of the six
X-matrices. The P for which V is minimal with respect to X coincides
with the P indicated by the selection device, in all six cases. For all
admissible P-matrices we computed powers for Q in the case of XC and XT'

In the case of X, the highest power is scored for P = [nﬁhghg]. In the

case of XC the highest power scores are presented in Table 5, together

with the powers for T.




TABLE 5. POWERS FOR Q AND T AT o = 0.05; X = Xo AND P = Ehﬁhfh?]

i i i ¢ Power for Q Power for T

1.781 0.566 0.108
0.996 0.563 0.120
1.855 0.563 0.100
1.816 0.555 0.107
0.000 0.536 0.131
1.011 0.533 0.128
1.879 ~0.525 0.100
1.830 0.522 0.112
1.869 0.522 ©0.124
1.211 0.519 0.117
1.08Y4 0.509 0.118
1.867 0.503 0.109
1.893 0.502 0.105
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Table 5 shows that ¢ is not a power indicator, that the Durbin-Watson
test is overpowered four times, and that there is no high-power-for-Q-

high-power-for-T relation.

The conclusion of this paper is that adoption of P = [hﬁhghg] yields
comparatively good powers when testing for heterovariance with T, and
that adoption of the selection device generally yields powers when
testing for autocorrelation with Q which are competitive to the powers
of the exact Durbin-Watson test, at least when computational convenience
is taken into account. When no exact test for autocorrelation is needed,
the B-approximation to the exact Durbin-Watson test gives good results:
for our X-matrices the computer time needed is somewhat less compared
with the computation of w, while the exact significance levels,
corresponding to the B-approximated 5 per cent significance points, range
from 0.0486 to 0.0507.




FIGURE 5. SIGNIFICANCE POINTS q, FOR Q
AT SIGNIFICANCE LEVEL a = 0.05
FOR P = [h‘;‘h;.'_‘hs?] WITH n = 15,

[ [ ][]

P o - - - o — - — ———— —— — ——— o——— o]

6 T 8 9 10 11 12 13 1k

The significance point for P = [h?h%h??] is 1.080.




The selection device involves tabulation of a large number of
significance points. The regular pattern of the 91 significance
points at o = 0.05, which are computed for Table 5, suggest that some

formula must exist which makes tabulation unnecessary (see Figure 5).
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APPENDIX

B' Expressed in Terms of X and P only

1
. (a) Existence of (K'MK)™?

The matrix (K'MK)-% exists (and has real elements) if and only
if all eigenvalues of K'MK are strictly positive. Denote the eigen-
values of K'MK by Ai’ i=1,2, ..., n -k, so that the eigenvalues
ofKWWKameU-—H),i=1,2,“.,n-k,am10§A1<12_ <
Denote the eigenvalues of R'PP'R by di’ i=1,2, ..., k, so that the
eigenvalues of R'KK'R are (1 - d.), i=1,2, ..., k, and
0 < d1 < d ee < dk < 1. Since the nonzero eigenvalues of K'RR'K and
-the nonzero eigenvalues of R'KK'R are the same, we have A di forv
i=1,2, ..., k and Ay =1fori=k+1,k+2,....n- k in the case
k <n - k; Xi = di for i =1, 2, ..., k in the case k = n - k; and
Ai = d. for i=1,2, ..., n-k and d = 1 for
i=n-k+1,n-%k+ 2, +ov, k in the case k > n - k. Therefore,
(K'MK) 2 exists if and only if d1 >0, or, wﬁat amounts to thi same thing,

P'R is nonsingular. Besides, tr (K'MK)2 = I A2 =n-2k+ I df.
i=1 i=1

() (k)™ = 1+ (xwern (o + )" (kwprpdy:

We write P'RR'P = LDL', where L' = L and D is diagonal. Then

1 _1
R'PP'R = (R'PLD 2)D(R'PLD 2)!*

= (R'PLD’%)(I - D)(R'PLD-%)'

1 1
R'KK'R(R'PLD™2) = (R'PLD 2)(I - D)

1 1
K'RR'K(K'MPLD %) = (K'MPLD 2)(I - D)




where we replaced RR' by M = I — RR', since K'P = 0. Evidently,
_1 22
(K'MPLD™?)'(K'MPLD™2) = T -~ D

1
so that (K'MPLD ?) can be considered as consisting of unscaled

eigenvectors of K'RR'K. Suppose the j-th diagonal element of D; dj’

is equal to unity, so that (I - D).-1 does not exist. Then the j-th

1 .
column of (K'MPLD ?) is a zero column. Let us write A for the diagonal
matrix obtained from D by deleting row J and column j for every J

.
for which dj = 1, and let E denote the matrix obtained from (K'MPLD™2?)

by deleting column j for all J for which dj = 1. Now we have

H'H=1- A

[H(I - A)_%]'[H(I - A)‘%] =1

IN

-

, _1 _1
K'RIR'KK'RIR'K = (K'MPLD 2)(I - D)(K'MPLD™2)'=H(I - A)H'
=1 2 1
CH(T - A)732(T - A)°[H(T - A)"27"
and hence
i 22
K'RR'K = [H(I - A)721(I - A)[H(I - A)"27
A _1
Let G denote the orthonormal complement to E(I - A)72, then
-3
K'RR'K = [H(I - A)72 :

_1 . A . . 1 .
K'MK = [H(I - A)"2 . G]|..."... [E(I - A)™2 : Gg]'
' ‘ o . I .




13 _1
H(I - A)73A73(1 - A)72g + got
21 ! -1
I+ H(I=A)"3(A"2 - 1)(1 - A)" 2R
3.1
I+ H(A+ A%) g
_1 1. -1 1
I+ (K'MPLD™?)(D + D?)”'(K'MPLD 2)'

The effect of the last step is the addition of half of the outer products

of zero vectors.

1

1 ’ 1
T' - S(I + D?) 's' - Tp~2g:

(c) B' =I-TD
S _1
Substitution of the expression for (K'MK)™2 into the formula
_1
B' = K(K'MK) ?K'M

may give the formula

1' %"1v 1"%1
T' - (I + D°)” 's' - ™ 2%g

B'=1-1TD
where § = MPL, T = PL - S, D is diagonal, and L is the k X k orthonormal
matrix such that P'MP = L(I - D)L'. Use of this formula reduced the
computer time needed to compute B' for the case n =15 and k = 3 by some
80 per cent. If X has not full column rank, then M = I - RR' where R is

an orthonormal matrix spanning M(X), otherwise use M = I- X(X’X)_1X'.







