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1. INTRODUCTION
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This paper deals with some of the estimation problems inherent in

multiplicative models with constant elasticities. Such models (for

example, production functions of the Cobb-Doublas type, gravitational



2

trade flow equations, and multiplicative demand functions) frequently

occur in economic theory. In order to estimate the parameters of such

relationships, we should introduce a disturbance term into the model. It

is logical to introduce such, a term into the multiplicative model at the

beginning and to make the necessary assumptions about its distribution.

After this has been accomplished, the problem is clearly defined and we

can pass on to estimation.

The preceding paragraph may seem trivial but it should be realized

that there is a lot of confusion about this subject. The estimation

problem is normally solved after the multiplicative relation has been

transformed so as to put it in the form of the well-known linear model. This

procedure gives rise to the following remarks. Firstly, we may ask ourselves

whether the transformed problem is identical to the original one. Secondly,

in applying this procedure there is a strong inclination towards postponing the

introduction of the stochastic model until the derivation of the linear model.
This implies a danger that one does not realize what these assumptions mean
for the original multiplicative model, with the possibility that the implied
stochastic model on the multiplicative relation is not in accordance with
one's original ideas. Thirdly, in many cases we are not interested in

parameter estimates but in the estimation of the expectation of the

dependent variable given a vector of values of the explanatory variables,
1

and the backward transformation may again give rise to inconsistencies.

Indeed, the main issue of this paper is the estimation of E(Y I x ). For
the time being some limiting assumptions will be set on the distribution of

the disturbance term. Under these assumptions it seems to be possible to
construct an estimator which has a number of advantages over the traditional
estimators of E(Y f x).

2. THE MULTIPLICATIVE MODEL

We assume that there is an economic process which generates Y; let us
further assume that this process takes the form of a multiplicative relationship
between the variable Y and K - 1 explanatory variables Z2, ..., ZK and a
disturbance term v. If we have N observations on both Y and the Z's, we can
write

1 
This entity will be denoted by E(Y I x ), where it should be noted that themeaning of this notation differs from Pthe usual one where x is a randomvariable. In this case x is non-stochastic.
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where the parameters 6 are assumed to be unknown and the Z's are nonstochastic

positive numbers. Furthermore, we assume

(2.2)

and

(2.3)

E =

var v = w
2
I

Taking the logarithm at both sides of (2.1), we obtain

(2.4) y = X8 + u

with

y=

inlnY

in 6
1

62

K

X

1 ln Z
12

• • • in Z
1K

1 in Z in Z
N2 NK

in v
N

and r X) = K < N

Before we proceed any further, we should justify assumption (2.2).

Let us therefore consider the implications for the original model of super-

imposing a traditional set of assumptions on the linear model (2.4), i.e.

let the u's be independently normally distributed with

(2.5) E(u) = 0



(2.6) var u = 0
2
I

It should be noted that the normality assumption which is rather limiting,

is made here for convenience in calculations.
2

Let us now consider the implications for the multiplicative model.

From the assumptions above, it follows that the v'

lognormally distributed with3

2
(2.7) E(v) = e2a t

and

2a
2

(2.8) var v = (e -e 
a2
)I

(v1 • • • v ) is

We may ask ourselves whether these implicit assumptions about the

disturbance term in the original relation are in accordance with our ideas

about the specification of the multiplicative model. In our opinion the

answer must be "no". We therefore use the following analogous reasoning.

The fact that, in the linear model, the mathematical expectation of u

is usually assumed to equal zero originates in the belief that, although

the relationship between the dependent and the explanatory variables

will not hold exactly for a single observation, it should hold in the

average. An analogous reasoning with respect to the multiplicative model

leads us to the replacement of assumption (2.7) by (2.2). Moreover, if

ilittOdildes a constant term into the relationship it will be clear

that the constant term takes account of the mean of the disturbance term.

As for the linear model, we also assume independency and

homoskedasticity in the multiplicative model as reflected by (2.3).

Then it can easily be verified that

u N N(-; ln (w2 + 1)t, ln (w
2 
+ 1)I)

2 
Further research will be devoted to the question of how robust the
estimators to be derived will be with respect to different distributions
of u (or v).

3
See Appendix A for the derivation of (2.7) and. (2.8).
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(2.9)

2 , 2
where a = in (w + 1).

402.1, a2
u N( 

I)

Having completely specified our multiplicative model, we are now

ready to tackle the estimation problem.

In the next section, the least-squares and the maximum likelihood

estimators of E(Y J x ) will be derived. As a starting point, it will
2%

be assumed that w
2 
(and consequently a ) are known parameters.

3. LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS

3.1. The Least Squares Method 

3. 1 . 1 . Parameter Estimators

(3.1)

Least squares estimation of 0 in model (2.4) yields

(x,x)-1xty

Since it is no longer assumed that the expectation of u equals zero, this

estimator is biased with respect to 8:

(3.2) E() — a . 4020c,x)-1x,1

The first column of X being a unit vector, (3.2) can be written as

1

0

(3.3) E(') — a = —

011111,

with X = (x : x1)
. 

t
2

2 a

Oft

from which it appears that in the linear model only the estimator of the

constant term B1 is biased and the other B's are unbiased. However, in
this case our interest it not the estimation of the parameters in the linear

model but of those in the multiplicative model, and we realize that not

81 but 61 
= exp 1) appears as a parameter in the multiplicative model.



Let us therefore consider the bias of 6 = e. The expectation of 6
1

can easily be derived:

(3.10

a _10.24.1a _ia2.4.1(4
B 81 alE(11) = e f(

1 )ci81 
= e 1 se 61e 

where use has been made of the fact that a is normally distributed with1
2 2

mean a1 — vl and variance 
a-' 

Hence the bias of
I 
equalsa

( 3.5 )

1 2 t 2-gf +2a2
Eal) - 61 = 6

1
(1 e Pli

The estimation of the other parameters in the multiplicative model does

not raise any problems since they are not affected by the transformation.

3.1.2. The Estimator of E(Y I x)

In the linear model, the dependent variable is a linear function

of the regression coefficients; hence if we are able to construct

unbiased estimators of these coefficients, it follows that the

estimator of the expectation of the dependent variable, given a vector

of explanatory variables, is unbiased. It caneasily be seen that this

implication does not hold for the multiplicative model. The multiplicative

model (2.1) can also be written as

(3.6)
x! 8+u.
1 1

Y. = e1 1

Then the L.S.estimator of the expectation of Y, given some x -vector, is

defined as

x'a
(3.7) = e P

.P

The mean of this estimator equals

(3.8)
x18 co x1(X1X)--/Xu

f(u)duEa ) = e P f e

x1 B-ia
2
(1-a )

= e

with a = x1(X1X)
-1
x .

P P



It can easily be verified that the bias of equals

-pci ti-ix 
)

x'fis
(3.9) E(Y') - E(Y ) = (e P ) P

The variance of Y is equal to4

(3.10)
2x93-0

2 
2a
2
a a a

var Y
p
=e 

p 
[e -e

To ascertain whether we have a good estimator or not, we shall use as

our criterion function the mean square error (MSE) of the estimator:

(3.11) E(T 8)
2 
= var T (e ET)

where T is an estimator of e. Thus, in this approach we accept biased
estimators. Authors like Goldberger[ 6], Bradu & Mundlak [3], and Heien
[7] confine themselves to minimum variance unbiased estimators which are
derived with the help of an estimation function introduced by Finney [5].
However, the condition of unbiasedness may be very limiting in the sense
that it rules out biased estimators with a possibly smaller mean squared
error. In our case the M.S.E. function becomes

(3.12)

-2x' a
let = .e P then

(3.13)

n' = var [EY E(Y I x)]2P P p

2x 'a ) a2a -la 
2
(1-a )

= e P {e P [e P - 1] + [e P --1]2)

2
(1-a ) a

2
a 2

(1-a )-a 
f= e P [e P 1] + (e P

3.2. The Maximum Likelihood Method

3.2.1. Parameter Estimators

The maximum likelihood estimators can be derived from the original
model (2.1). To that end, we introduce the following notation:
A(p, a

2
) stands for a lognormal distribution corresponding to a normal

distribution with mean u and variance a
2
. From (2.9) follows

(3.114) v. q. A(-2a
2 
, 
a2

14
See Appendix B.



FromthisdistributionthedistributionofLcan be derived:1

(3.15)
K 6

Y. 11(in 6 II Z.
k ia a

2
)

1 1 ik
k=2

Then the likelihood function of (Y
1' 
. Y) equals

N

(3.16) L(Yi, =

1 d
k 2 2a

-N 
-

N
(210

i 
exp I- 1

2 E (In Yl In 61 k112Zik+2a ) 1
2a i

In order to maximize this function with respect to 6, we first take the
logarithm, differentiate, and derive the first order conditions. The

transformed likelihood function takes the following form:

(3417). t(Y) = -0Y•- iN in 
cr2 iN 21, 

X8 + a2t y xpi+ia2t
202

where

t(y) = ln EL(Y1,

and where the notation of (2.4) has been introduced. The necessary
conditions for a maximum of t(y) are

(3.18) X'n X'y X't.1 2 = 0

The maximum likelihood estimator of $ follows from (3.18):

(3.19) B = (xtx)-1x,(y

The maximum likelihood estimator B can also be written as a function of
the least squares estimator 13

(3.20)

0

It can easily be verified that a is an unbiased estimator of 8, and that
- for known a

2 
- var B equals var B. That the second-order condition is ful-

filled can easily be seen, since the Hessian of (3.17) being equal to
{-2X'X} is negative definite.



3.2.2. The Estimator of E(Y I x)

The M.L.-estimator of E(Y I x) equals

x'02
Y = e P(3.21)

Substitution of 3.20) yields

(3.22)

Thus

(3.23)

(3.24)

i 
* 02 x'Bila

2 
a

EY = e EY = e P P
P P

2 2x43 2a 2a a
2
a

"
var Y 312 e

a 
var Y = e P [e e P]

The mean squared error function of Y follows from (3.23) and (3.24):

2
2x820

2
a a a 

ia2a

(3.25) n' = e P ((e - e P) + (e P - 1
)2)

or

(3.26)

2 2 2
a ct a a 2a a

=e Pe P - 1) + (e P - 1)2

-2x'$
with w = . e

3.3. A Comparison of the Least Squares and the Maximum Likelihood Estimator

of E(Y I x)

As has already been stated before, the comparison of the two estimators

will take place on the basis of their mean squared errors. Usually, however,

such a comparison is impossible because the mean squared errors are functions

of the unknown B. In our case, however, both mean squared error functions can
2)443 23c0

be written as n' = e . n i.e. they have the exponential expression e

in common and since $ does not appear elsewhere in the functions

the comparison can take place on the basis of the n-functions without the

necessity of taking into account the 8-vector.
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-
The functions w and w both depend on a

2 
and a Let us consider a in more

detail; it has been defined in (3.9) as

= x'(X'X)

In Appendix D it has been shown that

(3.27)

for all x and that

(3.28)

1
a > —p --N

1
— <a <1
N— p —

for x coinciding with a row vector of the X matrix, which is the case

if the X matrix is not only used for estimation of the parameters, but

also for the explanation of Yi, i = 1, ..., N. If, however, x stands

for a projection of the explanatory variables (3.28) is not always satisfied,

i.e. a may then be larger than unity.

In the literature on the linear model it is frequently assumed that

(3.29) lim 
1
X1X = A

/s1-0.m

where A is a bounded non-singular matrix. Let us trace the impact of this
-1assumption on a. From (3.29) it follows that the matrix (X'X) tends to

the zero matrix for N to infinity. Thus,

(3.30) lim a = lim xs(XiXrix = 0
11400 P 114a. P

for all x.

For time series assumption (3.29) looks rather realistic, provided
that the explanatory variables do not show a decreasing tendency over time.
As to cross section data its relevance is not clear.



However, for any finite sample size N

value. And given X, a can be regarded as a

the next paragraph we investigate for which

has a lower mean squared error than the M.L

values of a the reverse holds.

Consider

A

(3.31) - w

2 2a
2
a a a,

-1)(e e P)+

11

, a may assume any positive

characteristic of x . In

values of a the L.S.-estimator

.-estimator and for which

2
2a a ia2

e P(e-2a 
1)(e3/2a

2a p(e_

2

This expression equals zero for 02 0 if

3/2a
2
a 2-1

2(1 + e-ia)

Consequently for

(3.32)
_ 2 ra

p 
=a

0 
=

2 n 2 - ln
3a

the mean squared errors are equal. Moreover, if

and

a >a then
p 0

0 < a <a then
0

-w < it

w

it < w

1-s) 2
P - 1)

-21

_1(12
1 + e ))

ia
2
a
-1

2

Hence we can conclude that the L.S.-estimator of E(Y 1 x) is superior to

the M.L.-estimator (in the sense of having a lower mean squared error) for
1

ap > ao and that the reverse is true for Tr < ap < ao. This conclusion only
holds for given values of a

2
.

Now the question arises as to whether it is possible to construct an

estimator of E(Y I x ) which has a lower mean squared error than the least

squares and the maximum likelihood estimators for known a2.
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4. A NEW ESTIMATOR OF E(Y I x)

1
Notice that, if --< a < 1 the least-squares estimator always under-

N-- p
estimates whereas the maximum likelihood estimator always overestimates

E(Y I x) (see (3.8) and (3.23)). This fact gives us an intuitive argument

for introducing a class of estimators which contains both the least squares

and the maxirur likelihood estimator and vhic allows for the following

combination of these estimators:
e
Xln i+(1.4)ln

We therefore introduce the following class:

(4 )

- 
x'84.& a 

2

C = {e P P I moCIO < 03}

where B is the least squares estimator of 0 and g is a constant. Our

goal is to determine the estimator Y e C with the lowest mean squared

error. To that end we minimize the mean squared error function of

2

(14.2) Yr =ePP

with respect to E .

In order to establish the mean squared error function we determine
the mean and the variance of Yr , which are respectively equal to

x'8-ia2(1-a -2E )
(4.3) E(Y ) = e P P P

2x'e-a
2
(1-2E ) 20

2
a a 

2
(4.4) var Y = e P [e P e 

ap]

Hence the mean squared error function is equal to

2x'8-a
2
(1-2t ) 2a

2
a a

2
ct - 22a (1-a ) 2x'a

(4.5) 7T. = e P P [e P - e Y] + [e P P 1]
2

or

2, ia k2C +2a -1) a2(2E +a -1)
(4.6) -rr p, = e P P - 2 P P + 1

-2x'a
with IT = IT' e PE EP P

To find theminimum M.S.E. estimator within C we have to minimize (4.6).
PWe therefore differentiate this expression with respect to and get

P
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(14.7)

ar. 2a2(2E +2a -1
---2L= 2a2e P P
OE

- a e
2E +a -1)
pp

The first order condition for a minimum of (4.6) is fulfilled if

(14.8) 0 iE = - 3a )

To verify whether 
0

constitutes a minimum, we consider the second

derivative in the point 0:

a
2

Tr
g LE E
2 P PaE

(14.9) m 2ae 
-"

>0

From (4.9) we conclude that IT reaches a minimum for =. Hence
&r, P P

x'13+;a2( -3a )
(4.10) 1 = e P

has minimal M.S.E. in C. Since the least squares and the maximum likelihood

estimators of E(Y I x ) both belong to C 
' 

the new estimator is better
P 2

than these traditional estimators, provided that a is known.

Normally, however, we have to estimate a
2 
(or w

2
). And now the question

arises as to whether in this case our new estimator of E(Y 1 x) is still

uniformly better in C .

A COMPARISON OF THE THREE .ESTIMATORS OF E(Y f xp

IN THE CASE OF UNKNOWN VARIANCE

5.1. An Estimator of the Variance in the Multiplicative Model

The problem is to construct an estimator of Ja2. Finney [4] derived

a minimum variance unbiased estimator for this quantity for E > 0. This

estimator reads as 5

. 7,N-K+1 2. r(II) 
2  [(N-K)U

2
]
t

(5.1) g k ES ) - 2,E
Or (N-K N-K ,E > 0

7-'Vc +k) ft!

It is important to realize that g(t) estimates a positive quantity and

that it should therefore be positive-valued in its entire domain. If we

5 See Appendix E.
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define its domain as t 0 then the above condition is satisfied. If,

however, we allow for negative values of t, g(t) may assume negative

values. Thus, for z 0 we can use the estimator introduced by Finney,

but for < 0 we have to find an alternative estimator of e 
ra2
' .

A well-known estimator of a
2 
is

(5.2) 1 
S
2 
=

N - K Y'MY

It can easily be verified that S
2 
is an unbiased estimator of a

2
, even in

our case where Eu 0 0. Moreover it can be proved that, under our assumptions,
2 6
has minimum variance in the class of unbiased estimators.S 

 
Let us

therefore consider

- (5.3)
S2 ON-K)Yqtre =e

as an estimator of e . The mathematical expectation of e
Es2 

can be derived
ra2

7by raking use of the fact that y'My/cr
2 
is x2-distributed ; it equals

Ea
2

N-Kr.2 m
N 2V q(5.4) E(e'- ) = f e--- x-(N-K)dcli = (1 - 2(1 I 2

N-K

with q = Y'MY and where use has been made of the known moment generating2

function of a x
2
-distribution with N - K degrees of freedom. From (5.4)

ra2
it follows that e is an asymptotically unbiased estimator of e' , since

(5.5)
2 or 2 N-K r,2

lim E(e ) = lim [1 - -'a - 2 = 
N 

e'-
N-KN 

To determine the variance of

(5.6)

Hence

2Ea
2

a2
, we compute the expectation of e2ES :

E[e2 ] = 7 eN-K x
2 

K)dq = [1 - 1111 11(2 f 2

2 
2 22(5.7) var [eES ] = E[e2S] - [E(JS )] 

N-K
h, 2

_ 2
N-K

= [1

6 See Corsten [4].
7 See Appendix C.

N-K

N-K

K)
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From (5.7) it is clear that the variance of e tends towards zero for large
S2  

N. For the new estimator y e will be used as an estimator of e"' if

5.2. The Mean Squared Errors of the Three Estimators

In the case where a
2
 is unknown, the three estimators can be written

in the following general form:

x'i
(5.8) e fP (s2= 

with f(S

N-K
or

f(S = e

‘11 K + 1 
f(S2) = g [3 -3ap) N-K

f(S2) = (l-3a 
p)2

1
for a s —

P 3

1
for a •> --

P

for Y

for "I

for "Y.

The mean squared error of Y follows from E(Y ) and var Y which are
P I- P92

derived below. In Appendix C it is proved that exPa and f(S-) are independent

random variables, hence

(5.9)

and

(5.10)

x'a
E(Y ) = E(e P ) E[f(S2)]

x'fl-aa (1-a )
= e P Frf(S

2
)]

2x'a xi 2 2
var Y = E[e P ]E[f2( )] iE 131] [Vf(S ))]

2
2x'a-a

2
(1-2a 

2 2 
2x1 a-a ( ) 2

p
= e f(S ) - e [E(f(S ))]

So, the mean squared error equals



1
2x'13. - -2a 2

(5.11) n = e P P Elf(S) - 2e

or

(5.12) n = e

2

-2x'a
with n = 'e P

1-20 -a
)] - 2e

_a

P E[f(S )] + 1}

E[f(S )] + 1

The M.S.E.-functions of the three estimators can be derived from (5.12)

by specifying the first and second moments of f(S
2
) for the three different

estimators. These moments can be computed by making use of (5.4), (5.6),

(E.6) and (E.14). The results are given in (5.13)-(5.15):

-a
2
(1-2a )

(5.13) =

2
-2a (1- )

which is obviously identical to (3.13),

-
N-K 12

2-G
2
(1-2a ) 9 

_2(i (1-a ) a
(5.14 Ili = e P [1 - ] 2e P r

' N

(5.15)

TT - = e

- =

2

N-K

+1

2
-2a 

P
GN 
 

K
[;(1-3a)a2]-  2e P + 1 for

-N-K
-2a 2(1-3a )

2 
a 2 -2a -a1

P [ _ P - 2e [
N - K

These formulae will be used in the next sections.

5.3. Large Sample Properties

(1-3a \a2-N-K
P i  ] 2 +1

- N - K

for a > —
1
3

In Section 3.3 we introduced an assumption about the behaviour of X'IC

for large N (assumption (3.29)). In the sequel we shall investigate the large

sample properties of the three estimators discussed above; under assumption

(3.29) or (3.30).

It turns out that under assumption (3.29) the maximum likelihood as well

as the new estimator converge in quadratic mean, whereas the least squares
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estimator does not, as can be verified from equations (5.13)-(5.15) and

Appendix E:

lim E[i - E(Y I
N4.0

(5.16) aim - E(Y I
N4co P

lim Ea- -E(Y I
N-4.03

x)]
2

P 

?x'a 2x'a 2
P -

= e lim 7 =e
PN4.00

2x'a *
=e P lim 7 =0

N4co P
2x'a

=e P limit =0
N40, P

2

• In the next Section we shall focus our attention on the small sample

properties of the three estimators, which are in practice much more

interesting than the large sample characteristics.

5.4. Small Sample Properties

In this section we will trace the conditions under which the new

estimator 7 has a lower mean squared error than the maximum likelihood and

the least squares estimators. Instead of the mean squared errors we will

consider the 7r-functions, as defined in (5.13)-(5.15). Results based on the

comparison of these auxiliary functions equally apply to the mean squared

errors functions. Because of the rather complicated character of the

1T-functions, the comparison has been carried out numerically instead of

analitically. This means that the 7r-functions have been computed and compared

for a limited number of argument values only. In the tables I, II and III

we find for a
2 
= .25, 0.5 and 1.0

8 respectively the logarithms of IT, IT sp.
as functions of a .9 For the it and the it functions which are also affected

by the number of observation. and the number of degrees of freedom, we

distinguished again three cases: N = 8 and K = 3, N m 13 and K = 3, and

N = 19 and K = 4.

8 2It is hard to see how these values of a work out in the original multiplicative
model (2.1). We therefore computed for a number of a2-values the 95%-intervals
of vi. Let bi and bu be the lower and upperbound of the 95%-interval of
then we can aonstruct the following table

a
2

b b
u

.5 .20 3.06
1.0 .09 4.31
1.5 .05 4.95
2.0 .02 5.70

With respect to the interpretation of v., it should be realized that the sample
outcome, say v* = 2.0 means that the observed value Y. = Yes is as twice as
large as its expected value. From this table we see tnat an economic model of
type (2.1) with a a2 > 1.0 has hardly any explanatory value. We therefore do
not consider any values of a2 larger than 1.0.

9 We confine ourselves to the interval (0,10J; it should be kept in mind that the
true lower bound of a equals 1/N.
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The functions gN-K(t) and GN-K(t) as defined in (5.1) and

(E.13) respectively have been computed by numerical integration. For

g
N-K

(t) we used the integral expression as presented in (E.11) and for

G
N-K

(t) the integral expression as derived by Bradu and Mundlak:

(5.17)
1 

N-K-3
1  2G

N-K
(t) = f v (1 - v)IN - K + 1

9 

N - K - 1
) 02Bt

2 2

2 
vte dv

From the computations we can draw the following conclusions. The new

estimator Y dominates both the least squares and the maximum likelihood
estimator. It should be noted that the introduction of g

-K
(N K 1 

ts
2
)Nn, N Ka2E 

asas an estimator of e gives a considerable lower mean

t > 0 than the estimator e
Es2
. When the latter was used

1E(Y I x) it could occur that in the interval 0 < a < the least squaresP 3
estimator Y had a lower mean squared error than Y .

Especially for higher values of a the use of the new estimator gives

a considerable reduction of the mean squared error as compared with the

maximum likelihood estimator and least squares estimator.

From Table I (a2 = 0.25) it can be seen that for a = 2.0, N K = 10

and K = 3:

or

and

or

e
log f- !log ir= 0.5913

n

elog elog = 0.7866

2
V = 2.2W

squared error for

to estimate

What can be said in this context with respect to the use of the new
estimator for forecasting in economic models? If we keep in mind what was
said in footnote 8 about the relation between a2 and the explanatory value
of the model, we can safely confine ourselves to those economic models which
have a a

2 
< 1.00. Moreover if x stanobfor a projection of the vector of

explanatory variables, a will usually be larger than unity.



Hence, in the field of economic forecasting, the new estimator

(predictor) Y will have considerably lower MSE than the LS and the ML

estimators.

From Section 5.1 it appears the use of gN-K(t) for t < 0 raises

some problems, which will be dealt with in a forthcoming paper. In

this paper we shall also discuss the estimator of ECY

by Bralu and Mundlak.
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a log f "

8.05 -3.71u2

KA. 3

'TOLE I 109 11

(a2 = 0.25)

K = 10
K- 3

loge 10g; loge log ;

N - K = 15
' K 4

log 4 log ;

6.10 -3..4566 ..-3.6233 -3.6426 -3.u435 -3.b618.
0.1-5. -3.192E -3.2320 -3.2538• -,3.2299 -3.277U -3.2416 -3.2857
U.20. -2.9753 -2.9518 -3.0013 -,2,93.76 -3.0109 -2.0441 -3,0141
0.25 -2.78.91 -2.7247 -2.7977.. '72.7031 -2.8006 -2.7077 -2.8016
0.38 -2.0256 -2.5325 72.620" 7..2.5059 -2.0271 -2.5083 -2.L273
0.35 -2.4791 -2.3651 72.4794 -,2.3350 -2.4795 -2.33u1) -2.4795
0,40. -2.3461 -2.2162- 72.3498 -2.1835 -2.3510 -2.18112 -2.3514
0.45. -2.2230 -2.0817 .-2.2343 72.0470 -2.2374- -2.0461 -2.23F,4
0.50• -2.1105 -1.)586 72.1302 -1.9224 -2,1356 -1.9217 -2.1374,
1,1)1) -1.2587 -1.0682 -1.4354 - -1.0264 -1.4007 -1.0232 71.4:12!
1.50 -U.u544 -0.4580 -1.0323 -0.4157 -1.0893 -0.4113 -1.1115
20u -0.1617- 6.0336 -0.7530 0.0754 70.8300 0.0705 -u.8807
2..50 0..2666 :0,459U -0.5337 - 0,5000 -0.6562 0.5042 -0.u752
3.00 0.1)555 0.8421 -0.3630 6.8824 -0.4830 0.3861) -0.5364
3.50 1.'Ulu0 1.10uU -0.2114 1.2355 -0.3507 1.239E -0.4132
4.00' 1.3467 1.5286 -0.0752 1.5675 -0.200 1,5717 -0.3155
4.5u 1.064 ,1.8452 0,0515 '1.8835 -0.1546 1.6877 .-0.2321
5.00 1.9727 .2.1493 0,1724 2.1871 -0.0695 2.1013 -8.1595
5.50, 2.2603 -2.4437 0.2904 ..2.4g11 0.0088 2.4852 -0.0949
6.00' 2,557T. 2.7302 0.4076 2,7072 0.0825 2,7713 -0.0365
0.50 2.8395 ., 5.0104 *0.5254 5.0471 0.1531 3.0512 0.0172
7.00 3.11uU ' •3.2855 ..0.6450 .3.3219 0.2219 3.3259 0.0675
7.50 5.3881 3.5563 0.7b72- 3.5925 .0.2899 3.5965 . 0.1151
8.00 .3.6564 3.4237 .0.8926 ...5.836 043581 -3.8636 0.1611
4.50 3.9218 4.0081 '1.0-217 ' 4.1239 0.4271 4.1279 U.2050
9.00 4.1846 4.3502 1.1548 4.3858 0.4975 4.3898 .0.2503

• 3.50 4.4454 4.6103 '1.2919 4.6458 0.5700 4.6497 0.2940
10.00 4.7043 448087 144333 4.9041 0.0450 4.9080 0.3394
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See footnote 9.

11
All logarithms are natural.
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6.0

5.0

14.0

3.0

2.0

1.0

-1.0

a

0.05

log if

-2.8062

TABLE II 10 
11

(02 = 0.5)
N - K = 5 N K
K * 3 K

log f log ; log #

= 10'
3

log ;

N- K . 15
K- 4

log # log ff

0.10 -2.6134 -2.8616 -2.9075 -,2.9027 -2.9438
0.15 -2.4353 -2.4806 -2.5346 -2.4767 -2.5800 -2.5023 -2.5956
0.20 -2,2696 -2.2051 -2.3148 -2.1787 -2.3333 -2.1960 2.3396
0.25 -2.1141 -1.9728 -2.1296 -1.9324 -2.1354 -1.9444 -2,1374
0.30 -1.9674 -1.7701 -1.9696 -1.7203 -1.9704 -1.7288 -1.9707
0.35 -1.8284 -1.5891 -1.8289 -1.5327 -1.8290 -1.5387 -1.6291
0.40 1-1.6960 -1.4246 -1.7034 -1.3634 -1.7056 -1.3675 -1.7063
0.45 -1.5604 -1.2732 -1.5907 -1.2084 -1.5962 -1.2110 -1.5981
0.50 -1.4481 -1.1324 -1.4887 -1.0649 -1.4982 -,1.0663 -1.5016
1.00 -0,4328 -0.0493 -0.3141 0.0265 -0.8657 0.0299 -0.8861
1.50 U.3729 0.7573 -0.4290 • 0.8324 -0.5203 0.8370 -0.5563
2.00 1.0694 1.4446 -0.1504 1.5130 -0.2894 1.5230 -0.3426
2.50 1.7009 •2.0666 0.0352 2.1383 -0;1147 2.1436 -0.1887
3.00 2.2910 2.6487 0.3068 2.7191 0.0311 2.7244 -0.0686
3.50 2.8535 • 3.2050 0.5299 3.2743 0.1631 -3.2706 0.0316
4.00 3.3972 3.7439 0.7633 3.8125 0.2909 3.8178 0.1208
4.50 3.0279 4.2711 1.0118 4.3390 0.4209 4.3443 0.2048
5.00 4.4495 4.7900 1.2778 4.8575 0.5582 4.8628 0.2880
5.50 4.9646 5.3033 1.5617 5.3704 0.7065 5.3758 0.3738
6.00 5.4753 5.8125 1.8629 5.3795 0.8634 5.8848 0.4652
6.50 5.9827 6.3190 2.1801 6.3858 1.0460 6.3911 0.5645
7.00 6.4880 .6.8235 2.5115 6.8902 1.2404 6.8055 0.6740
7.50 6.9916 7.3267 2.8554 7.3932 .1.4521 7.3985 0.7954
8.00 7.4942 7.8289 3.2101 7.8954 1.6307 7.9007 0.9303
8.50 7.9960 8.3304 3.5742 8.3969 1.9257 8.4022 1.0797
9.00 8.4972 8.8314 3.9464 • 8.8979 2.1859 8.9032 1.2445
9.50 6.9981 9.3322 4.3256 9.3986 2.4600 9.4039 1.4247
10.00 9.4987 9.8327 4.7110 9.8991 2.7468 9.9044 1.6205
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16.0000
17.0000
18.0000
19.0000

(02
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• K =,3

log ff log w
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K = 3

log w log ;

N - K = 1
K = 4

log if log ;
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APPENDIX.

Let the random variable x be normally distributed with mean

p and variance a
2
 , then the variable

(A.1) y= e

has a so-called lognormal distribution which is denoted by

(A.2) y

Thus, the distribution of y is characterized by the mean and the

variance of the underlying normal distribution. The distribution of

can be derived as follows

(A.3) F(y) = PCY y] = P[eX y] = P[x 6 in y]'

1 
(xln y 202

= 77,F;;.•e 
dx

The density function of y follows by differentiation of the

distribution function (A.3) with respect to y:

1 N2

(A.4) 
f(Y) = Ciiilidv - 

1 2 
in

(1 Y - 11e (2 1

--. - ay /2 iff

It turns out that it is very useful to derive the mean and variance

of y as functions of p and a
2
. The following computations provide

us with the mean E(y) and the variance var(y), which are presented

in (A.5) and (A.6) respectively.

(A.5)

E(y) = 7. exf(x)dx = 7.

1

al2n

E(y) = eP44a2

CO

2

a/21r

x-p N2
a i

2 2
u+ia2-1(

x-(11+a
e e 

 )N *

a dx

dx

23



2)4

and

1 x—i(lcc2)2
E(5,2) = e a dx

at1271.

=  
1 7 ee 

2
- -ea2 1,

k 
px- 42a

2 
)

m p+-2 ' dxe a

2p+2a2
= e

hence

(A.6) var Y) = 
e21J+2a 2u4-0 fUr a

e Le -e

Next, we establish the inverse functions, i.e. express p

and a
2
 as functions of E(y) and var(y). From (A.5) it follows that

or

(A.T

p + ia2 = ln [E(y)]

P = n D(y)] 
ia2

Now, we substitute (A.7)into (A.6) and get

(A.8) [E(y)] (ea2 - 1) = var(Y)

From A.8) it follows that:

(A.9
2
a =

orar(y) 

[E(y)]
+ 1)

and substitution of (A.9) into (A.7) yields

(A.10) n [E(y)] iln Car(Y) + 1]
{E(y)}2

In Section 2 it has been assumed that E(y) = 1; substitution

of this assumption into (A.9) and (A.14) gives



• Hence a lognorm4 distribution with the mean equal to unity
2

corresponds to a normal distribuO.on with u = -ia.



APPENDIXB

In Section 3.1.2 the least squares estimator of E(Yixp)

has been defined as

xci3; 9
(B.1) P p

= e =e

According to Appendix A the variance of this estimator equals

2E(g ) 2var g var
, (3.2) var = e P [e P e P]

since g is normally distributed. Hence, to determine var 
Y, 

we have
13

to find E(gp) and var gp.

The mean of g can be established as follows:

(B.3) = E(xq) = E[x'OCX)-1Xly]

i

30(X IX)
-1
Vu] = xla

P P

= x'a a2

where use has been made of the fact that the first element of x

equals unity.

The variance of St equals

(B.4) var gp = E(g 2) — [E(g )]2 = Etx, (3,x ) — (xta ia
P P

= x'{E[(a + (X'X)-/X'u)(a + (XVX)- 14)']}x

= x'Eaa' + 2aE(4')X(X'X

= (x'
„

B)
2
 - a xl a

= a2)0(X1X

2

0 2
- (x'a -

(X'X)-/X'E(uul)X(X'X)

22
- (xi$ 0 )

v-a2x,fx,lx 4. 402
p% /



Substitution of B.3) and (B.4) into (B.2) gives us the

variance of Y :

(B.5)
2x'8-a

2 
20
2
a a

2
a

var Y =e P [e P e P]

27
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APPENDIXC

In this appendix it will be proved that the random variables

x'B 2x
e P and f03 )are independently distributed. To that end we first

consider x'a and S
2
. These two variables can both be written as

functions of the disturbance vector u:

and

(c.2)

= x'a + x'OC'Xriru
P P

2 1 1

j
S = u'Mu

U6  shall make use of the following theorem: "Let e be a vector

of n independent normal variables each with zero mean and unit

variance. Then the linear and quadratic forms

L = a'e and Q = e'Be

are independently distributed if Ba = 0.

Since

1 2 2-N
u ri‘-2a ,C1

we apply the following transformation on u

(C.3)
1 , 2

e = 01 2a 1a

so that the vector e is normally distributed with zero mean and unit

variance.

From (C.3) it follows that

(CA) 1 2
U = ae - a
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(0.5)

and

(c.6)

Substitution of C.4) into (C.1) and (C.2) yields

= x'a - 30.2 + ax'OCX)-/X'e

2
a

2
= etivie

where use has been made of the property Ml = 0. The linear and

quadratic forms

x'(X'X)
-1

:Cie and e'Me

are independently distributed, since

(C.7) MX(X'X)
-1
x = 0

Hence x'13 and S
2 
are also independently distributed and so are

, 2
exp(x1 f3) and ftS

2 . .
Notice, that e'Me is x

N-K
-distributed because e N(0, 1) and M

is idenpotent vith rank N - K.

Hence, y'My/a2 is also 4_4c-distributed (See (C.2) and (C.6)).



(D.1)

APPENDIX

-1
The matrix X'X can be partitioned as follous.

-1
Ovx •••••••

X't X'X
1 1 1

and it can easily be verified that

(D.2)

where

(D.3)

0111

IMMO OPP.

X't X'X
1 111

E = I -

=

N
-1 1 -
--(14--

N 
A'X

1 
(X EX) 1x 

1
=M.

dr.

We prove that the matrix X;EX has full rank by assuming the

contrary.

If the matrix EX
1 
has not full column rank then there ip a vec or

g 0 0 such that

(D.4)

or

(D.5)

where

(D.6)

Eq =

=0

q = X p
1

39



Since Eq = 0 if and only if q =Li wheret is an arbitrary

scalar, the following relation should hold

( D . 7) X
1
p= 1

This, however, is violated by the assumption that X = [1 x1]

has full column rank. Thus, EX1 has full column rank and

(D.8) riEX
1
= (EX ) (EX

1 1

is a non-singular matrix.

We apply the result obtained in (D.2) and write

(D.9

with

-
a = x'(X'X

1
) x =

P P
[ 1 i x

• 131

2oxi )-ix;

= 
1

akrt
1

x' = [1

And since X
1

(D.10) a a-

'$)

131

1 1

1
1

(x,EX )
1 1

a as

4.11.0

is a positive definite matrix (see (D.8))

If x is a row vector of X, say x
P 
= x

1
., then a can be written as

P P

e'X(X'X)
-1

X'e
ii 

a = e1X(X'X)
-1

X'e. = 4 1
p. 1 i e!e.

11



where we made use of the knowledge that X(XfX)
-1

Xi is a idempotent

matrix, and that the largest characteristic root of such a matrix

is equal to unity.
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APPENDIX

The estimators of the mean and the variance of a lognormal

distributi.on, introduced by Finney, have also been applied to thq

multiplicative model, In a recent article Bradu and Mundlak [3] present

a generalization of the estimators. We shall confine ourselves, however,
Ea2 • •

to the minimum variance unbiased estimator of e . From tile foregoln it

is known that S q, a X
NK 

-K), Hence, the moment generating function of
-

ES? (with E a non-negative arbitrary constant) reads as

2 
N-K

--
20 t

(Eel) (t) = 
2

N K
ES

and its p-th derivative with respect to t equals

(E.2) M(t)
2

Es

hence

(E.3)

2 rfN K p)
= (2E7 )P  2 

N - K r(N) K

WEs 2E02 p r

N - K

2E0 t - 2 -P
N K

N

• This result will be used to proof that the following function alloys •us to
2a

construct an unbiased estimator of eE :

r(N2 N K +1,/ 
(N 

K)2
)t)

;

LO 
r(N K + t)

2
te.

Substitution of
2 
as the argument of g t yielas

N-

(N K)2L  22
r(N K) Es

-2'(N K + 1
-N-K

k=0 N K
(— — + t) t!

2

The expectation of gN_K(ES2) can be established by substituting (E.3) into

the expression for the expected value of (E.5):

(E.6) ( 2)] = E
k=0

N K
- K +

N-K 

= e



Thus

(E.7) 
(N - K 1 rs2

gN- N - K

2is an unbiased estimator of e (1 .

Since S2 is a complete sufficient statistic, every function of it

is a minimum variance estimator of its expected2value.
1
 Hence (L7)

a
is a minimum variance unbiased estimator of eE

For computational purposes we shall now derive an inegral

expression for (E.4). g 
-t-
( ) can also be written as2

-N-K

(E.8)

or

(E.9)

r(N K1
2

{ii(N - 2t/(N -

(-1 2,

2,=0 - K 2] 4- 2,

( K)

  N-K

{(N - K)/ 2t/(N -

- KW 2tMi 
2

fort > 0

  Ilf
  N-K (N-K.-.2

0177 -

2 RIT-K-2)

N-KW0t/(N-K+1))

t> 0

where I{ stands for a modified Bessel function. According to Abramowitz

and Stegun [1] the integral expression for the modified Besspl function is

ee 1ao [10] p. 261.

2 
See also Finney [5].
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(E.10)
*2(N-K-2

{(N - K) ht/(N - K+ 1)) =

N-K-
1

a(N - V 2t/(N - K + 1)) 2 
- v

a N-K-,3 
e
V NI-101/2t/(N- k+l)dv

I 
1 AT v -1Trr2 fil  _ i)
1‘ 2

$ubstitu.O.on of E.10) into (E.9) yields

(E. ii) t =  -K 
fa " - 3, -1

2

(N-K-3 N.-K) 12t IC N-ric+ 1) a

Tn section 5.2 we need the second moment of gN_ ( ).Braiu and Mundlak r2)

derived an expression for this moment:

(E.12)

with

(L13

From E.12 it follows immediately that

(E.14) 2E g
N-K

{2(1 _ 3a ) N - K + 1 2
S }

P N - K

2 ,
E[gN-KkES = G N-

N -K
N K + 1

rtN - K1 N - + 2t - 2
G
N-K

(t) = E
2 ' 

,N - K ) tt
£=o r( +

2

- 3a )02]

Finally we derive a result needed in Section 5.3. To prove that Y converges in
1

quadratic mean, we have to consider the 71-function of Y associated with a
P p

because it is assumed that a approaches zero as N becomes aibitrary large

(see (3.30):

71 =

2
-.Ct rc

-2a
P ( - 3a)a - 2 P + 1

N-



(E.15)
2

urnW = e
-a 

lim GN-K[;(1 - 3a )a]- 1
N4.00 N4.00

(provided that lim G
N-K 

exists).
N4.010

To establish the lim G
NK 

(E.13) will be written in a slightly different-
form:

(E.16)

Co

G (t) = EN- (N - K)(N K + 2) (N - K + )t=0

2
2. 

t

1.2. ... (N - K + t)(N - K + t + 1) ... (N - K + 22, - 2)
(N - K + t - 3)(N K + - 2)]

(2t) (N K t - 1)(N - K + t
t' (N K)(N K + 2) ... • •t=0 •

Co

.....(N - K 22 2)
N K + 1 22. - 2)

(2t)
t

Since, under the summation sign, the term 
t: is multiplied by an expression

of which both numerator and denominator contain t terms depending on N the

(E.17)

Hence E.15) becomes

Co

(2t)
t

2tlim G
N-K

(t) = E = e
N400 t=0

2
lim=e
N+00

1 = 0 q.e.d.






