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1. INTRODUCTION

This paper deals with some of the estimation problems inherent in
multiplicative models with constant elasticities. Such models (for

example, production functions of the Cobb-Doublas type, gravitational




trade flow equations, and multiplicative demand functions) frequently
occur in economic theory. In order to estimate the parameters of such
relationships, we should introduce a disturbance term into the model. It
is logical to introduce such & term into the multiplicative model at the
beginning and to make the necessary assumptions about its distribution.
After this has been accomplished, the problem is clearly defined and we
can pass on to estimation.

The preceding paragraph may seem trivial but it should be realized
that there is a lot of confusion about this subject. The estimation
problem is normally solved after the multiplicative relation has been
transformed so as to put it in the form of the well-known linear model. This
procedure gives rise to the following remarks. Firstly, we may ask ourselves
whether the transformed problem is identical to the original one. Secondly,
in applying this procedure there is a strong inclination towards postponing the
introduction of the stochastic model until the derivation of the linear model.
This implies a danger that one does not realize what these assumptions mean
for the original multiplicative model, with the possibility that the implied
stochastic model on the multiplicative relation is not in accordance with
one's original ideas. Thirdly, in many cases we are not interested in
parameter estimates but in the estimation of the expectation of the
dependent variable given a vector of values of the explanatory variables,1
and the backward transformation may again give rise to inconsitencies.

Indeed, the main issue of this paper is the estimation of E(Y | xp). For
the time being some limiting assumptions will be set on the distribution of
the disturbance term. Under these assumptions it seems to be possible to

construct an estimator which has a number of advantages over the traditional

estimators of E(Y | xp).

2. THE MULTIPLICATIVE MODEL

We assume that there is an economic process which generates Y; let us
further assume that this process takes the form of a multiplicative relationship

between the variable Y and X - 1 explanatory variables Z Z, and a

o3 eevs Iy
disturbance term v. If we have N observations on both Y and the Z's, we can

write

1 . . .
Thls.entlty w}ll be denoted by E(Y | X_), where it should be noted that the
meaning of this notation differs from the usual one where xp is a random

variable. In this casge xp is non-stochastic.




(2.1) . .i _— i=1, ..., N

where the parameters & are assumed to be unknown and the Z's are nonstochastic.

Furthermore we assume

(2.2)

and

(2.3) var v = woI

Taking the logarithm at both sides of (2.1), we obtain
(2.4) y=XB +u

with

and r(X) =K < N

Before we proceed any further, we should justify assumption (2.2).
Let us therefore consider the implications for the original model of super-
imposing a traditional set of assumptions on the linear model (2.4), i.e.
let the u's be independently normally distributed with

i

(2.5) E(u) = 0




(2.6) var u = 021

It should be noted that the normality assumption which is rather limiting,
is made here for convenience in calculations.2

Let us now consider the implications for the multiplicative model.
From the assumptions above, it follows that the v' = (v1 e vN) is

lognormally distributed with3

1. 2
(2.7) E(v) = e2%

and

2 2
(e20 _ eo )T

(2.8) var v =
We may ask ourselves whether these implicit assumptions about the
disturbance term in the original relation are in accordance with our ideas

about the specification of the multiplicative model. In our opinion the
ansver must be "no". We therefore use the following analogous reasoning.
The fact that, in the linear model, the mathematical expectation of u
is wusually assumed to equal zero originates in the belief that, although
the relationship between the dependent and the explanatory variables
will not hold exactly for a single observation, it should hold in the
average. An analogous reasoning with respect to the multiplicative model
leads us to the replacement of assumption (2.7) by (2.2).

As for the linear model, we also assume independency and
homoskedasticity in the multiplicative model as reflected by (2.3).

Then it can easily be verified that

u o N(-31n (0® + 1k, 1n (w2 + 1)1)

2

(2.9) u w N(—%oz.t, c°I)

where u = 1ln (w2 + 1),

2 Further research will be devoted to the question of how robust the

estimators to be derived will be with respect to different distributions
of u (or v).

3 See Appendix A for the derivation of (2.7) and (2.8).




Having completely specified our multiplicative model, we are now
ready to tackle the estimation problem.

In the next section, the least-squares and the maximum likelihood
estimators of E(Y l xp) will be derlved As a starting point, it will

be assumed that w> (and consequently o ) are known parameters.

3. LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS

3.1. The Least Squares Method

3.1.1. Parameter Estimators

Least squares estimation of B in model (2.4) yields
(3.1) 8= (xx)7'x

Since it is no longer assumed that the expectation of u equals zero, this

estimator is biased with respect to B:
2 ..121"1v
(3.2) E(B) - 8 = -30°(X'X)” X"

The first column of X being a unit vector, (3.2) can be Yritten as

1
0

IR
(3.3) E(B) - 8 = -30° = _1o°
] th

with X = (1 X,)

from which it appears that in the linear model only the estimator of the

-~

constant term 81 is biased and the other R's are unbiased. However, in
this case our interest it not the estimation of the parameters in the linear
model but of those in the multiplicative model, and we realize that not

8, but 61 = exp (81) appears as a parameter in the multiplicative model.




-~

Let us therefore consider the bias of 31 = e81. The expectation of 31

can easily be derived:
(3.4) E(8)) = Je

-0

1, \.a 81‘%°2*%°§1
f(81)d81 =e = 61e

-302+%o§1

where use has been made of the fact that 31 is normally distributed with
mean 81 - 502 and variance 0%. Hence the bias of 31 equals
1
L. ~3o%+io2
(3.5) E(6,) -6, = §.[1-e 1]

The estimation of the other parameters in the multiplicative model does

not raise any problems since they are not affected by the transformation.

3.1.2. The Estimator of E(Y l'xp)

In the linear model, the dependent variable is a linear function
of the regression coefficients; hence if we are able to construct
unbiased estimators of these coefficients, it follows that the
estimator of the expectation of the dependent variable, given a vector
of explanatory variables, is unbiased. It can easily be seen that this
implication does not hold for the multiplicative model. The multiplicative
model (2.1) can also be written as

x!B+u.
i i

(3.6) Y. =e i=1, ..., N

Then the L.S.estimator of the expectation of Y, given some xp-vector, is

defined as

(3.7)

The mean of this estimator

t (] -1
(3.8) B(2,) o) R (u)an

2
x! - 1-
pB 20 ( a )

e

. -1
with a = x'(X'X .
p p( ) X,




It can easily be verified that the bias of ?p equals

R -502(1-ap) xés
(3.9) E(Yp) - E(Yp) = (e - 1)e

The variance of ip is equal toh

2x'8-02 202a
(3.10) e P [e P

To ascertain whether we have a good estimator or not, we shall use as

our criterion function the mean squared error of the estimator:
2 2

(3.11) E(T -6) " =var T+ (6 - ET)

where T is an estimator of 8. In our case this function becomes

-~ -~ 2
.12 Y + - E(Y
(3.12) ver Y EEYP (Y | xp)]
. 2. 2 1. 2
2x'8 -0“(1-a_) ¢“a -30“(1-a_)
e P {e Ple P_1]+[e p_ 1]2}

-2x'B
let # =%'.e P +then
2
-o“(1-a_) o -;oz(u-ap)

(3.13) f= e Ple P_11+T[e - 112

3.2. The Maximum Likelihood Method

3.2.1. Parameter Estimators

The maximum likelihood estimators can be derived from the original
model (2.1). To that end, we introduce the following notation:
Ay, 02) stands for a lognormal distribution corresponding to a normal
distribution with mean p and variance 02. From (2.4) follows

(3.14) vy v A(-%og, 02)

b See Appendix B.




From this distribution the distribution of Yi can be derived:

(3.15) Y, v AM1n 51
. k=2

Then the likelihood function of (Y1, ceey YN) equals

(3.16) L(Y1, cees YN) =

s
_ -N -3N 1 k , 2,2
o (27) exp { 5 T (In Y, -1n 51 k£2zik+20 )}

20 1

g
Iy,
1

In order to maximize this function with respect to §, we first take the
logarithm, differentiate, and derive the first order conditions. The

transformed likelihood function takes the following form:

(3.17) 2(y) = -1'y = N 1n ©° = 3N 1 on - —{y - X8 + 307 )'(y - xp+io%h)
20

where

Ly) = 1n [L(Y,, ..., )]

N

and where the notation of (2.4) has been introduced. The necessary

conditions for a maximum of %(y) are

(3.18) ‘ X'XB - X'y - X"1.302 = 0

The maximum likelihood estimator of B follows from (3.18):

(3.19) 8= (XX)7 X' (y + 36%1)

The maximum likelihood estimator E can also be written as a function of

!l

the least squares estimator B

(3.20)

. - - ﬁ . . -
It can easily be verified that B is an unbiased estimator of B, and that
2 2 - .. .
- for known ¢~ - var B equals var B. That the second-order condition is ful-

filled can easily be seen, since the Hessian of (3.17) being equal to

{-2X'X} is negative definite.




3.2.2. The Estimator of E(Y | xp)

The M.L.-estimator of E(Y | xp) equals
~ x!
(3.21) Y =eP

p
Substitution of (3.20) yields

(3.22)

Thus
(3.23)

and

.2k Y =
(3 ) var o

The mean squared error function of Y follows from (3.23) and (3.24):
2 2x'R 202a 02a %oga o
(3.25) m=e P{e P_e Pli(e P_1)%

3.3. A Comparison of the Least Squares and the Maximum Likelihood
of E(Y | x_)
—_DP

As has already been stated before, the comparison of the two estimators
will take place on the basis of their mean squared errors. Usually, however,
such a comparison is impossible because the mean squared errors are functions
of the unknown 8. In ggr casé, however, both mean squared error functionseigg
be written as n' =e P ., 1 i.e. they have the exponential expression e P
in common and since B does not appear elsewhere in the functions

the comparison can take place on the basis of the n-functions without the

necessity of taking into account the B-vector.




-~

=
The functions n and w both depend on 02 and ap’ Let us consider ap in more

detail; it has been defined in (3.9) as

-1
= x'"(X'X)” 'x
> " p

p

In Appendix D it has been shown that

(3.27) ap 3_%

for all xp and that .
(3.28) 1o <1
L] N_p_

for xP coinciding with a row vector of the X matrix, which is the case
if the X matrix is not only used for estimation of the parameters, but
also for the explanation of Yi; i=1, ..., N. If, however, x_ stands

for a projection of the explanatory variables (3.28) is not always satisfied

i.e. ap may then be larger than unity.

b

In the literature on the linear model it is frequently assumed that

(3.29) lim & X'X = A
N
Now
where A is a bounded non-singular matrix. Let us trace the impact of this

assumption on oy From (3.29) it follows that the matrix (X'X)-1 tends to
the zero matrix for N to infinity. Thus,

(3.30) lim a = 1lim x‘(X'X)-1x =
Moo P faw P P

for all x .
p

For time series assumption (3.29) 1looks rather realistic, provided
that the explanatory variables do not show a decreasing tendency over time.
As to cross section data its relevance is not clear. In Section 5.3,
therefore, we shall use two alternatives with respect to the lim of ap:

first, assumption (3.30) and second, the assumption that

(3.31) 0 < lima < g%

N+

with a* some finite number.




However, for any finite sample size N, “p may assume any positive
value. And given X, “p can be regarded as a characteristic of xp. In
the next paragraph we investigate for which values of o the L.S.-estimator
has a lower mean squared error than the M.L.-estimator and for which
values of an the reverse holds.

Consider

(3.32) 1 -7 = (e

This expression equals zero for 02 # 0 if

3/2020 lg
e P 2(1 + e 2

Consequently for

2
(3.33) =% {1 2-1n (14 "))

0 30

the mean squared errors are equal. Moreover, if

. >a then ;
P 0

0<a <a then =
P 0

Hence we can conclude that the L.S.-estimator of E(Y | xp) is superior to

the M.L.-estimator (in the sense of having a lower mean squared error) for

0 N
holds for given values of 02.

up > a_ and that the reverse is true for 1. ap < 5. This conclusion only

Now the question arises as to whether it is possible to construct an
estimator of E(Y | xp) which has a lower mean squared error than the least
squares and the maximum likelihood estimators for known 02. Authors like
Goldberger [5], Bradu & Mundlak (2], and Heien [6] confine themselves to
minimum variance unbiased estimators which are derived with the help of
an estimation function introduced by Finney [L4]. The condition of unbiased-
ness may be very limiting in the sense that it rules out biased estimators

5

with a possibly smaller mean squared error.

5 The use of the Finney-estimator will be one of the subjects of further
research.




4. A NEW ESTIMATOR OF E(Y | xp)

Notice that, if %_5 ap < 1 the least-squares estimator always under-

estimates whereas the maximum likelihood estimator always overestimates
E(Y | xp) (see (3.8) and (3.23)). This fact gives us an intuitive argument
for introducing a class of estimators which allows for a convex combination
of least squares and maximum likelihood estimators. Thus we introduce the
following class: p
x§§+gp02

4.1) C_ = {e - < <
( p = 1 | £y < =}
where B is the least squares estimator of B and g is a constant. Our
goal is to determine the estimator Y e C with the lowest mean squared
error. To that end we minimize the mean squared error function of

~ 2
x!'B+E_o
PB EP

(k.2)

with respect to Ep.

In order to establish the mean squared error function we determine

the mean and the variance of YE » which are respectively equal to
p
2

x'B-30"(1-a_-2¢_)
(4.3) E(YE )=e? p P

| P 2 2

. 2x'B-0"(1-2¢_) 20
(b.4) var Y_ =g P Ple P

EP

Hence the mean squared error function is equal to
2
2X§B-0 (1-2¢_) 202a o2a -%02(1-u -2¢_)
(4.5) e Ple Poe Pl4fe PP

or

2 2
0" (28 +20_-1) 30°(26_+a_-~1)
(4.6) e L - 2e R + 1

-2x'B
with né e P
P

To find theminimum M.S.E. estimator within cp we have to minimize (4.6).

We therefore differentiate this expression with respect to gp and get
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02(2£p+2ap—1) s 302(2gp+ap-1)

(k.7) - 20 e

The first order condition for a minimum of (4.6) is fulfilled if

0 _
(4.8) £, = 3(1 - 3ap)

To verify whether Eg constitutes a minimum, we consider the second

derivative in the point Ep:

3 21"5 ’ 0 h —02ap
(4.9) 2.2 [£p== 5p] =20 e >0
agp

From (4.9) we conclude that m, reaches a minimum for Ep = Eg. Hence

*p

x'B+302(1-3a )
(L.10) Yp = P p

has minimal M.S.E. in Cp.Since the least squares and the maximum likelihood
estimators of E(Y | xp) both belong to Cp, the new estimator is better
than these traditional estimators, provided that 02 is known.

Normally, however, we have to estimate 02 (or w2). And now the question
arises as to whether in this case our new estimator of E(Y | xp) is still

uniformly better in Cp.

5. A COMPARISON OF THE THREE ESTIMATORS OF E(Y | x,)
IN THE CASE OF UNKNOWN VARTANCE

>.1. An Estimator of the Variance in the Multiplicative Model

A well-known estimator of 02 is

1
(5.1) s? = TR A

. . . 2 .
2 1s an unbiased estimator of ¢“, even in

It can easily be verified that S
our case where Eu + 0. Moreover it can be proved that, under our assumptions,
82 has minimum variance in the class of unbiased estimators.6 Let us

therefore consider

See Corsten [1].




(5.2)

as an estimator of m2. The mathematical expectation of &° can be
2
derived by making use of the fact that y'My/c is y“-distributed. 7
It is equal to
2
o

© e, .q
(5.3) E(«EQ) = s K x2(N -K)dq=(1-

0 N -K

1
with q = X;gl and where use has been made of the known moment generating
function of a x2-dlstr1butlon with N - K degrees of freedom. From (5.3)

2
it follows that m2 - 1 1is an assymptotically unbiased estimator of w ’
since

(5.1) lim E(8°) = 1im [1 - . 2 - o]
N+ N -

. . “ . 2
To determine the variance of we, we compute the expectation of (& )2:

202

2 ® Tz a
(5.5)  EL(8%)%1 = 6[e®1 = ; MK T 2y - g)aq = (1 - :

0

Hence

(5.6) var 6° = E[(8°)%] - [E(32)]°

N-K
ho® | 3

(1 - 722

2 N-K

20 )

-0 -5Tx

From (5.6) it is clear that the variance of &° tengs towards zero

for large N. We shall use 62 as an estimator of e’ in what follows.

5.2. The Mean Squared Errors of the Three Estimators

In the case where 02 is unknown, the three estimators can be written
in the following general form:

-~ A2 2
x'B+E © X'B+E S
(507) Y = e P P = e p P
E;P

T See Appendix C.




for

£ 31 - 3ap) for Y

P P

The mean squeared error of Y follows from E(Y

£

) end ver YE , which are
. ; . ) .
derived below. Equation (5.7% cen also be writtBn as

D

: . x'B £ S
(508) ’ "‘p .ep

8 g

and e P

) Pe 13 .
In Appendix C it is shovn that e P are independent random
varisbles, hence '

x'é 82
(5.9) E(Y, ) =Ee?P &P
. EP

2
xﬁB«%a (lfap)

= e

and

2x3§ 2L Sg xéﬁ 5 £ 82 2
(5.10) var (Y, ) = Ele P)E(e P )~ [E(e P )PPMa(e P )]
P _
vl 2 C 2 R-K 2 : 2 ~(N-K}
2x' -0 (1-2 hg ¢ - == 2% o (1 2t /
.. pB o ( ap)h i __52___] . pﬁ o ( ap) A
N - K

So, the mean squared error of Y equals

£
5 p 5 _ B=K 5
2x£6 -0 (1-2¢_) b o 2 —%U'(jnap)

(5-11) ﬂép = e {e P (1 - ﬁn}j_k- 2e .

(5.12) L -
. P
-2x'p
vith n, =q¢! ,e P
P °p

From (5.12) it follows substituting the corresponding velues of Ep (see

(5.7)) that




—02(1-2a ) -502(1-a )
(5.13) # Pl 2e P
which is obviously identical to (3.13).

~62(1-20_) o . NXK

2 _ P 20 2
(5.14) p=© O - 57—

-02(1-2up) 2(1-3a_)o°

(5.15) T =e [1 - 52—

These formulae will be used in the next sections.

5.3. Large Semple Properties

In Section 3.3 we introduced an assumption about the behaviour of X'X
for large N (assumption (3.29). In the sequel we shall investigate the large
sample properties of the three estimators discussed above; under assumption
(3.29) or (3.30) and under assumption (3.31).

It turns out that under assumption (3.27) the maximum likelihood as well as
the new estimator converge in quadratic mean, whereas the least squares estimator
does not, as can easily verified from equations (5.13)-(5.15):

o o 2x'B 2x!g 2
lim E[Y - E(Y | x_)] e P 1im # e P (e
~ o 2x!B :
lim BE[Y - E(Y | x)1°=e P 1im
Now P P Tow
2x!
lim E[Y - E(Y | % 112 =e P 1im

Ko e

From (2.22) and (4.10) it can besseen that the maximum likelihood estimator and
the new estimator coincide for up = 0.

Let us now replace assumption (3.30) by (3.31). In Section 5.1 it has
been shown that the bias and the variance of & 52 both tend to zero as N tends

to infinity, which is tantamount to saying that w2 is a squared error
consistent estimator of &9 . Hence in the limit there is no longer uncertainty
about o> are e and the situation is identical to that where we assumed 0%
or € to be known. This implies that for N + « and non-vanishing GP the new
estimator ?p is most efficient in CP. It should be noted, however, that in

this case Yp is no longer squared error consistent, due to the fact that up

does not vanish:




-02(1-2a ) -502(1-a ) 2x'B
P 2e +1)e P
a 2 2a_o° 3a o2 2x'8
(5.17) lim E[Y - E(Y | x )] =(e P Py 1)e P
N P

lim E[?p - E(Y | xp)]2 (e

N

1im E[Y - E(Y | x )12
N p

In the next Section we shall focus our attention on the small sample
properties of the three estimators, which are in practice much more

interesting than the large sample characteristics.

5.4. Small Sample Properties

In this section we will trace the conditions under which the new estimator
Yp has a lower mean squared error than the maximum likelihood and the least
squares estimators. Instead of the mean squared errors we will consi r the
T-functions, as defined in (5.13)-(5.15). Results based on the comparison of
these auxiliary functions equally apply to the mean squared errors functions.
Because of the rather complicated character of the n-functions, the comparison
has been carried out numerically instead of analitically. This means that the
n-functions have been computed and compared for a limited number of argument

values only. In the tables I, II and III we find for 02 = ,5, 1.0 and 2.0 8

respectively the logarithms of ;p’ 7 and Fp as functions of ap.g For the

7 and the 7 functions which are also affected by the number of degrees of

freedom, we distinguished again four cases: N - K = 5, 10, 15 and the case

2
"Known ¢“".

It is hard to see how these values of 02 work out in the original multiplicative
model (2.1). We therefore computed for a number of o2-values the 95%-intervals
of vi. Let b, and b, be the lower and upperbound of the 95%-interval of Vi,
then we can %onstruct the following table

02 bz bu

. .20 .0

1. .09 .3

1. .05 .9

2.0 .02 .T ,
With respect to the interpretation of V., it should be realized that the sample
outcome, say v¥ = 2,0 means that the ob%erved value Y. = Y¥ is as twice as
large 'as its expected value. From this table we see that ai economic model of
type (2.1) with a 02 = 2.0 has hardly any explanatory value. We therefore do
not consider any values of ¢2 larger than 2.0.

We confine ourselves to the interval (0, 1]; it should be kept in mind that the
true lower bound of 2? equals 1/N.
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The numerical investigation suggests the following properties:
(5.18) and N -K>1

(5.19) and N -K> 1

These two inequalities show that for a > %-the gew estimator is superior
to the other two for all admissible values of ¢ and N - K.

Especially for higher values of apthe use of the new estimator gives
a considerable reduction of the mean squared error as compared with the
maximum likelihood estimator and least squares estimators. Let us consider
the case where @ = 1., In Table IV (and graph IV) the m-functions have been
computed as a function of o® for N - X = 8, 10, and 12. From this table

we see that e.g. for 02 = 0,40 and N - K = 8:

10 -~ 10 -
log 7 ~ "1 = 0.330
g P og "p 3305

Up till now we have not considered the case 0 < a < %u
the new estimator is not always better than the least squares estimator.

In this interval

Whether Zp has a lower mean squared error than %bdepends on the values
assumed 0, N - K and a. As we see from the graphs, where the log 7
intersects the log ;p’ it is possible to indicate for any combinat?on

of o2 and N - K a value of a = @y, 0 < ay < %5 which is the lower bound of
the interval [ao, @) where ;p > 7_, These lower bounds a, are given for

a number of combinations of o° and N - K in Table V. This table is not
completely filled, since the m-function is only defined for (N - K)/2 > 02
(see equation (5.15)).From this table it can be seen that, for a fairly
large number of combinations of 02 and N - K, the new estimator is better

than the least squares estimator for « > 0. What can be said in this

10 . . - -
From equations (5.13)-(5.15) it follows that for m = 1/3 7_ and 7
coincide. p P




context with respect to the use of the new estimator in economic
models ? If we keep in mind what was said in footnote 8 about the
relation between 02 and the explanatory value of the model, we can
safely confine ourselves to those economic models which have a
02 < 1.00. A look at table V learns us that, for these models, the new
estimator Yp is superior to Yp for N - K > 6.

Our conclusion can be that for most cases arising in the field of
estimation of economic models the new estimator will have a lower mean
squared error than the other two. Furthermore, it appears that the maximum

. =
likelihood estimator Y is overthrown by the new estimator. Finally, if we

replace 02 in Table V by 82, this table can be used to decide whether ?P

or Yp is the optimal estimator in any particular case.
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TABLE I

02 = 0.5

N-K=5 N-K=10 N-Ks=15 Known o°
& 3 7 7 7 3 7
-3.0173 -3.4239  -3.,4239 -4.2552  -4,2552 -4.7040  -L4.7040 - -
-2.8468 -2.8922 -3,1331 -3.3276 -3.4940 -3.4932  -3.6269 -3.8771  -3.9220
-2.6885 -2.5271  -2.8830 -2.8289 -3.0616 -2.9330 -3.1207 -3.1492  -3.2388
-2.5405 -2.2448  -2.6667 -2.4787  -2.7577 -2.5558 -2.7868 -2.7092  -2.8L432
-2.4012 -2.0121 -2.4778 -2.2048 -2.5233 -2.2667 =-2.5377 -2.3871  -2.5654
-2.2695 -1.8124  -2.3114 - -1.9776 -2.3324 -2.0296 -2.3391 -2.1298  -2.3521
~2.1444 -1.6365 -2.1634 -1.7818 -2.1717 -1.8270 -2.1744 -1.9134 -2.1796
-2.0251 -1.4784  =2.0309 -1.6087 -2.0331 -1.6490 -2.0338 -1.7253  =-2.0352
-1.9109 -1.3342 -1.9112 -1.4528 -1.9113 -1.4892 -1.911k -1.5580 -1.9115
-1.8013 -1.2011 -1.8026 -1.3103 -1.8030 -1.3437 -1.8031 -1.4065 -1.803h
-1.0959Y -1.,0772 -1,7034 -1.,1787 -1,7055 -1.,2096 -1.7062 -1.2676 -1.7077
-1.5943 -0.9609 -1.6123 -1.0559 -1.6170 -1.0848 -1.6187 -1.1389  -1.6221
-1.4960 -0.8511 -1.5283 -0.9407 -1.5361 -0.9678 -1.5389 -1.0186  -1.5447
-1.4009 -0.,74b9 -1.4505 -0.8317 -1.40617 -0.8574 -1.4657 -0.9054 -1.4742
~1.308 -0.6474 -1.3781 -0.7282 -1.3929 -0.7526 -1.3982 ' -0.7982 -1.4097
-1.2190 -0.5522 -1.3106 -0.6294 -1.,3290 -0.6527 -1.3357 -0.6962 -1.3502

-1.1319 -0.4608 -1l.2474 -0.5348 -1.2693 -0.5571 - -1.2775 -0.5988 -1,2951
=1.0470 -0,3727 -1.1881 -0.4439 -1,2135 -0.4b54 -1.2230 -0.5053 -1.2439
-0.9641 -0.2875 -1,1322 -0.3562 -1.1611 -0.3769 -1,1720 -0.4155 -1.1962
-0.8833 -0,2051 -1.0794 -0.2715 -1,1118 -0.2915 -1.1241 -0.3288 -1,1515
-0.8043 -0.1251 -1.0295 -0.1895 -1.0652 -0.2089 -1.0789 -0.244L9 -1.1096

-0.7269 -U.0L74 -0.,9821 -0,1098 -1.0211 -0.,1286 -1.0361 -0.1656 -1.0701
-0.06512 0.0283 -0.9371 -0.0324 -0.9793% -0.,0507 -0,9957 -0.0847 -1.0329
-0.5770 0.1021 -0.8942 0.0429 -0.9396 0.0251 -0.9573 -0.0079 -0.9977
-0.5042 0.17453 -0.8532 0.1165 -0.9018 0.0992 -0.9208 0.0669 -0.96453
-0.4327 0.2449 -0.8140 0.188%4 -0.8657 0.1715 -0.3860 0.1399 -0.9327




7

-1.8655
-1.82606
-1.7770
-1.7170
-1.6475
-1.5b695
-1.483606
-1.3915
-1.2941
-1.1924
-1.0873
-0.9798
-0.8706
-0.7602
-0.6L492
-0.5379
-0.4268
-0.31060
-0.2058
-0.0963

0.0123

0.1201

0.2269

0.3327

0.4375

0.5415

=
™

-1.6088
-1.3198
-1.0713
-0,8511
-0.6517
-0.4682
-0.,2974
-0.1369
0.,0149
0.1597
0.2984
0.4317
0.5604
0.6851
0.8062
0.9240
1.0390
1.1514
1.2615
1.3694
1.4754
1.5796
1.6822
1.7833
1.8831
1.9815

w

-1.6088
-1.7657
-1.8225
-1.7990
-1.7242
-1.6231
-1.5122
-1,4012
-1.2947
-1.1948
-1.,1020
-1.0163
-0.9372
-0.,8641
-0.7963

-0.7334°

-0.6746
-0.6196
-0.5679
-0.5191
-0.4729
-0.4289
-0.3869

. =0.3L4066

-0.2705

TABLE II

2
o}

-2.@831
-2.1173
-1.7186
-1.4030
-1,1374
-0.9052
-0.6969
-0.5068
-0.3307
-0.1660
-0.01006
0.1369
0.2780
O.L134
0.5438
0.6700
0.7924
0.9114
1.0274
1.1407
1.2516
1.3602
1.4668
1.5716
1.6748
1.7763

1.0

™

-2.6831
-2,4353
-2,2076
-2,0049
-1.8262
-1.6687
-1.5294
-1.4056
-1.2949
-1.1955
-1,1057
-1.0241
-0.94938
-0.8817
-0.8190
-0.7612
-0.7076
-0.6577
-0,6112
-0.5677
-0.5269
-0.4884
-0.4522
-0.4178
-0.3852
-0.3542

N-K=15

2
w

-3.1988
-2.4156
-1.9348
-1.5758
-1.,2834
-1,0329
-0.8114
-0.6112
-0.4272
-0.2561
-0.0955
0.0565
0.2012
0.3398
0.4731
0.6017
0.7262
0.8471
0.9648
1.0796
1.1919
1.3017
1.4095
1.5153
1.6194
1.7219

n

-3,1988
-2.6792
-2.3295
-2,06604
-1.8563
-1.6824
-1,5347
-1.4070
-1.2950
-1,1957
-1.1069
-1.0269
-0.9544
-0.8882
-0.8276
-0.7718
-0.7203
-0.6726
-0.6282
-0.5868
-0.5480
-0.5117
-0.4776
-0.4455
-0.4152
-0,3865

3

-3.1492
-2.3871
-1.9134
-1.5580
-1.2676
-1.0186
-0.7982
-0.5988
-0.4155
-0.2449
-0.0847
0.0669
0.2113
0.3496
0.4826
0.6110
0.7353
0.8561
0.9756
1.0883
1.2004
1.3102
1.4178
1.5236
1.6275

w

oo

-3.2588
-2.5654
-2.1796
-1.9115
-1,7077
-1.5447
-1.4097
-1.2951
-1.1962
-1.1096
-1.0329
-0.9643
-0.9026
-0.8467
-0.7958
-0.7492
-0.7064
-0.6669
-0.6304
-0.5966
-0.5651
-0.5357
-0.5083
-0.4827
-0.4586




m
-0.9173
-0.9338
-U.9435
-0.9438
-0.9333
-0.9099
-0.8719
-0.8180
-0.7475
-0.660k4
-0.5573
-0.4397
-0.3091
-0.1675
-0.0169

0.1407
0.3040
0.4715
U.bL415
0.8135
0.98b8
1.1b006
1.5345
1.5083
1.6817

1.85L5

N -K
n

1,7795
1.9045
2.1471
2.5274
2.50506
2.6820
2.8567
3.0299
3.2017
3.3724
3.5419
3.7105
3.8782
L,0451
L,2113
L,3768
L,5418
L.,7062
L.8702
5.0338
5.19b69
5.3598
5.52253
5.08L6
5.8407
6.0085

=5

1.7795

0.7257
-0.0356
-0.5495
-0.8254
-0.9155
-0.8975
-0.8310
-0,7485
-0.6647
-0.5851
-0,5115
-0.4439
-0.3816
-0.3239
-0,2699
-0.2188
-0,1701
~0.1230
-0.0771
-0.0318

0.0131

0.0581

0.1036

0.1498

0.1970

TABLE III

2
o

2.0

N-K=10

N
n

-0.,7030
-0.3489
-0.,0362
0.2476
0.5102
0.7565
0.9899
1.2129
1.4273
1.63u46
1.8358
2.0320
2.2238
2.4118
2.5965
2.7784
2.9577
3.1349
53,3102
3.4837
3.6558
3.8265
3.99¢061
L,1640
4.3321
L.LY8Y

n

-0.7030
-0,9831
-1.1284
-1,1582
-1.1132
-1.0308
-0.9353
-0.8394
-0.7489
-0.6658
-0.5905
-0.5225
-0.4612
-0.4057
-0.3553
-0.5092
-0.26069
-0.2277
-0.1912
-0.1570
-0.1246
-0,0938
-0.06L43
-0.,0358
-0,0081

0.0189

N-K=15

2
L

-1.4540
-0.95153
-0.5499
-0.2071
0.0975
0.3752
0.6329
0.8752
1.1052
1.3254
1.5374
1.7426
1.,9421
2.1367
2,.3271
2.5138
2.6975
2,878
3.0569
3.2335
3.4079
3.5809
3.7524
3.9226
4.0917
L,2599

n

-1.4540
-1.4797
-1.4163
-1,3073
-1.1833
-1.0604L
-0.9458
-0.8420
-0.7490
-0.6662
-0.5924
-0.5266
-0.4678
-0.4150
-0.3674
-0.3244
-0.2852
-0.2493
-0,21065
-0.1861
-0.1579
-0.1317
"001071
-0.0839
-0.0619
-0.0410

3

-2.5871
-1.5580

- ~-1.0186

-0.5988
-0.2449
0.0669
0.349b
0.6110
G.8561
1.0883
1.3102
1,5236
1.7299
1.9303
2.1257
2.3167
2.5041
2.6882
2.8695
3.0L83
3.2251
3.3999
3.5751
3.744L8
3.9152

™
- 0O

-2.5b54
-1.9115
-1.5447
-1.2951
-1.1096
-0.9643
-0.8u467
'0.71492
-0.6669
-0.5966
-0.5357
-0.4827
-0.4361
-0.3949
-0.3583
-0.3257
-0.2966
-0,2704
-0.2468
-0.2255
-0.,2062
-0.1887
-0.1729
-0.1585
-0.1454




TABLE IV
a = 1.0
P
N - N-K=10 N-K-=

a
o

- -~ -
-~
u L m

7 7

-2.4854 -2.3815 =-2.5471 -2.3825 -2,5506 -2.3833 -2,5530
-1.7515 -1.5449 -1,8775 -1.5475 -1.8839 -1.5493 -1,8882
-1.3047 -0,9966 -1.4973 -1.0012 -1.5060 -1.0042 -1,5119
-0.9751 -0.5664 -1,2360 -0.5732 -1,2466 -0.5776 -1.2540
-0.70906 -0.2005 -1.0401 .- =0.,2099 -1.0523 -0.2160 -1,0609
-0.4845 0.1250 -0.8854 0.1125 -0.8992 0.1045 -0,9089
-0.2867 0.4231 -0.,7592 0.4072 =-0,774y4 0.3969 -0.7851
-0.1092 0.7018 -0.b537 0.6819 -0.6702 0.6691 -0.6819
0.0530 0.9660 -0.5b39 0.9416 -0,5818 0.9261 -0.5944
0.20353 - 1.2193 -0.L8064L 1.1899 -0.5056 1.1713 -0.5191
0.3442 1.4645 -0.4187 1.4295 -0.4392 1.4074 -0.4536
0.4772 1.7035 -0.3589 . 1l.b621 -0.3809 1.6362 -0.3962
0.6038 1,9378 -0.3058 1.8894 -0.,3291 ~ 1.8593 -0.3454
0.7250 2.1688 -0.2581 2.1125 -0.2830 2,0778 -0.3003
0.8410 2,3975 =-0.,2152 2.3325 -0.2416 2.2927 -0,2598
0.9542 , 2,6249 -0.1762 2.5502 -0,2042 2.5047 -0,2235
1.0633 2,8518 -0.140606 2.7663 -0.1703 2.7146 -0,1906
1,1695 3.0788 -0.1080 2.9813 -0,1393 2.9229 -0,1608
1,2731 3,307 -0.,0779 3.1959 -0.1110 3.1301 -0,13306
1.3744 3.5361 -0,0500 5.6106 -0.,0850 - 3.3367 -0,1088
1.4737 53,7676 -0.0240 3.6257 -0,0611 5.5430 -0.0860
1.5712 L,001% v.0001 5.8417 -0,0388 3.7493 -0.,0651
l.v0670 4L.,2393 0.0229 “4,0590 -0,0182 3.9560 -0,0L57
1.7614 L,43800 0.obL3 4.2779 0.0009 L,1635 -0.0278
1.8545 L,7265 O.UbLO L.49389 0.0189 L.3719 -0.0112




Lower boundé ao
VARTAINCE DEGREES OF FREEDOId
(02) 8 7 G

2.00 0.13 0.1b
1.95 0.12 0.10
1.90 0.12 0.15
1.85 - 7 0.11 0.15
1.80 0.10 0.14
1.75 0.10 0.14
1.70 . 0.09 0.13
1.65 0.08 0.13
1.00 : 0.08 0.12
1.55 0.07 0.11
1.50 0.00 0.10
1.45 0.05 0.10
1.40 0.04 0.09
1.35 0.03 0.08
1,30 0.02 0.07
1,25 ' 0.00- 0.06
1.20 0.00 0.05
1.15 0.00 0.03
1.10 0.00 0.02
1.05 0.00 p.01
1.00 0.00 0.00
0.95 0.00 0.00
0.90 0.00 0.00
0.85 0.00 0.00
0.80 0.00 0.00
0.75 ' 0.00 0.00
0.70 0.00 0.00
0.b5 0.00 0.00
0.60 0.00 0.00
U.55% 0.00 0.00
0.50 0.00 0.00
0.45 0.00 0.00
0.40 0.00 0.00
0.35 0.00 0.00
0.30 0.00 0.00
U.25 0,00 0.00
0.20 . U.00 0.00
.15 0.00 0.00
0.10 0.00 0.00
U.05 U.00 0.00
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APPENDIX A

Let the random variable x be normally distributed with mean

¢ and variance 02, then the variable

(A1)

has a so-called lognormal distribution which is denoted by
(A.2) ¥ v A(u,00) .

Thus, the distribution of y is characterized by the mean and the
variance of the underlying normal distribution. The distribution of y

can be derived as follows

(A.3)  Fly) = PIY s y] =

lny 1
= 20
{m oY2n e

The density function of y follows by differentiation of the
distribution function (A.3) with respect to y:

)2

1
_ dF(y) 1 ""‘2 2(1!1 y - u
Ak f = = o
( ) (Y) dy oy/én e

It turns out that it is very useful to derive the mean and variance
. 2 . . .
of y as functions of u and o . The following computations provide
us with the mean E(y) and the variance var(y), which are presented
in (A.5) and (A.6) respectively.
X~ 2

E(y) ?m e*f(x)dx = —l——ex‘%( o/ dx
- -0 0/21!‘

2y 2
2 —(u-
LI eH+20 e-%(x (§ - )) dx
g/2n ~®

12'
+
=eu20




2

7 ¢ X=H
- e2x—g( o’ ax

= ovon 5. 2
- 2 3 ,x=(u-20°)
1 ? e2u-2o e-zc———E-——‘—) ax
ovon =

2
= e2u 20

hence

2 2 2 2
(A.6) var(y) = e2u+2o - e2u+° = eau[e20 -e% ]

Next, we establish the inverse functions, i.e. express |

and o> as functions of E(y) and var(y). From (A.5) it follows that

w+ 362 = 1n [E(y)]

(A7) w = 1n [E(y)] - 302

Now, we substitute (A.7) into (A.6) and get
2 02 :

(A.8) [E(y)]®(e” - 1) = var(y)

From (A.8) it follows that:

(4.9) 2 - 1n Er-iﬁg + 1
[E(y)]

and substitution of (A.9) into (A.T) yields

(A.10) u =1n [E(y)] - 3in [v—mil)—g + 1]
{E(y)}

In Section 2 it has been assumed that E(y) = 1; substitution

of this assumption into (A.9) and (A.10) gives




(A.11) o° = 1n [var(y) + 1]

and
(A.12) w = -31n [var(y) + 1]

Hence a lognormal distribution with the mean equal to unity

corresponds to & normal distribution with p = -i¢.




APPENDIX B

In Section 3.1.2 the least squares estimator of E(lep)

has been defined as

-~ x'§ ?
(B.1) I =e P =P

According to Appendix A the variance of this estimator equals

_ 2E(§_) 2var § var ¥
(B.2) var Y_ = e Ple P_e P

p
since ?p is normally distributed. Hence, to determine var fp, we have
to find E(?p) and var ip.

The mean of ?p can be established as follows:

(8.3)  E(F) = E(x:) = E[xl')(x'x)”'x'y]

-1 2 -1
E[x'8 + x'(X'X)” X'ul = x'8 - 3c“x'(X'x)”'X"
P D pf = 2O X (XIX) XN

2

x'B - 30

D 3
where use has been made of the fact that the first element of xp
equals unity.

The variance of ?p equals

(B.4) var(frp = E(?pz) - [E(?p)]2 = E(xégﬁ'xp) - (xéB - 502)2

x (L8 + (X)X (8 + (007K W) i

2
- (xéS - %oe)

xé[BB' + 23E(u')x(x'x)‘1 + (X'X)-1X'E(uu‘)X(X'X)—1]xp

2 2
- (x -3
( pB 20 )

2 2 2

2 -1 ; 2 1 2

x'B -0 x'B+ o0 x'(X'X) x + - (x'B -
(x18) : SO0+ 0%~ (s - 36%)
02x'(X‘X)-1x

p P
2
o a

P




Substitution of (B.3) and (B.l) into (B.2) gives us the

variance of Yp:

R 2x'8—02 202a
(B.5) var Yp =e P [e P_e P




APPENDIX C

In this appendix it will be proved that the random variables

13 2
x'B £ S
P end e P are independently distributed. To that end we first

consider xég and EpS2. These two variables can both be written as

functions of the disturbance vector u:

-~ —1
C.1 18 = x'8 + x'(X'X)” X’
(c.1) xpB xpB xp( ) u

and

£ £
(c.2) gp82 = ﬁ%{ y'My = ﬁgf u'Mu

Now we shall make use of the following theorem: "Let e be a vector
of n independent normal variables each with zero mean and unit

variance. Then the linear and quadratic forms

L=oa'e and Q = e'Be
are independently distributed if Ba = 0.1)"
Since
u A N(-%o21,021)

we apply the following transformation on u
1 2
(c.3) e = (u + 305)

so that the vector e is normally distributed with zero mean and unit

variance.
From (C.3) it follows that

(c.h)

") For a proof see Kendall & Stuart [ 7] pp 356-359




Substitution of (C.4) into (C.1) and (C.2) yields

-~

(c.5) x'B = xI')B - 502 + oxl')(X'X)—1X'e

and

2
2 &0

(c.6) EPS = —ETI-(' e'Me

vhere use has been made of the property M1 = 0. The linear and

quadratic forms
xl')(X'X)-1X'e and e'Me
are independently distributed, sincer
MX(X'X)_1xp =0

- 2 . . .
Hence x'B and £_S” are also independently distributed and so are

exp(xx"‘é) and exp( EpSz).




APPENDIX D

The matrix (X'X)-1 can be partitioned as follows:

(D.1) (:v;*x)"1 =

where

R |
(D.3) E=1I- 3 n'

We prove that the matrix X;EX1 has full renk by assuming the
contrary.

If the matrix EX1 has not full column rank then there is a vector
p # 0 such that

(D.4)




Since Eg = 0 if and only if q =2 1 vhere? is an arbitrary

scalar, the following relation should hold
(D.7) X,p =1

This, however, is violated by the assumption that X = [1 X1]
has full column rank. Thus, EX1 has full column rank and

(D.8) X'EX = (EX,)'(EX)

is a non-singular matrix.

We apply the result obtained in (D.2) and write ap as

= x' (X' -1 =
(D.9) . xp(X X)"'x_=1I1 ]

xl
P P,
(1,1 1 1 1
—_+ — ! ' =y | LY ' -
¥ * et % (X{EX)T XN L X, (X3EX,)

_%+%n1-%9%qmﬁq%ﬁl-ﬁﬁ

xé =[1 xi1]

And since (X'EX)-1 is a positive definite matrix (see (D.8))

1
(D-1Q) ap 2y

If xp is a row vector of X, say xP = X5 then ap can be written as

-1
1] | 1
eix(x X)X e.

ele.
11

a = e!x(x'x)‘1x'e. =
: 1 1

£
D £ 1




Since Eq = 0 if and only if q =% 1 wheref is an arbitrary

scalar, the following relation should hold
(D.7) X,p =1

This, however, is violated by the assumption that X = [1 X1]
has full column rank. Thus, EX1 has full column rank and

(D.8) X'EX = (EX,)'(EX)

is a non-singular matrix.

We apply the result obtained in (D.2) and write o, as

_ll_1= '
(D.9) o = xp(X X) X5 L1 xp1]

~ -1
l _l [ [ =1y f _l [ ' -1
¥ * et % (XEX)T X X (XEX)

x!' =[1 ']
p xp1
And since (X'EX)"1 is a positive definite matrix (see (D.8))

(D.10) a

1
P ol

If xp is a row vector of X, say xp = Xss then ap can be written as

-1
L \j 1
eix(x X)X e

= e!X(X'X)-1X'e; = <1
p i i

ele.
i1




where we made use of the knowledge that X(X'X)”X‘ is a idempotent

matrix, and that the largest characteristic root of such a matrix

is equal to unity.







