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1. THE GENERAL MULTIPLICATIVE MODEL

1.1. Introduction

The multiplicative model with constant elasticities can be written as

K 6
Y. = ri z.k v.1 

k1 
ik 1=

or after the log transformation:

(1.2)

with [yi] = [in Yi]

bc. = [In ik zik]

[130 = [60
[u.] = [ln v.]1 1

y = X$ + u

1=1
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We shall now consider the estimation of the mean of the dependent

variables under the following assumptions on the vectors u and v. Let

(1.3)

and

(i.1)

Then

(1.5)

(1.6)

E(v) =

var v = =
IJ

E(u) = p

var u = E =

where the elements of u and E are functions of the elements of SI,

the character of the relationship will depend on the assumption

concerning the distribution of v.

To find the minimal M.S.E.'estimator of

(1.7) n(x) = E[Y(x)] = exp{xi i3}

for known variance we generalize the approach followed in the case of
a scalar variance covariance matrix of V. The first task is to find
the generalised least squares estimator of a. There is, however,
a complication in this problem since the mean of u is not equal to
zero. To overcome this problem we apply the following transformation to
model (1.2):

Let

(1.8)

u* = u p

then in the transformed model

(1.9) y* = xa +

For an introduction to this subject we refer to Teekens and Koerts
[1970 7 a ] and [1970 , b ], where the same problem has been
considered under more restrictive assumptions.
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u* has zero mean and variance covariance matrix as in (1.6).

In model (1.9) the generalized 1.s. estimator of a equals

(1.10) = 
XIClxrlx,Cly*

This estimator is substituted in the estimator of n(x):

Y = c.e
x'a*

where c remains to be specified. If we minimize the M.S.E. of Y
x 

with

respect to c, we obtain the minimal M.S.E. estimator of n(x):

M )u" x (1.12) Y* =
x M ,(22, ) 

e
x

u- x

where = x'(X'E
-1
X)
-1

X'E
-1 

and where M114.( ) stands for the moment

generating function of the vector 1.1*.

It is worth noting that this estimator of n(x) is equivalent to

the estimator which would result if we ignore the fact that in model

(1.2) the vector of disturbances does not have zero mean, i.e. if we
substitute the generalized 1.s. estimator of model (1.2)

(1.13) =

into the estimation function of n(x):

x'aY
x 
= c.e

In that case minimization of the M.S.E. of Y
x 

with respect to c gives us

(1.15) = M(i)u x 
e
x'a

x M (22, )
U x

The equivalence of Y* and Yx can be proved as follows. Let us first
consider the m.g.f. of u*. As can be seen from (1.8).u* is a linear
function of u, hence

(1 . 16 )
uw

= E[e
U*'T 

= E[eu ] = e-UfTM
u
(T)



Moreover, 13. can be written as a function of B, for

- -1 -1 ,X'E
1 
X) X'E y- =

hence

(1.18) exp {x'i*} = exp {xli 2,:cp}

If we apply (1. 6) and (1.18) to (1.12) we obtain

_tfu
X m (t )

(1.19) u xye: =
x -2L

x
Mu(ax)

Hence, we can use (1.15) as an estimator of n(x), and it is not

necessary to apply transformation (1.8) to obtain the optimal

estimator.

1.2. Application to the Lognormal Case

Assume that in model (1.1) the disturbances are lognormally

distributed with mean and variance covariance matrix as specified
in (1.3) and (1.4) respectively. Then the vector of disturbances
in the transformed model (1.2) has a multivariate normal distribution
with mean and variance covariance matrix as given in (1.5) and (1.6):

(1.20) u N(u, E)

The estimator of n(x) follows from substitution of the moment-
generating function of u

(1.21)

into (1.15). Then we get:

(1.22)

xp + ;VET}

3= exp .{x'13 - (2.;(11 -2-2,;(ax))



In order to trace the rnplications of assumption (1,3) on u, we

follow .a reverse solution. Starting from (1,20), the expectation of

V1 and v.v• can easily be found by making use of the m.g.f. of u.1 j
From (1.21) it follows that

u.
( .23) E(v1) = E[e 1] = exp {ui + c..} i = 1, ...,

11

and

U. +U.
(1.21) E v.v. g E[e 1 3] = exp {11. + i. + + 2c. +j JJ

It can now be seen that assumption .3 implies that

(1.25)

Substi,tution of .25 into (1.2I) yields:

(1.26)

Hence

a..
1/1 11

E(v.v.) = expj

a111 N

NN1 N

or, to put it the other way around, let

(1.28)
a..
13

13

4.11

•

. • •

• • • , N

1.17 1, ...,

N



Then

(1.29

arid (1.25) becomes

(1.30)

a
i 
.. = + 1)j

+= in 1) = 1, .• • ,

Therefore, if vi is lognormally distributed with mean equal' to the unit
vector and with a variance covariance matrix S/, u is multivariate
normally distributed with mean and variance covariance matrix as defined
in (1.30) and (1.29) respectively, and the estimator Y as given in (1 ?2)

is completely speci4ed.

2. AUTOCORREL4TION OF THE TRANSFORMED DISTURBANCES

2.1. Introduction 

In this chapter we investigate the multiplicative model where the

transformed disturbances u1 follow a first order Markov scheme:

(2 . 1 ) u. = pu. + e.

in which id < 1 and in which the c1 's are independently normally

distributed with mean p and variance a
2
. First we trace the

implications of the assumption

(2,2) 'Ev1 = 1

on the expectation of c.. From (2.1) it can easily be seen that

C.
(2.3) v. = vr? .e 11-

c.-
We may now express vi_ in terms of v. 2 and e , etc. then we get



(2.4)

Since the e's are independently distributed we can write

(2.5)

and it can easily be seen that

(2.6)

which is the m.g.f. o

(2.7)

P e .

II 
 .
1—J

e
j=0

C• •
Ev. = ii E[e 1-'3]
1 .

0=0

P
E[e 3] = exp {pjp + ip2ja2}

c.
j 

evaluated in the point pi. Hence
i- 

Ev. = exp {pip 
lf,2ja21

j=0 c

Taking 'the logarithm at both sides of (2.7), we get

(2.8)
' • .

[Evi] = .E pJ vi c. + E ip2ja2

0=0 - j=0 c

1 2

1-0

Thus, assumption (2.2) is fulfilled if

(2.9)

or

(2.10)

(7
C

i2

1 - p2

i2

1 + p

This being established we are now able to derive the mean and the

variance covariance matrix of the vector u. From (2.1) we deduce:

(2.11) U. = E ()d e. •1 j=0 1-0



• Heice

• (2.12)

and

(2.13)

where

OD

Eui. =

j=0
• • ) =1-j 21 p

_2(y

E[(ui E i)(ui_t Eui )] =

E[{ E p ( 
i 

- Ec. 
j 
.)}{ E pJ 

iLj 
- E .M- 1- . -- j=0 j=0

= E p'ó. .}{ E p'ó. A .131-J • x1--jj=0 J=0

I,2j- 
l 
,
6 
2 P  2
1-j _ p 2 c

where use has been made of E6.ó. = 0 for i +1 
matrix of the vector u equals

(2.14)

2
where a =

(2.15)

ci(

•r

0000,00

•

N-1
00000

•
•
•

1

14-11

L = 0, '

Hence the covariance

a2

1 p and its mean see 2.12 is

i 2= -20
c - p2 ).t = -ic .1

000004

•

• . .

• • • p

N-1

2
P
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2.2. Prediction

When dealing with prediction of the dependent variable in a model
with independently distributed errors, we used Y,, a minimal MSE estimator
of n(x).

appropriate as

If the errors show autocorrelation, Yx is not
a predictor, since in that case we should use

the information which is given by the sample concerning the values
of the errors over the sample period. Because of the dependency of
the errors, they give some information concerning subsequent values
of the errors.

Let us formalize this reasoning and let us consider a prediction
of the dependent variable in the model

or

K 6
k

Yt 
=

tk
v
t

k=1

Yt = exp {x13 + ut}

U
t 
= put-1 

+ E
t

t = 1, 2, ...

in which the E
t 

are independently normally distributed with mean
i 2

1(1 + p) and variance a
2
.

Given a sample referring to period 1 to T we wish to estimate

(2.18) n(x141), u) =

This parameter can be rewritten as

(2.19) n(xT+e,

• • • , AT]

u) = E[exp {x44.0 + ..., UT]

= exp 
{x1+e 

a}E[exp {eu148}11111, UT]T 

0-1
= n(xT4.0)E[exp E pTc,14.0..1 + peUT}]

T=0-

with n(x 413) = exp {xT+e(3}.
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If we assume that uT = uT is the observed value of u at period T, we
can write:

(2.20) 
n(xT+0, u) = n(xT+0)

= n(xT,e)

2
o ac 6-1 20-2exp {p 1.T} exp

2 (P P )}
1 - p

8 0 2, 8-1 28-2exp {p UT tuctf) - P )/(1 - p
2
)}

If we assume furthermore that p and a2 are known, we have to estimate
(apart from a known constant)

n(xTlid . exp 
{P0 u0

For that purpose the following estimator is proposed:

(2.21) 8-HT+0 = c . exp {x;+(ia + p uT

0in which a and 11T are the generalized LS estimators of a and uT:

(2.22) 8 = (x,P-1x)-1x,P-ly

and

(2.23) e?u

e
T 

being the T-th unity vector. As can be seen from (2.21) the c is
unspecified. As before we determine c by minimizing the MSE of
In order to derive the MSE of Ewe write this estimator in
a slightly different way:

or

(2.24)

1114.0 = c . n(xT+0) . exp 0440u + pe(eT IT)'ul

11T+8 = cn(xT.0) exp {t'u}



11

with

(2.25) = + 
pef(e

T I
T)T+0

It can easily be deduced that the relative MSE of 11,1443 eauals

= c2M
u
(210 - 2c M

u
(i) + 1

and that the value of c for which this function reaches a minimum is

(2.26)
M( i)

C =  0 M
u
(210

Substitution of (1.21) and (2.25) into 2.26) yields:

(2.27) 3 2 26co = exp {a
2(1 - 3aT+e) -a p (1 - aT))

- -1in which at = = x(X'P /X) xt.

Hence the minimal MSE estimator of n(xT+e, u) (for known a
2 

and p)

becomes

(2.28)
T+0 

= exp {-i a2 0-1 20-2)p /(1 - p2) RT+0

= exp {x,14.0 + (1

Or 3 2 er, 1 2 -1,. 0-1‘1,+ P LaT p kl aT) - a p 1,1 p JJJ

in which we substituted 02 = 02(1 - p2).

It can be seen from (2.28) 
thatT+e 

consists of two parts the first

one, exp 
{x'+0 

+ ia2(1 - 3aT+0)}, can be considered as being predictorT 
which results if we disregard the serial dependence of the errors and the

3 —1second one, exp {p
6 

- 
Ty2 

p
e 
(1 - aT) ia

2
(1 - pe )4] , which improves

the quality of the former estimator in the case of serial dependence. The

importance of this correction clearly depends on the prediction period,

if this period is far from the latest observation period, i.e. if e is
large, pe will tend to zero.
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Having described the estimation procedure in the "ideal" situation

where both a
2 

and p are known, we now consider the case where a
2 
is

unknown and p is known.

Therefore, we write (2.28) as

(2.29) 7140 = exp x14.ea + p uT + a2 
[1-3a

T+0-3p
26

or

(2.30)

-aT) - P6-1

YT+6 = exp {x1,404-peiliT 
(12}

For unknown a
2 
the same estimation procedure is proposed as for the case

i 2 2
u NC-2a , a I], see Teekens and Koerts (1970, b):

(2.31)

YT+6 = exp {x4, e
aeb.

+ p uTfgN 
K + 1 

ES
2
) for > 0

-K N K

= exp 
{x'T+6 

g + pet-1.T} . exp {ES21T+6 for E < o

Finally, we have to deal with the case where both a
2 
and p are unknown.

In this case we have to reconsider the a-estimator as well, since until

now we used :L which is a function of the unknown p. For this situation
2we propose that in (2.30) p be replaced by Durbin 's f'5 and a

2 
be

replaced by S
2
. This proposal is based on the results of Rao and

Griliches (1969). They compare several estimators of "p on the bases of

their (sumulated) M.S.E. and it turns out that "The Durbin p ls

significantly better3 for high positive p, while at the same time not
distinctly inferior to the other two methods for negative p's." Further-

more, it seems reasonable to drop the mixed approach (2.31) and simply
replace a

2 
by S

2
. The argument is that the conditions under which (2.31)

has been derived are no longer valid if we deal with unknown p.

2 
See Durbin (1960.

3 •in MSE.
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