%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

o OF
Netherlands School of Economics S AMNING FOUNDAfﬁDN
B -~ 1TULTURAL

LiBREHY
é - L
J [ s _l_ 't Xgl‘

NOMIC:

ECONOMETRIC INSTITUTE

Report TO15

-SOME STATISTICAL IMPLICATIONS OF THE
LOG TRANSFORMATION OF MULTIPLICATIVE MODELS

by R. Teekens and J. Koerts

A}

June 16, 1970 .Preliminary and Confidential
(Revised, October 1970)




SOME STATISTICAL IMPLICATIONS OF THE
LOG TRANSFORMATION OF MULTIPLICATIVE MODELS

by R. Teekens and J. Koerts

Contents

=y

1. Introduction
2. The Multiplicative Model
3. Least Squares and Maximum Likelihood Estimators
3.1. The Least Squares Method
3.1.1. Parameter Estimators
‘ 3.1.2. The Estimator of E(Y | xp)
3.2. The Maximum Likelihood Method
3.2.1. Parameter Estimators
3.2.2. The Estimator of E(Y | X, )

3.3. A Comparison of the Least Squares and the

O N4 N oWV Ut 1N

Meximum Likelihood Estimators of E(Y | x, )
4. A New Estimator of E(Y | %, )
5. A Comparison of the Three Estlmators of E(Y | X, )
in the Case of Unknown Variance
5.1. An Estimator of the Variance in the Multiplicative
Model
5.2. The Mean Squared Errors of the Three Estimators
5.3. Large Sample Properties
5.&. Small Sample Properties
References
Tables and Graphs
Appendix A
Appendix B
Appendix C
Appendix D

Appendix E

1. INTRODUCTION

This paper deals with some of the estimation problems inherent in
multiplicative models with constant elasticities. Such models (for

example, production functions of the Cobb-Doublas type, gravitational




trade flow equations, and multiplicative demand functions) frequently
occur in economic theory. In order to estimate the parameters of such
relationships, we should introduce a disturbance term into the model. It
is logical to introduce such a term into the multiplicative model at the
beginning and to make the necessary assumptions about its distribution.
After this has been accomplished, the problem is clearly defined and we
can pass on to estimation.

The preceding paragraph may seem trivial but it should be realized
that there is a lot of confusion about this subject. The estimation
problem is normally solved after the multiplicative relation has been
transformed so as to put it in the form of the well-known linear model. This
procedure gives rise to the following remarks. Firstly, we may ask ourselves
whether the transformed problem is identical to the original one. Secondly,
in applying this procedure there is a strong'inclination towards postponing the
introduction of the stochastic model until the derivation of the lineer model.
This implies a danger that one does not realize what these assumptions mean
for the original multiplicative model, with the possibility that the implied
stochastic model on the multiplicative relation is not in accordance with
one's original ideas. Thirdly, in many cases we are not interested in
parameter estimates but in the estimation of the expectation of the
dependent variable given a vector of values of the explanatory variables,1
and the backward transformation may again give rise to inconsistencies.

Indeed, the main issue of this paper is the estimation of E(Y | xp). For
the time being some limiting assumptions will be set on the distribution of
the disturbance term. Under these assumptions it seems to be possible to

construct an estimator which hes a number of advantages over the traditional

estimators of E(Y | xp).

2. THE MULTIPLICATIVE MODEL

We assume that there is an economic process which generates Y; let us
further assume that this process takes the form of a multiplicative relationship
between the variable Y and K - 1 explanatory variables Z2, eeey 2, and a

) K
disturbance term v. If we have N observations on both Y and the Z's, we can

write

1 . . . i
This entity will be denoted by E(Y | x_), where it should be noted that the
meaning of this notation differs from “the usual one where xP is a random

variable. In this casge xp is non-stochastic.




K 5k
(2.1) Y.=§, TN 2Z.'v. i=1, ..., N
: i 1 k=2 ik 1 o ?

where the parameters § are assumed to be unknown and the Z's are nonstochastic

positive numbers. Furthermore, we assume

(2.2) | ~E(v) =

and

(2.3) var v = wI

Teking the logarithm at both sides of (2.1), we obtain

(2.4) , ' y=X8 +u

with

and r(x) = K < N

Before we proceed any further, we should justify assumption (2.2).
Let us therefore consider the implications for the original model of super-
imposing & traditional set of assumptions on the linear model (2.4), i.e.

let the u's be independently normally distributed with

(2.5) E(u) =0




(2.6) var u = 021

It should be noted that the normality assumption which is rather limiting,
is made here for convenience in calculations.

Let us now consider the implications for the multiplicative model.
From the assumptions above, it follows that the v' = (v1 ces vN) is

lognormally distributed with3

1 2
(2.7) E(v) = e2%9

and
(2.8)

We may ask ourselves whether these implicit assumptions about the
disturbance term in the original relation are in accordance with our ideas
about the specification of the multiplicative model. In our opinion the
answer must be "no". We therefore use the following analogous reasoning.
The fact that, in the linear model, the mathematical expectation of u
is usually assumed to equal zero originates in the belief that, although
the relationship between the dependent and the explanatofy variables
will not hold exactly for a single observation, it should hold in the
average. An analogous reasoning with respect to the multiplicative model

leads us to the replacement of assumption (2.7) by (2.2). Moreover, if

one introduces a constant term into the relationship it will be clear
that the constant term takes account of the mean of the disturbance term.

As for the linear model, we also assume independency and

homoskedasticity in the multiplicative model as reflected by (2.3).
Then it can easily be verified that

U N(-31n (0 + 1h, 1n (02 + 1)1)

2 .
Further research will be devoted to the question of how robust the

e;tim?tors)to be derived will be with respect to different distributions
of u (or v).

3 . . .
See Appendix A for the derivation of (2.7) and (2.8).




(2.9) u N(-%oe.l, 6°1)

2
where 0 = 1ln (w2 + 1).

Having completely specified our multiplicative model, we are now
ready to tackle the estimation problem.

In the next section, the least-squares and the maximum likelihood
estimators of E(Y |'xp) will be derived. As a starting point, it will

be assumed that w> (and consequently 02) are known parameters.

3. LEAST SQUARES AND MAXIMUM LIKELIHOOD ESPIMATORS

3.1. The Least Squares Method

3.1.1. Parameter Estimators

Least squares estimation of B in model (2.4) yields
(3.1) 8= (xx) " 'x'y

Since it is no longer assumed that the expectation of u equals zero, this

estimator is biased with respect to B:
a 2 ' -1 '
(3.2) E(B) - B = -30“(X'X)” X"1

The first column of X being a unit vector, (3.2) can be written as

-1

1
0

(3.3) E(B) - B = -30° b -

vith X = (1 : X,)

from which it appears that in the linear model only the estimator of the

constant term B1 is biased and the other B's are unbiased. However, in
this case our interest it not the estimation of the parameters in the linear
model but of those in the multiplicative model, and we realize that not

8, but 61 = exp (81) appears as a parameter in the multiplicative model.
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Let us therefore consider the bias of 31 = eB1. The expectation of 31
can easily be derived:

@ 81

R . 81-102+§o§1 -302+§a§1
(3.4) E(é,) = [e f(81)d81 = e = § e

where use has been made of the fact that @1 is normally distributed with

mean 81 - 302 and variance og Hence the bias of 81 equals

B
R -;02*'3'0?
(3.5) E(3)) -6, =6[1-e f1

The estimation of the other parameters in the multiplicative model does

not raise any problems since they are not affected by the transformation.

3.1.2. The Estimator of E(Y | x.)

—

In the linear model, the dependent variable is a linear function
of the regression coefficients; hence if we are able to construct
unbiased estimators of these coefficients, it follows that the
estimator of the expectation of the dependent variable, given a vector
of explanatory variables, is unbiased. It can easily be seen that this
implication does not hold for the multiplicative model. The multiplicative
model (2.1) can also be written as

. x!B+u, :

(3.6) Yi =el 1 i=1, ..., N

Then the L.S.estimator of the expectation of Y, given some xp-vector, is

defined as

(3.7)

The mean of this estimator equals

-1
- x'8 «» x'(X'X)" Xu
(3.8) E(Yp) = e p [ e P

2
' Ld -
XPB 30 (1 Q )

f£(u)du

. -1
with a_ = x'(X'X .
D p( ) X,




It can easily be verified that the bias of ?p equals

- -%02(1-0p) x'8
(3.9) E(Yp) - E(Yp) = (e - 1)e

The variance of ip is equal to

(3.10)

To ascertain whether we have a good estimator or not, we shall use as

our criterion function the mean square error (MSE) of the estimator:

(3.11) E(T - 6)° =var T+ (8 - ET)2

where T is an estimator of 6. Thus, in this approach we accept biased
estimators. Authors like Goldherger[ 6], Bradu & Mundlak [3], and Heien
[T] confine themselves to minimum variance unbiased estimators which are
derived with the help of an estimation function introduced by Finney [5].
However, the condition of unbiasedness may be very limiting in the sense
that it rules out biased estimators with a possibly smaller mean squared

error. In our case the M.S.E. function becomes
-~ -~ -~ 2
3.12) ™ =var Y + [EY - E(Y | x )]
( b p (Y | p)

2x'8  0%(1=q ) ¢%a -502(1-a )

= e {e Ple P_ 1]+ [e p --1]2}

-2x'B
let = #',e P then
-02(1-a ) 02a -302(1-a ) 5
(3.13) f= e Ple P_11+[e P

3.2. The Maximum Likelihood Method

3.2.1. Parameter Estimators

The maximum likelihood estimators can be derived from the original
model (2 1). To that end, we introduce the following notation:
A(u, o ) stands for a lognormal distribution corresponding to a normal

distribution with mean u and variance 02. From (2.9) follows

(3.1%) vi v A(-30?, %)

4 See Appen&ix B.




From this distribution the distribution of Yi can be derived:

K &
(3.15) Y. vAln 6 T z.X_ 3%, o9
i 1 k=2 1k

Then the likelihood function of (Y1, cees YN) equals

(3.16) L(Y1, cees Y ) =

N

$
I Z,
1k=21

1 -N -3N )
= (2w) exp {- 5 L (In Y, -1n§

i 20 1

k 4. 2.2
k+%o )}

i
In order to maximize this function with respect to §, we first take the
logarithm, differentiate, and derive the first order conditions, The
transformed likelihood function takes the following form:

(3AT) 2(y) =<'y - W 1n 0% - NI 2v - iy - x8 + Jo] )1 (y - xpeioPr)
20

where

t(y) = 1 [L(y,, ..., YN)]

and where the notation of (2.4) has been introduced. The necessary
conditions for a maximum of t(y) are

(3.18) X'XB - X'y - X"1.36% = 0
The maximum likelihood estimator of B8 follows from (3.18):
(3.19) 8= (xx)""xr 16°

. B = (X'X)" X'"(y + 3c%1)

The maximum likelihood estimator E can also be written as a function of
the least squares estimator R

(3.20) . 3

i > g 2 . 3 -
It can easily be verified that B 1s an unbiased estimator of B, and that
2 2 -
- for known ¢° - var B equals var B. That the second-order condition is ful-

filled can easily be seen, since the Hessian of (3.17) being equal to
{-2X'X} is negative definite.




3,2.2. The Estimator of E(Y | xp)

The M.L.-estimator of E(Y | xp) equals

2
a xéB
.21 - Y =
(3.21) p e

- Substitution of (3.20) yields

(3.22)

Thus
(3.23)

and

-

2 02, , - 2x'B 202a ' 2a
(3.24) : var Yp = e var YP =e p [e P_e P]

’ 2
The mean squared error function of Y follows from (3.23) and (3.24):
2 2x'8  20%a o%a 1o%a o,
(3.25) mt=e P {(e P_e P)+ (e P_ 14

(3.26)

E 3 =
with n = =n!

3.3. A Comparison of the Least Squares and the Maximum Likelihood Estimator
of E(Y | x_)
—_—DP

As has already been stated before, the comparison of the two estimators
will take place on the basis of their mean squared errors. Usually, however,
such a comparison is‘impossible because the mean squared errors are functions
of the unknown B8. In2§9€ case, however, both mean squared error functionszggg
be written as ' =e P . ®w i.e. they have the exponential expression e P
in common and since B does not appear elsewhere in the functions

the comparison can take place on the basis of the n-functions without the

necessity of taking into account the B-vector.




-~

P
The functions n and 7 both depend on 02 and o Let us consider o in more

detail; it has been defined in (3.9) as

= x'(X'X)-1x
P P P

In Appendix D it has been shown that
1
(3.27) a2y
for all xp and that
(3.28)

for xp coinciding with a row vector of the X matrix, which is the case

if the X matrix is not only used for estimation of the parameters, but

also for the explanation of Yi’ i=1, ..., N. If, however, x_ stands

for a projection of the explanatory variables (3.28) is not always satisfied,
i.e. ap may then be larger than unity.

In the literature on the linear model it is frequently assumed that

(3.29) lim & X'X = A
N
Nowx
where A is a bounded non-singular matrix. Let us trace the impact of this

assumption on L From (3.29) it follows that the matrix (X'X)—1 tends to
the zero matrix for N to infinity. Thus, ‘

(3.30) lim «_ = lim x'(X'X)-1x =0
Nowo P Now P p

for all x .
P

For time series assumption (3.29) looks rather realistic, provided
that the explanatory variables do not show a decreasing tendency over time.
As to cross section data its relevance is not clear.




However, for any finite sample size N, o may assume any positive
value. And given X, a, can be regarded as a characteristic of xp. In
the next paragraph we investigate for which values of a the L.S.-estimator
has a lower mean squared error than the M.L.-estimator and for which
values of ap the reverse holds.

Consider

2 2 2 2
. oA 2 2 X -30“(1-a_) 2 30%a 2
(3.31) 5 -3 =(e —1)e Poe Pya(e . P_4q) _(e Poq)

2
3/20%a 2 A
P2 4 1) - 23

32 2
’ mp(e-;0 - 1){e

= e

This expression equals zero for o? %0 ir

2
3/20%a 2,~1
e P .o+ e 29)

Consequently for

(3.32) a, = —25 {in 2-1n (1 +e
30

2
-30 )}

the mean squared errors are equal. Moreover, if

ap > ao then

0<a <a then T o<
P 0

Hence we can conclude that the L.S.-estimator of E(Y | xp) is superior to
the M.L.-estimator (in the sense of having a lower mean squared error) for

ap > ao and that the reverse is true for %'< ap < 5. This conclusion only
holds for given values of 02.
Now the question arises as to whether it is possible to construct an

estimator of E(Y | xp) which has a lower mean squared error than the least

squares and the maximum likelihood estimators for known 02.




4. A NEW ESTIMATOR OF E(Y | xp)

Notice that, if %-g_ap < 1 the least-squares estimator always under-
estimates whereas the maximum likelihood estimator always overestimates

E(Y | xp) (see (3.8) and (3.23)). This fact gives us an intuitive argument
for introducing a class of estimators which contains both the least squares
and the maximum likelihood estimetor and whichk allows for the following

combination of these estimators: exln i+(1—k)ln ?

We therefore introduce the following class:
X! B+E_o°
(h.1) Cp’-’{ep' P I-eo'(&p<en}
where B is the least squares estimator of g and gp is a constant. Our
goal is to determine the estimator Yp e Cp with the lowest mean squared

error. To that end we minimize the mean squared error function of
-~ 2
x'B+E o
(4.2) e? P

with respect to Ep.

In order to establish the mean squared error function we determine

the mean and the variance of YE » Which are respectively equal to
p

(.3) E(Y = e

*p

2
x'B-30"(1-q_ -
pB 20 ( p 26P)

2 2
. 2x'g-0"(1-2 ) 2
(4.%) var Y =e P *p [e %

Hence the mean squared error function is equal to

2 2 2 2
2x'B-0"(1-2¢_) 2¢“a g a -30“(1-q -2¢_)
P Prle P_e Pjy4re P °P° _ 412 P

(4.5) né = e 2xp
p
or

2 2
07 (25_+20_-~1) 30°(26_+a_-1)
(4.6) e PP - 2e PP + 1
-2x'B
with £ e P
p gP
To find theminimum M.S.E. estimator within C we have to minimize (L4.6),

We therefore differentiate this expression with respect to & and get
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2 2
o“(2t_+2a_-1) ;o (25 +a -1)
(4.7) 2 P P | 5%

The first order condition for a minimum of (L4.6) is fulfilled if
(4.8) £0 = 3(1 - 30_)
p p

To verlfy whether E constitutes a minimum, we consider the second

derivative in the p01nt E
Baﬂg 0 4 -ozap
(4.9) [Ep- é:p] =20 e >0

From (4.9) we conclude that T reaches a minimum for Ep = Eg. Hence
P
x!B+30%(1-3a_)
(4.10) ¥ = P P
: P
has minimal M.S.E. in Cp.Since the least squares and the maximum likelihood
estimators of E(Y | xp) both belong to CP’ the new estimator is better
' 2

than these traditional estimators, provided that ¢“ is known.
] Normally, however, we have to estimate 02 (or ma). And now the question
arises as to whether in this case our new estimator of E(Y | xp) is still

uniformly better in Cp.

5. A COMPARISON OF THE THREE.ESTIMATORS OF E(Y | %)
IN THE CASE OF UNKNOWN VARIANCE

.1. An Estimator of the Variance in the Multiplicative Model
The protlem is to construct an estimator of eEa2. Finney [4] derived

& minimum variance unbiased estimator for this quantity for ¢ > 0. This

5

estimator reads as

N-K
e?) - 217 [inx)es?y

- Na ]
i"01"(:-'535 ) &

N-K+1

(5.1) ey (G &> 0

It is important to realize that g(t) estimates a positive quantity and

that it should therefore be positive-valued in its entire domain. If we

> See Appendix E,




define its domain as t 2 O then the above condition is satisfied. If,
however, we allow for negative values of t, g(t) may assume negative
values. Thus, for £ 2 0 we can use the estimator introduced by Finney,
but for £ < 0 we have to find an alternative estimator of egcz.

A well-known estimator of 02 is

2 _ 1 '
(5.2) 8" =g T-gx YW
It can easily be verified that 52 is an unbiased estimator of 02, even in
our case where Eu # 0. Moreover it can be proved that, under our assumptions,
S° has minimum variance in the class of unbiased estimators. Let us
therefore consider

(5.3) 5% = &/(N-K)y'My

2
can be derived

by making use of the fact that y'ﬂy/oz is xz-distributed7; it equals

. 2
as an estimator of ego . The mathematical expectation of egs

2
Eo 5 _N-X

2 © q
(5.4) E(e®S ) = 5 "% Y2(N-K)aq = (1 - ;E; ) 2
! _ =

]

5 and where use has been made of the known moment generating
o

function of a x2-di3tribution with N - K degrees of freedom. From (5.4)

. » S< . . - . . .
1t follows that eE 1s an asymptotically unbiased estimator of eEo » Slnce

2 2 N-K 2
(5.5) lim E(e®® ) = 1im [1 - 25; 1" 7 = &
N > » N & oo N-

£ 2.

To determine the variance of e’ , we compute the expectation of e2ES

- 2502 N-K
1= 7 ek
0

15 _ Lheo 2
X (N - K)dq = [1 - T ]

2
(5.6) E[e2tS

Hence

2 2 2
(5.7) 57 = mre®5 g - m(e®);

N-K

T N 2g02, ~(N - K)
[1 - 322 -0 -2

6 See Corsten [4].
T See Appendix C.
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From (5.7) it is clear that the variance of egs tends towards zero for large

N. For the new estimator §p egs will be used as an estimator of eEo if
£ < 0.

5.2. The Mean Squared Errors of the Three Estimators

In the case where o° is unknown, the three estimators can be written
in the following general form: ’

x'B 5
(5.8) L= e P og(s%)

with

N-K+1
oK+ 1

1 2
= gN"K[ 2 ( 1—3up N-K S ]

for <
(o} ap £

1 2
f(Se) = 65(1-3ap)s for a >'%
The mean squared error of Yp follows from E(Y_) and var Y , which are

derived below. In Appendix C it is proved that expB and f(S ) are independent
random varlables, hence

x'B 5
(5.9) E(Yp) E(e P ) E[£(5%)]

x B—%o (1-a_)
e p F[f(S )]

-~ . . -~

2x'B 5 x'g 2 2
Ele P 1E[£°(s°)] - [E(e p" )1 tE(f(s ))]

2x B-g (1 -2a ) : 2x'8—02(1-a ) 2
e PEr?(s?)1-e P PrE(£(57))]

So, the mean squared error equals




2x18 -02(1-20_) “36°(1-0_)

=e P (e P E[£2(5%)] - 2e P Elr(s2)] + 1}

2 , 2
-0 (1-2a_) -30(1-a_)
pme *p Er£2(82)] - 26 P Ele(s®)] + 1

-2x'B
with 7 = n'e P

The M.S.E.-functions of the three estimators can be derived from (5.12)
by specifying the first and second moments of f(Se) for the three different
estimators. These moments can be computed by meking use of (5.4), (5.6),

(E.6) and (E.14). The results are given in (5.13)-(5.15):

2 1.2
-0 (1-2a -30 (1-a
( P) 2 ( P)

(5.13) =e - 2e + 1

which is obviously identical to (3.13),

202 -E%g _302(1_° ) 02 H%E
[1-51 7 -2 Pri- F1° +1

2
-0°(1-2
(5.14) f=e “P)

_02(1—2a ) ; 5 —ap02
- - <
e GN_K[§(1 3ap)o ] - 2e + 1 for o £

(5.15) NeK
P10 ) 201300 T2 -do(1aa) (13 )o?BK

| 2
O —s——] - 2e (12— © +1

1
3

e

These formulae will be used in the next sections.

5.3. Large Sample Properties

In Section 3.3 we introduced an assumption about the behaviour of X'X
for large N (assumption (3.29)). In the sequel we shall investigate the large
sample properties of the three estimators discussed above; under assumption
(3.29) or (3.30).

It turns out that under assumption (3.29) the maximum likelihood as well

as the new estimator converge in quadratic mean, whereas the least squares




estimator does not, &s can be verified from equations (5.13)-(5.15) and

Appendix E:

2x'B 2x'B 2 1 2
lim E[Y - E(Y | X, )] =e P limn_=e P (77 - 22727 4+ 1)
Horco p Noo P
2x'B
1im E[¥_ - E(Y | %, )12=e P 1im
N+ p N->oo
2x'R
1im E[Y_ - E(Y | X, )12 P lim 7

In the next Section we shall focus our attention on the small sample
properties of the three estimators, which are in practice much more

interesting than the large sample characteristics.

5.4. Small Sample Properties

In this section we will trace the conditions under which the new
estimator Yp has a lower mean squared error than the maximum likelihood and
the least squares estimators. Instead of the mean squared errors we will
consider the m-functions, as defined in (5.13)-(5.15). Results based on the
comparison of these auxiliary functions equally apply to the mean squared
errors functions. Because of the rather complicated character of the
T-functions, the comparison has been carried out numerically instead of
analitically. This means that the m-functions have been computed and compared
for a limited number of argument values only. In the tables I, II and III
we find for 02 = ,25, 0.5 and 1.0 8 respectively the logarithms of i, T and

- . = - - 3
nm as functions of ap.9 For the m and the 7 functions which are also affected

by the number of observation® and the number of degrees of freedom, we
distinguished again three cases: N = 8 and K= 3, N= 13 and K = 3, and
N =19 and K = L,

8

It is hard to see how these values of o work out in the original multiplicative
model (2.1). We therefore computed for a number of g2-values the 95%-1ntervals
of v;. Let b; and b, be the lower and upperbound of the 95%-interval of Vi
then we can ionstruct the following table
o® by b,
<5 .20 3.06
1.0 .09 4,31
5 .05 k.95
2.0 .02 5.70
With respect to the interpretation of v., it should be realized that the sample
outcome, say vﬁ 2.0 means that the observed value Y. = Y¥ is as twice as
large as its expected value. From this table we see tﬁat an economic model of
type (2.1) with a 02 > 1.0 has hardly any explanatory value. We therefore do
not consider any values of g2 larger than 1.0.

We confine ourselves to the interval (0,10]; it should be kept in mind that the
true lower bound of a equaels 1/N.
P




The functions gN_K(t) and GR_K(t) as defined in (5.1) and
(E.13) respectively have been computed by numerical integration. For
gN_K(t) we used the integral expression as presented in (E.11) and for

GN_K(t) the integral expression as derived by Bradu and Mundlak:

N-K-3 N-K-3

1 c—
fv 2 (1-v) 2 elm;dv

) o

1
N-K+1 N-K-~-1
2 ’ 2

(5.17) Gy (t) =

28(

From the computations we can draw the following conclusions. The new

estimator ¥ dominates both the least squares and the maximum likelihood

estimator. It should be noted that the introduction of g (-l!—-:'—-l-g-—t—l 582)
£02 N-K'" N - K

as an estimator of e gives a considerable lower mean squared error for
£ > 0 than the estimator e>> . When the latter wes used to estimate
E(Y | xp) Et could occur that in the interval 0 < o < %-the least squares
estimator Yp had a lower mean squared error than ?p'

Especial;y for higher values of ap the use of the new estimator gives
a considerable reduction of the mean squared error as compared with the
maximum likelihood estimator and least squares estimator.

From Table I (02 = 0.25) it can be seen that for a = 2,0, N - K = 10
and K = 3: |

®log fi- Slog 7 = 0.5913

™= 1,87

elog T - elog T = 0.7866

-~
-~ -

T =227

What can be said in this context with respect to the use of the new
estimator for forecasting in economic models? If we keep in mind what was
said in footnote 8 about the relation between 02 and the explanatory value
of the model, we can safely confine ourselves to those economic models which
have a 02 < 1.00. Moreover if x stands for a projection of the vector of

explanatory variables, ap will usually be larger than unity.
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Hence, in the field of economic forecasting, the new estimator

(predictor) Yp will have considerably lower MSE than the LS and the ML
estimators.
From Section 5.1 it appears the use of gN_K(t) for t < 0 raises

some problems, which will be dealt with in a forthcoming paper. In

this paper we shall also discuss the estimator of E[Y | xp] introduced

by Bradu and Mundlak.
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(62 = 0.25)

"N-K=5 ‘ N - K= 10 N-K=15
K% 3 K=3 ‘K=l

log # log ¥ log * log ¥ log log ¥

VIR :
.10 ) ’ o =3,06235 -3,6420 =3.0435 -3,b018
.15 428 =5.2320 -3,2534 ©=3,2299 -3,277¢ =3,2410 =3,2857
.20 ) 2 -2,9518 -35,0013 -2,9376 -3,0109 =2,9443 =35,0141
u.25 y ] =2,7247--2.7977 .. =2.,7031 -2,80006 -2,7077 -2.801¢
.36 { =2,5325 <2,L207 " =2.,5059 -2,06271 -2.5083 -2,L273
U.35 : S =2.3651 2,479, =2.,3350 =2,4795 -2,33vb -2,4735
Goliin YARLY -2,2162- -2,5498 -2,1635 =2,35510 -2,1842 -2,3514
Deits, 2,223¢ =2,0617 =2,2343 -2,0470 -2,2374 -2,040L0 -2,2380
U.50- y ) -1.,3586 ~-2,1302 -1.9224 -2,1350 -1,9217 -2.1274.
1.00 58 -1.Ub82 =1,4354 - ~1.02064 ~-1.,40587 -1,6G252 -1.4812:
1.50 =0.u50h ~0.4580 -1,03238 =0.h157 -1,u8493 -G.0h118 -1,1115
2.0u ~0.,1ul7- G.0330 -0U,7530 G.0754 -0,8300 U.U795 =u.o0U7
2450 U,2008" U590 =0,5308 0.5000 -u,0502 ° U.5042 -0,0752
5.U0 G.0535 0.,86021 =-0,5630 L.8824 ~0,L830 0,c6066 -0.5304
5450 1/ulu9 . - 1,1900 -u.2114L * 142355 -0,3507 1,239 -0,L132
b.Uo 1,3467 1,5285 -bL.0752 1.5675 -0.24490 ° 1.5717 -0,35155
L.bv 1,060 c1.8452 G,U515 1.86835 -0.1540 1.8877 -0,2521
S5.00 1,49727 22,1443 0.1724 2.1871 -U.UbY5 2,1913 -u,1595
.50 2,203 T2.4437 0,290 02,4811 0.0U88 2.4852 -06,u9L9
b,00 2.,5577 2,7502 U LO7GC 2,7672 0.0825 2.7713 -U,0305
L.50 2.8395 3.0104 U.5254 - 3.0471 0.1531 3.0512 0.0172
7.0 . 3.11u0 53,2855 . 0.L450 3.3219  0.2219 3.3259 0.00675
7.50 5.3601 35,5563 U.7b72 “3,5925 '0,2899 . 33,5905 . 0.1151
8.00 3.6504 3.,8237 0,89206 5.8596 U,3581 3.8636 U,1611
8,50 . 5.9218 - 4,0881 "1,0217 14,1239 0.4271 h,1279. 0.2059
9.0v 1840 S h,3502 1,1548 ° L,3858 U,u49375 " 14,3898 0.2503
9.50 LbhSh k,6103 - 1,2919 b.L458 0,5700 Bo64I7  0,2946
1u.00 L,7043 L,8b87 1.4333 h.9041 U.GL50 L.Yu8Yy U,3394

10 See footnote 9.

1" .
All logarithms are natural,




TaBLE 17 '¢0 V!

(c® = 0.5)
N-K=35 H-K= 10 - N-K=15
K=3 K=3 K=

log f log f log 7 log # log T log % log 7

-2,8002
-2.6134 : -2,8616 -2,9075 =2,9027 -2,9438
=2,4353 -2,4806 -2,5346 - -2,4767 -2,5800 -2.5023 -2.5956 -
-2,2696 - =-2.2051 -Z.31Ls -2,1787 -2,3333 -2,19b0 -2,339u
=2.1141 -1,9728 -2,1296 -1.9324 -2,1354 -1.9444 -2,1574
-1.9674 -1,7701 -1,969¢ -1.7203 ~1.3704 -1,7268 -1,9707
~-1.828L -1.5891 ~-1.8289 -1,5327 -1.8290 -1,5387 -1.6291
*1l.6900 -1.4246 -1.7034 -1.3634 -1,7056 ~+=1,3675 -1,7063
-1.5694 -1,2732 -1,5907 . -1.2084 -1,59062 -1.2110 -1.5981
~l.4h38l -1.,1324 ~-1,4887 -1,0649 -1.4982 - =-1,0663 -1.5016
-0.4328 -0,0483 -0,5141 0.0265 -0.8657 0.0299 -0,8861
0,3729 0,7573 -0,4290 - 40,8324 -0,5203 0,8370 -0,5503
1.00694 1,446 -0,150h 1.5180 -0.289h 1.5230 -0.3426
1,7009 -2.0666 00,0852 2,1383 -0,1147 2.1436 -0,1887
2,2910 2,6487 - 0,3068 2,7191 0,0311 - 2,7244 -0.00686
2,8535 - 3,2050 0.5299 3.2743 0,1631 33,2796 0.06316
3.3972°  © 3,7439 0,7633 3.8125 0.2909 3.8178 0.1208
3.9279 - h,2711 1,0118 4L,3396 0.4209 4,3443 00,2048
hokhy5 L,7900 1,2778 4L,8575 0.5582 L,8628 0,2380
L.Yobo 5.,3033 1.50617 5.3704 0G.7065 5,3758 0.3738
5.4753 5.,8125 1,862Y9 5.3795 0,863 5.8548 0,4652
5,9827 - 6.3190 2,1801 6.3858 1.,0460 6.3911 0,5645
b.,43880 ~6.8235 2,5115 6.,8992 1.2404 6.8955 0.,06740
6.,9916 7.3267 2,8554 7.3932 .1.4521 7.3985 0.7954
7.4942 7.8289 3.2101 ©. 7.8954 1.6807 7.9007° 0.,9303
7.9960 :° 8.3304 3.,5742 8.3969 © 11,9257 8§.,4022 1.0797
§.4972 8.831h 3,3L64L - 8.8979 2.1859 8§.9032 1.2445
§.,9981 ©9.,3322 14,3256 9.3986 2.4600 9.4039 1l.4247
9.4987 9,8327 44,7110 9.8991 2.7.468 9,9044 1,0205

log n

GRAPH II®
0% = 0.5
H-K=15
K=4




log n

GRAPH III?
= 1,0

N-K=5

K=3

-1.2182
=1.0874
-0,9527
-0.8155
0.5413
1.7615
2.6785
3.9389
b.9697
5.9851
6.9927
7.9905
8,9983
9,9992
10,9996
11,9998
12.9999
14,0000
15.0000
16.06000
17,0000
18.0000
19.0000

TABLE III

10, 1

(6 = 1.0)

N-K=35
K =3

a
n

log

-1.6416
-1.3678
-1,1216
-0,.8962
-0.6871
-0.4912
-0.3062
-0.1302
1.3317
2.5323
3.6277
4.G7hb
5.6973
6.7086
7.7141
8.7167
9,7180
10,7186
11.7189
12,7191
13.7191
14,7192
15,7192
16,7142
17,7192
16,7192
19,7192

log T

-1,7981
=1.0376
-1,4869
-1.3474
-1.2191
-1,1021
-0.9960
-0.9000
-0,27006
0.1367
0.5339
0,9905
1.5275
2,14006
2,6151
3.5352
4,2889
5.0676
5.8658
6,6799
7.5071
€.5L456
9.1940
10,6511
10,5160
11.7877
12,6058

N-K=10
K=3

log %

-2,0171
-1.6409
-1.3287
-1,0577
-0.8156
-U,5948
-0.3905
-0.1993
-0.0189
1.4545
2,6535
3.7468
4,7921
5.8143
6.8251
7.8304
8.8329
9,834
10.8347
11.8350
12,8351
15,8352
14,8352
15.8355
16.853553
17.8353
15,8353
19,6353

log T

-2.,1408
-1.8813
-1.6722
-1.4977
-1.3488
-1,2194
-1,1057
-1.0050
-0.9150
-0.3543
-0.0537
0.1768
0.40068
0.6737
1.0004
1.398L
1.8681
2,4016
2.9875
3.6146
4,2739
4L,3587
5.00b44
6.3876
7.1259
7.8776
8.0411
9.4155

log =

GRAPH III
02 = 1.0
N-K=15
K=l

-2,1052
-1,7025
-1.3750
=1.0940

-0.8450

-0.6191
-0.4110
-0.2169
-0,0341
1.4493
2.6507
3.7450
4,7907
5.8130
6.8239
7.8293
8.83138
9.8331
10.8337
11,8339
12,3341
13,8341
14,8342
15.8342
16,8342
17.8342
15.8342

19.8342

b

-2.2068
-1.9105
-1.6839
-1.5014
=1.3493
-1.2195
-1,1670
-1.0082
-0.92006
-0.3865
-0.1219
0.0529
G.2001
0.3512
6.5280
0.7476
1.06230
1.5618
1.7645
2.2260
2.7377
3.2906
3.8766
hoL83k
5.1244
5.77381
L.Lh82
7.1527




APPENDIX . A

Let the random variable x be normally distributed with mean

u and variance 02, then the variable

(A.1) y =e*

has a so-called lognormal distribution which is denoted by
' 2
(A.2) y v Au,0%) .

Thus, the distribution of y is characterized by the mean and the
variance of the underlying normal distribution. The distribution of Ng

can be derived as follows

(A.3) F(y) = P[Y < y] = PleX s y] = P[X & 1n y]'

_lny 02(""“)

£° oY2n dx

The density function of y follows by differentiation of the

distribution function (A.3) with respect to y:

(ny -2

b =dF(}')= 1 22
(A.4) £(y) 3y Uy/é"

It turns out that it is very useful to derive the mean and variance
of y as functions of u and 02. The following computations provide
us with the mean E(y) and the variance var(y), which are presented

in (A.5) and (A.6) respectively.

X-U )

x x-3 (==
E(y) zw e f(x)ax = Z@ ;7-;&

dx

2(x—(u-w ))

+
eu %o g dx




, 2
7 ¢ X=M
__l__e2x-2( g ) dx
=* ovon

2 4 x-(u+20°) Z
1 ? e2u+2c e-é(’_—?;"'-‘) ax

o’2x =
2
_ e2u+20

hence

oy - 2 2
(A.6) var(y) = e2u+20 _ e2u+o - eau[eQO - e’ ]

Next, we establish the inverse functions, i.e. express u

and o> as functions of E(y) and var(y). From (A.5) it follows that

u o+ 502 = 1n [E(y)]

(A.T) p = 1n [E(y)] - 502

Now, we substitute (A.7) into (A.6) and get
2 02

(A.8) [E(y)]1°(e” - 1) = var(y)

From (A.8) it follows that:

(A.9) 0% = 1n LXEELIlE + 1}
[(E(y)]

and substitution of (A.9) into (A.T) yields

(A.10) p = 1n [E(y)] - 31n [XEEQZlE + 1]
{E(y)}

In Section 2 it has been assumed that E(y) = 1; substitution
of this assumption into (A.9) and (A.10) gives




(A.11) 62 = 1n [var(y) + 11

band
| (A.12) u = -31n [var(y) + 1]

Hence a loghormal distribution with the mean equal to unity

corresponds to a normal distribution'vith u = -3 .




"APPENDIX B

"In Section 3.1.2 the least squares estimafor of E(lep)
has been defined as

, R x!'B ¥
(B.1) T o=e P =P

According to Appendix A the variance of this estimator equals
2E(§_) 2var § var §
(yp 5 ¥

(B.2) var ?P =e [e -e Pj

since ip is normally distributed. Hence, to determine var §p’ we have
tq find E(?p) and var ?p. '

The mean of’?p can be established as follows:

(B.3) B(7,) = B(x;B) = Bx) (1) 'xry]

-1 2 -1
Elx'B + x'(X'X ] oo 1 ' U '
» xp( )" X'l = xpB 30 xp(X X) X"
2
x'B - 3
p- = ¢

where use has been made of the fact that the first element of x
equals unity.

The variance of §_equals '’

(B. k) var ip = E(ipe) - [E(?p)]2 = E(xé@é'xp) - (xéB - %02)2
x3 (EL(8 + (x'x) " x'u) (8 + (X'X)'1X'u)']}xp
2
- (x8 - 30°)
= xé[es' + 23E(u')x(x'x)‘1 + (x'x)“x'E(uu')x(x'x)‘13xé

2
- (x18 - 10°)

' 2
= (XI')B)2 - oexéﬁ + caxé(X’X)—1xP + %02 - (xéB - %02)

2 oy
o x'(X'Xx
p( ) X

2
o a
P




Substitution of (B.3) and (B.l4) into (B.2) gives us the

variance of Yp:

. 2x'6—02 20%a
(B.5) var Yp =e P [e P_e

]




APPENDIX C

In this appendix it will be proved that the random variables

-~

2 . . . .
e ? and f(8%)are independently distributed. To that end we first
consider xéé and 82. These two variables can both be written as

functions of the disturbance vector u:

o -1
C.1 'B = x'B + x'(X'X X'u
(c.1) xpB xpB xp( )

and

(c.2) = LI
(] - N_K u

We shall make use of the following theorem: "Let e be a vector
of 0 independent normal variables each with zero mean and unit

variance. Then the linear and quadratic forms

L=a'e and Q = e'Be

are independently distributed if Ba = 0. "
Since
u A N(-%Uet,oal)

we apply the following transformation on u
2
(€.3)  e=I(u+ 3o%)

so that the vector e is normally distributed with zero mean and unit

variance.

From (C.3) it follows that

(C.k)




Substitution of (C.4) into (C.1) and (C.2) yields

- 2 -1
C. 'B = x'B - 30° + ox'(X'X)” X'e
(c.5) xpB X 3 xp( )

and

2
o o
: = '
(c.6) s X € Me

vhere use has been made of the property‘Ml = 0., The linear and

quadratic forms
xé(X’X)-1X'e and e'Me

are independently distributed, since

(c.7) Mx(x'x)'1xp =0

Hence x'B and s2 are also independently distributed and so are
- 2
exP(X§B) and f(S%).
Notice, that e'Me is xﬁ_K-distributed because e v N(0, I) and M

is idempotent with rank N - K.
Hence, y'My/02 is also xﬁ_K—distributed (See (C.2) and (C.6)).




APPENDIX D
The matrix (X'-X)-1 can be partitioned as follovs:
' N

(D.1) x'x)"! =|---

'
X11

and it can easily be verified that

1 v fvrem =1
-t "% (X3EX,)

I
I
L e - -
|
I
|

_1. 1 'y ' -1 '
N(Ji-ﬁ-\ X1(X1EX1) x11)

where

‘ 1
~ (D.3) » I-Fu'

We prove that the matrix X;EX1 has full rank by assuming the
éontrary.

If the matrix EX1 has not full column rank then there is a vector
p # 0 such that

(D.k)  EX;p=0
or

(b.s)

where

(D.6)




Since Eq = 0 if and only if q =% 1 wheref is an arbitrary

scalar, the following relation should hold
(D.7) X,p =1

This, however, is violated by the assumption that X = [1 X1]
has full column rank. Thus, EX1 has full column rank and

(D.8) X'EX, = (EX,)'(EX.)
171 1 1
is a non-singular matrix.

We apply the result obtained in (D.2) and write ap as

| _|'-1= '
(D.9) oy = xp(X X) X, [1 xp1]

1
N

.
1. ' L | _,ll ' -1
+ ot X, (XIEX, )T X ;T X, (XJEX,)

b

11' 'p "11' |
=§+#g\-%ﬂ(ymﬁ %ﬁz-ﬁﬁ

xé = [1 x£1]

And since (X]'EX1)"1 is a positive definite matrix (see (D.8))

’ 1
(D.10) o 2y

If xp is a row vector of X, say xp = X5 then ap can be written as

-1
eix(x'x) x'ei

a_ = e!X(X'X)-1X'e. = - £ 1
D 1 1 e;e;




where we made use of the knowledge that X(X'X)-1X' is a idempotent

matrix, and that the largest characteristic root of such a matrix

is equal to unity.




APPENDIX E

The estimators of the mean and the variance of s lognormal
distribution, introduced by Finney, have also been applied to the
multiplicative model, In a recent article Bragu and Mundlak [3] pxeseht

a generalization of the estimators. We shall confine ourselves, however,

£a?

to the minimum variance unbiased estimator of e” . From the foregoing it

. 2 2.2
is known that S- ~ 0o XN—K

€55 (with £ a non-negative arbitrary constant) reads as

_ K
2

/(N -K).Hence, the moment generating function of

: ‘ 2
(E.1) Mo(t) = [1-222Y
gS2 . N - K

and its p-th derivative with respect to t equals
N - N~K
rx =X _NK
2 pTZ+0) et T P
) (1 - 22t |

| (p) _ ,2&0
(E.2) MFPIt) = (
£s? N - K

hence

2 pr(i5E+p)
) N - K
=5

| | ,
(E.3) E[(es%) 1 = (B2

- This result will be used to proof thatethe following function allowsvlus to

. . o
construct an unbiased estimator of eg

- N - X (- x)2 \*
(E.4) g (t) = & M=) Gy g
| ‘ N-K 2=0 (X 5 K+g) S

- Substitution of ES? as the argument of gN_K(t) yields

)
r =K ‘éN = o (8
£s®) = A 2°(N - K + 1)#
2=0 T o

2)£

(E.5)

Syt

The expectation of gN_K(ESE) can be established by substitating (E.3) into
“‘the exppession for the expected value of (E.5):
. N=K . 2 -

o1 N -K . 2%, _ T-K+i
(E.6) Heg, (€5 N = zio[ ﬁ-:-RT;TTEQ 1/t =e




Thus
N-K+1
(E.T) e T

502

ES

- is an unbiased estimator of e
Since S2 is a complete sufficient statistic, every function of it

is a minimum variance estimator of its expectedzvalue.1 Hence, (E.T)

Ea

is a minimum variance unbiased estimator of e .

For computational purposes we shall now derive an integral

expression for (E.h). (t) can also be written as®

Enx
N - X
r( 5 )

(E.8) gN_K(t) =

' N-K 1
{(3i(N - K)/2t/(N - K + 1)} 2 ~

.3

b
2=0 2!'T(3[N - K -2+ 2 + 1)

(n)? A - K/ B oK E p,2eilx-2)
2 Tl .

~for t >0

or

N-K
5

(E.9) gy_g(t) = TS I%(N_K_z){(N-K)/;t/(N_K+1)}

ME-K)/ /(N -K+ 1} 2

t >0

vhere I{ } stands for a modified Bessel function. According to Abramowitz .

and Stegun [1] the integral expression for the modified Bessel function is

1
See Rao [10] p. 261.

2 See also Finney [5].




(B.10) Ty g oyl(N = K) RO =K+ 1)) =

N-K -1 : Sl
{z(N - KW 2t/(N - K + {71, } (1 - v2)%(N-K—3)ev(NrK)J?t/(N-k41)av

N -K -1
11’1"( ) "%)

 Substitution of (E.10) into (E.9) yields

1
(B.11) gy o (t) = —— ;-

B( 2 - %3 %) -1

v2)%(N-K-3)ev(N-K)/zt/(N-rKn).dv

t>0

In section 5.2 we need the second moment of gN K(gS ). Bradu and Mundlak. [2]

'derlved an expression for this moment:

(E.12) Elg?_ (£89)] = & (=K £6%)

with

. . N-K+ 28 -2
- (E.13) = ( ) t
2

L

From (E.12) it follows immediately that

(E.1L) E[gN (1201 - 30, ) EL;L%?%%l-sg}] =

1 W2
g 21 = 3a)0"]
Finally we derive a result needed in Section 5.3. To prove that Yp converges in
quadratic mean, we have to consider the n-function of Y associated w1th ap ,%3

because it is assumed that ap approaches zero as N becomes aabltrary large

(see (3.30)):

2
2 -0 O
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(E.15) lim 7 = e lim G _[3(1 = 30 )o°] - 1
N-K P
N> N>

(provided that 1lim GN K exists).

. Novoo .
To establish the lim GN-K

(E.13) will be written in a slightly different

form:

© L tl

= 2
R S [ IN) RS (e - ) e

1.2, ... (N-K+2)(N-K+2+1) ... (N-K+22 - 2)
212, ... (N-K+2-3)(N-K+ 2 - 2)]

oy () (N-K+ 8- 1)(N-K+2).....0N-K+20 - 2)
gm0 ¥ (N-K)(N - K +2) o (N-K+720-2) 7

2
Since, under the summation sign, the term (i?) is multiplied by an expression
of which both numerator and denominator contain % terms depending on N the
L

(E.17) lim G (t) = I (if) = &2t
Nooo g=0 *

Hence (E.15) becomes









