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One of the most challenging concepts in Bayesian statistics is the

probability of a particular model being correct. Discussions of this concept

can be found in jeffreys (1961) and Carnap (1962), and attempts to apply it

have been undertaken by Thornber (1966) and by Zellner and Geisella (1968). A

common point in the approach of these authors is that they start from non-

informative prior distributions.

This paper treats the same subject starting from natural-conjugate

distributions, as introduced by Raiffa and Schlaifer (1961) who, in turn,

base their approach on the foundations formulated by Savage (195)4). Special

attention is given to the case of a set of alternative linear models. The

subject is also reconsidered for the case of uniform prior distributions to

illustrate some of the difficulties inherent in Jeffreys' approach.

1
The authors are indebted to Mr. R. Harkema of the Econometric Institute, who
gave some valuable comments.

la
During the stage of proof reading the authors were informed that there is more
unnublished work in this area by both Geisel and Zellner. The authors wish to
point out that the present results have been derived independently.
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Sets of alternative linear models are widely used in applied work (in

econometrics for instance)., and traditionally
2 
the squared multiple

correlation coefficient (or determination coefficient) R
2 

often plays an

important role in choosing from such a set. It can be shown that under

certain conditions this device works well for large samples, but it can

produce bad results when the number of Observations is limited.3

In principle, the posterior probability of a linear hypothesis could take

over the role of R
2
. However, as is argued in Section 7, several problems

must be solved before a wide-scale use of this approach can be advocated.

This paper should be considered as a preliminary result which we hope will

form a basis for further research.

The order of discussion is as follows. In Section 2 the general posterior

probability of a hypothesis out of a set of mutually exclusive hypotheses

is derived; Sections 3, 4, and 5 apply this to a set of alternative linear
hypotheses for natural-conjugate as well as uniform prior distributions.

In Section 6, a large sample property is derived and, finally, in Section 7,,
some comments are made about applicability. The Appendix contains a tattier

technical proof for a result required in Section 6.

2. POSTERIOR PROBABILITIES OF SUBSETS OF THE STATE SPACE

Let us consider a state Space 0 which can be partitioned into a

finite
4 

number of measurable subspaces 0 ... 0 as follows:
1 k

(2.1)

' (2.2)

0 = O.
i=1 1

O.() 0. = 01 (i, j = 1, k;

We denote the hypothesis that 0 e Oi by Hi and the probability that Hi

is true by pi so that

(2.3) p. PEG e G.]

2
See, e.g., Goldberger (1968), Section 9.4.

3
See Kloek (1970) for a large sample result, and Koerts and Abrahamse (1969),Chapter 8, for small sample results.

4The generalization to a countable number is obvious.



Weconsiderthecasethatall 
el
. are uncountable and that for each i

we have a conditional prior density D'(6 I 01). Let K'(6 I ei) be a kernel

of D'(6 J 0i),that is, let

(2.4) D'(6 f ei) = CIK'(6 I 0i)

where C! is implicitly defined by1

(2.5) C! f IV(0 I 01)de = 1
0.

If the condition 6 e i is dropped, the prior5 is piDT(6 I 0i)

(i = 1, k; 0 e 0i). Let £.(z I 6) denote the likelihood of the sample

z = (z(1), z(n)) given 6(6 e 0). This likelihood can be written as

(2.6) 2,.(z 1 e) = K.(z I 6)p.(z)1 1 a.

where K
1
.(Z, 0) is a kernel of the likelihood of z given 0(0 e oi).

Then the posterior density of e e 0i, given z, reads

pilr(6. I 002.i( 1 e)
(2.7) D"(e I z) =

j I D (t I 0.)2,.(z I t)dt
0. J J

piCipi(z)Kl( (i)Ici(z

E p!Ctp.(z) I K'(t I 0.)K.(z I t)dt
J 
JJJ 0. J

J

and the posterior probability that Hi is true

(2.8)
Pt! E P11[0.

p!C!
11

=
0.
1

z)d0 =

Kt(t I '00Ki(z I t)dt
O..1

k; 6 e

E p!Ctp.(z) f K' (t I 0.)K.(z I t)dt
J J

5 Note that this prior is a mixed mass-density function.



Later we shall discuss the ratio of the posterior probabilities of two

alternative hypotheses

(2.9)

where 0
1

(2.10)

pi pipi(z)Cl/q(z)
_

p" Ptp.(z)ct/c".(z)
J J J

is defined by

C!;(z) I KT(t 1 0.)K
1 O.

1

1 t)dt = 1

From (2.9) we conclude that the integration constants C! and CI of the prior

distributions play a crucial role in the analysis.

3. THE CASE OF SEVERAL LINEAR MODELS: THE LIKELIHOOD FUNCTION

In comparing different models to explain one variable, one usually

uses the same sample z. The formulation of these models, however, may have

been chosen in such a way that the variables to be explained are different;

in such a case, they are in general functionally related. Therefore, we

introducethelinearmodelasy.=)) and f. is

a known one-to-one mapping which sends the sample space Z = {z} t: R
n
 into R

n
;

well-known examples are y(t) = log z(t) (t = 1, n) and yi = Az
where A. is a known non-singular matrix. Furthermore

6 X. is a fixed matrix
of larder n :x r1 and rank m r and E

i 
is a normally distributed random

n-vector of disturbances with E(c) = 0 and E(e.c
t
) = (1/h.)I. here t
i ' 

denotes transposition and hi the precision of the i-th process, that is,

the reciprocal of its variance.

Given these assumptions, the likelihood of the sample is

(3.1)

6

-q s.
ti(zI e) =2,(yiI 6) I = c.e 1

h.
1

I Jil11 1 (e e

It may happen that X. is a submatrix of X.,which implies 0.c: 0
jcontrary to (2.2). Tkis problem can easilS be solved by

defining a new subspace 0* = G. - 0.. Since 04 contains "almost every"
point of 0, and since we Lnfitle ouiselves toJcontinuous distributionsJ

corresponding integrals over 0, and 0* are equal.
7 
on 0

j,The notation in this paper has been taken from Raiffa and Schlaifer (1961),
Chapter 13, with four exceptions: (i) since we prefer to use p for proba-
bility, in stands for rank; (ii) since we dislike the use of v and v in the
same formula, we use A rather than v; (iii) since we prefer to use capitals
for matrices, we have replaced n (bold face roman) by N; (iv) no tildes
have been used to denote random variables.



5

with

(3.2a)

(3.2b)

(3.2c)

(3.2d)

and

(3.2e)

where

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

c =

qi = Dai{(13i -bi N.

, 1,
S. = -7*
1 1 1

IJi l = Idet[ayi(s)/az t)]]

C.
1 1

N. = X.X.
1 11

-b. .4- X.v.}- 1

27)-2n IJI

t
kX.X.)b. = X.y.

11

in. = rank [N.]
1 1

A. = n - m.
1 1

v. = (yi - Xibi)t(yi - Xibi) A.1 1

see Raiffa and Schlaifer 1961 Chapter 13.

L. PRIOR AND POSTERIOR ANALYSIS WITH NATURAL-CONJUGATE PRIOR DISTRIBUTIONS

In specifying a conditional Natural-conjugate prior density for the

parameters of the likelihood function (3.1), we suppose that this prior

distribution has been fitted to subjective betting odds.
8 We follow Raiffa

and Schlaifer (1961), Chapter 13, and take the Normal-gamma density

(4.1) D'(o I 0i) = hi

8

-q! s!
0.) = c'e 111.1

One may remark that betting on the question as to which of two models is the
"true" one is difficult since one will never know with certainty whether a
model is "true" or not. A possible solution to this problem might be that
the player who bets that model i is "true" wins if model i yields better
conditional predictions than the other model in a previously specified
prediction problem.



with

V4.2 a)

(4.2b)

(4.2 )

-

1 1 t !
S. 2111.

2. 

T

11 ‘ 

b! X!v!1 1 1 1 11

where m!
1 
= rank [Ni]. In order to guarantee that (4.1) is a proper density,

we assume for i = 1, k that x! > 0, v! 0, and N! is positive-definitea. a.
symmetric, so that

(14.3) r.
1

Combining this prior density with the likelihood function

a Normal-gamma posterior distribution

(4.4)

with

(4.5a)

(14.5b)

(4.5c)

where

(4.6a)

(14.6b)

(4.6c)

(4.6d)

”
C. =
1

g4=

D"(e I

2

2 it
-2m•
) 1

” ”-q. s.
, 1 1

= e h.

2 I 1 ?I II
k2Ai / X.It

— b")tN?(3. - V!) + Oirt.T1
1 11

1 u 1 u
2X. -

1 1 1

= N! + N.
1 1 1

=
1 (N!b! + Lb.)

11.11

m? = rank [10]1 1

1
' m!
i 1 in.

1 •1

3. , we find



and9

(4.6e) = {X!v! + ! N!b! + X.v. + b.N.b.
1 1 11 11 1 1 1 1

rb"}i
xl!

1

-= (M
11 
y! + A.v. +(bi bi)

t
{( I)

1 
I. }-1(b.

i b!1)}11
It

1

and find that the ratio of posterior probabilities 2.9) can now be rewritten

as

p1.1

1 =

PI!
J

1 1
P!INWiNT(ix'1 j

i
021

-

Tait
2A;
d/l N u ”
k2".V.
11

Ix,
2

'(iXt!Vtl
.1 I)

J.1(3v, - )!(;V: -
1 1

- 1):(1V!
j 1

. PRIOR AND POSTERIOR ANALYSIS WITH UNIFORM PRIOR DISTRIBUTIONS

In this section we investigate the results of Section 2 for the likelihQod

function of Section 3 combined with uniform prior distributions for and

log h. We begin by studying the conditional posterior distributions (for

= 1 k) of and hi (given that the i-th model is the correct one)

and drop for convenience the subscript i. Let Rr stand for an r-dimensional

Euclidean space, R
+ 

denote the set of all positive real numbers,{13 }
La a=1'

{f3 }c° denote sequences in Rr, where f3. < a (a = 1, 2, ...),ua a=1 La ua
Co 

{h } and {h 
}Co
 denote sequences in R. where h < h (a = 2 •

La a=1 ua a=1 ' La ,1 ua
and 03 }c°

1 
denote a sequence of subsetsrblocks") of Rr", where

a a=

9 
See the Appendix for the derivation of the second equality in (4.6e). Note
that in the second line of (4.6e) the assumption is made that N. has full
ran, in other words, that m. = r.. This assumption is essential in
Sections 5 and 6 and in the 4penhix, but can be dropped in the rest of
this one.



(5.1) B = {( h) I13, e
r.

R , ata < <
ua'

. 00 r+Furthermore let {Y'). denote a sequence of subsets of T1a a=

(5.2) = {(8, log h) I(3. e e R ,

<h }
ua

where

< < < h }a• ua'2.ct ua

We assume that the aomponents of f3 and log h are in4ependently distributed,

and specify the following prior densities for a = 1, 2, ...

(5.3) f, log h) =

with

(5.4) = { (
j=1

if ( , log h)

otherwise

j 
f3tai)}(log hua

a

- log h
La

where a . denotes the j-th component of the r.-dimensional vector a , anduaj 
ua -

where . is simil.arly defined. Transformation of log h to h yieldsZqJ

(5.5) f'
a 

h) = y'h-1 if ((3, h) e Ba

= 0 otherwise

Combining the prior densities (5.5) and the likelihood t

the posterior densities

(5.6) 4, 

‘
11f

Ict h)

where y" is defined by
a

= y

2

Y I a,

exp [-ih{xv +

if ( , h) e

= 0 otherwise

• (5.7) •f r(a, h) dOh = 1
B a
a

a

we obtain

b)}]



It is clear that y" is approximately equal to unity if 13 - 
' 

h 
' 

anda ua ua 
1/h

Za 
are taken large enough. More precisely, the sequence of posterior

distributions obtained by considering sequences of values of (3
ua' ka'

h
ua' 

and 1/h a . 
that diverge to infinity converges in distribution to

a Normal-gamma distribution with density

(5.8) f(a, h) = 
(r) 
f
Ny 

(e,
' 

h 
I 
b, v, N, x)

since the limit (5.8) of the sequence of posterior densities so obtained

is a proper density; ,see Scheffe(1947). It follows from (5.5) and (5.6)

that we can write for the alternative models

(5.9)

(5.10)

C! = y'.
1 al

i(iy . IN.IX.v.)3X1al 1 ii 
=

1 ir.
(211) 1(iA. - 1):1

compare (2.5) and (2.10). These results can be combined with (3.2e) and

substituted in (2.9) to obtain

(5.11)

”
Pi

PI!

1

- 1):(A.v.) J(2
J J 

2r.
1l ij1.

1 1
1,
X. 2r.

pIy'ay".IN.1 (A. - 1):(iX.v.) 1(270 3 1.1.1j aj al 3.

If the limiting procedure described above is carried out, we find (for

i = 1, ..., k) that y" tends to unity and y' tends to zero, which yields

an indeterminate result for (5.11) unless additional assumptions
10

are made

about the ratio y'./y'.. We consider it would be difficult, if not impossible,al aj
to defend a general assumption about this ratio, but in certain cases ad hoc

assumptions might work well.

10

4
Thornber (1966) adopts a procedure introduced (but rejected) by Jeffreys
(1961). His "invariant" prior density is based on the determinant of the
so-called information matrix. It has the following shape:

t 1 ir--1
a h.) = -T t.IX.r.1 2h2 1 if al 

(3., h.) e B
a. a. a

= 0 otherwise
He obtains general expressions for the posterior probabilities by assuming
(without comment) that 7),I = (i = 1, ..., k). Note that this prior
density generates a marginal posterior distribution on 13 which is Student
with n degrees of freedom independent of the dimension of 13.



6. A LARGE SAMPLE PROPERTY

In this section, we leave the field of prior and posterior analysis

and considpr a property of the conditional sampling distribution of

(p"
' 

p" ') given the true state O. For simplicity, we confine ourselvesk 
to the probability limit of p','(), as the number of observations

tends to infinity. We shall prove that if 6 is the true state of nature and

belons to 0i;

•we have

and if

plim = 1
n-040

=
I J

plim p'! = 0
n÷co

= 1, .

+

Without loss of generality, we assume throughout this section that model 1

s the ript model and that some unknown pair (13.14, El) represents the true state

of nature, aid we compare this model with some arbitrary model 2. We adopt

the assumptions made in the first paragraph of Section 3, but confine

ourselves to the case where the variables to be explained are equal for

both models so that 
I2J I = 11J l• Further, we need some assumptions about the

behavior of the matrices of explanatory variables. Let us write Xin for the

matrix X
i 
with n rows, and assume that X. has full column rank (so thatinN-1(X

t 
X. ) exists) and thatin in

(6.1) -
lim (X. X. 

1
in in = ( 1 = 1 , 2)

In addition, we assume that

t
. IX X

in in 1 (6.2) lim 1 . = 0t 2
n+c° IX XI (1 + )fl

2n2

for some positive number n to be fixed below. Note that it is sufficient for
(6.2) that real numbers A > 0 and p exist such that

4 
IX1

nln
12

IXt x  r2n 2n

for all values of n from some no
 
onward.



s•

1

• Concerning the parameters of the natural-conjugate prior distribution,

we remark that they are independent of n so that the probability limit of

(4.7), if itexists, is equal to

Pt
plin 

2
=

11n" pi
C* plim

n-÷00

where C*i implicitly defined as

1
n12(

1 1

xttirn

1 1

iln
2A1 

(Pt" 1):
2

ix!
1 2

TIN
2 12(3X"2 2 

2 1,
( )‘

117,11 20 ') e(iX' ).1 2

1)'

First, let us consider the ratio 1):/(W.; - 1): If we write

X" = + 2w
' 

where w is some unknown real number, we find by Stirling's2 1 
formula for sufficiently large values of A il' and

(6.5)
 TI

"X1

(P" • 1): (ix"•

w
  cj

1/r-Al; - 1 + w{(3),1 - 1 +0.)/e}

Ve} 1

.Aft ...

1 2-1

WiXt.; -

l\IV
2 

1
-

1• e (i)0.; 1 w

LA"-i+w

see, e .g., Courant (1937), Vol. 1,Chapter VII. If n c°, aJ.so A" c° and
00 

1
(see (4.6d) and (3.3d)), so that (6.3) can be rewritten as2

(6.6)

since

(6.7) lim

plim =
n-*°° p';

{ +

1 
A 

Ti
2  ".

* plim  
• 1n4a*  •-1)t

1171 2(XIG/n)

1
Imn12010tvu//n)1 1
111 1 1 1 

1X"-1
2 1 -W

1
W 1 -W

1 + W 2nj= 1



•Next,

(6.8),

et us consider

I I

R1.1.131 =
n4.co n n4.00

= plim
n-+00

+ plim
n400

b )t(m)

12

compare (4,6e). Recalling that v
-n = X1J1 + En, where en is n9rmaliy

distributed with zero tean and covariance matrix (1/E0T, and
t -1 t . •= 

(X_i 
X
ln 
) X

11 
y
! 

kn it is well-own thatn .1. n

(6.9)

where 02 = 1/1T0 see e.g., Mood and Graybill (1963), p. 348. To find the
probability limit of the second term of the final expression of (6.8); we

. start with b and conclude that (6.1) is a necessary and sufficient copdition1
for bl to converge in the squared mean to el since Eb1 =al for each n, and

X v1 1 2pli.m

lixn V(b ) = a lim (
n4cp r1400

onvergence in the squared mean implies convergence i.)a prgbability, SQ that

6.10

(6. 1

p4m b =

plim
a+00

Next, given assumption ( . ), it is easy to verify that

(6.2) lim{(N)
n4pco

Combining (6.11) and (6.12), we obtain

(b bl)t{(
pun

11403

(6.13),
-1



so that

x"v"
1 1 (6.14) plim

n-*03

_ 2
-

13

see (6.8) and (6.9).

Next, we continue with the second model and consider the limiting

behavior of

(6.15)
ev"
22  .  2 

+ X
2 
v
2 
+ (b

2 
- b' I(2  2 

t, -1 tHere X
2
v
2 
= (y - X

2n 
b
2 
) ky 

n 
- X

2n 
b
2 
) where b

2 
= (X

2n
X
2n
) X

2n
y
n 

while,n 
in fact, y has been generated by yn = 

X1 1 
+ en. We assume that there isJ 

no value of (3
2 

such that X
2n

a
2 
= X

ln1 
(otherwise the second specification

would be a correct alternative to the first one). Then we can write

Tit
X
2
v
2 

ID
1
X
1n
M
2n
X
1n

it.
1 
+ 2c

t
M X + Etm E

(6.16) n 2n lnl nnn 

where 
42n 

is an idempotent and symmetric matrix defined by

(6.17) -1 tM =
2n 

- X
2n
(X

2n
X
2n
) X

2n

Our assumption X2na2 
X1nT4 

(all 2) implies that M2nXinTi 0. Now, if
-t twe assume

11 
that, as the sample size increases, the sequence (a.X

1nM2nX1J1)/n
is bounded below by a positive number a, it can be shown [see Kloek (1970)]

that for each 6 > 0

A
2
v
2 

lim PE > a2 + a
n — ln-K0

If we choose an arbitrary value for 6 such that 0 < 6 < a
1 
and define

2 
= a

1 
- 6, we obtain

(6.i8)

11

X v
lim P[ 

2 2 
> a

2 
+ a

2
] = 1n —

n400

Note that M X can be interpreted as the vector of least-squares
residuals 

2n In 1
which results when 

s 

X T3- is "explained" by the1columns of X So the assumption saysln that the mean-square of2la these residuals will never be smaller than a positive number a.



Concerning the quadratic form on the right hand-side of (6.15), we
remark that we do not need an extensive analysis as was the case with

-1 -model 1, since the matrix {(NY' + N
2 
}

1 
is positive definite (also in

the limiting. case) and thus the quadratic form is positive for all n. This
implies that

( 6 . 19 )
"V'1

lim P[
^2 2 
n —

> a + a
2 

= 1

see (6.15) and (6.18).

We go on to investigate the ratio of determinants of (6.6) and consider

(6.20)

1 1IN"'2 1 N + N1 1 21 1 
IN"I22 N' + N21 2

1 t
IXt 1 2I(Xln ln in

,
IXt X 11(X6 X )2n 2n 2n 2n

n)-1

1

+ II

+112

Note that, if n 00, the right-hand determinants in the numerator as well as
in the denominator tend to 1 since the corresponding matrices converge to unity
matrices; compare (6.1). Collecting (6.14) (6.19), and (6.20) we obtain for
(6.6)

(6.21)
,”

plim <
n÷c0

*

3X"i xt x (a2) 1
li ln lim  lr" If
n:+c° t 1 2 2X2IX

2n
X
2n

I 2(a + a
2
)

lytY 1

1

2
-2(1) 1-1n-lni 1 

D

= C*,a lim 1 •X2t 2 t"r1+010 I11X2111 (1 + a
2
/a
2
)

=0

if (6.2) is assumed to hold true for some n > a /a2. This implies

(6.22) plim ID T.; = 1 and plim p = 0 ; q.e.d.
n400 n.+co

By investigating the limiting behavior of (5.11) and accepting the
assumption that the ratio y' /yt is bounded, we can easily verify the facta2 al

that the previous assumptions and results can be used to find that (6.22) also

holds if we start from (5.11).



7. REMARKS ABOUT APPLICABILITY

So far we have derived a number of mathematical results. It is too

early to discuss fully whether and to what extent these results are

applicable. We shall therefore confine ourselves to four remarks.

(1) Of course, the large-sample results in Section 6 imply that for any
values of the prior parameters our method will select with near-certainty the

correct model - provided there is one in the set of models considered -

as long as our sample size is sufficiently large. It should be noted that

we have confined ourselves in Section 6 to the comparison of models
with the same variable to be explained. Ratios of Jacobians unequal to

unity are much more difficult to handle.

(2) If the investigator is able and willing to specify proper

natural-conjugate prior densities on all the models ,he considers,

he can (in principle) apply (4.7) without any difficulty. He should be

warned, however, that this specification problem is not at all simple.

Suppose, for example, that he wants to compare two models which he

considers equally probable a priori. He may express this opinion by setting

p = p' = 3. But then his final result p"/p" may be quite sensitive to1 2 1 2
the way he specifies b!a., N!, Xf and v! (i = 1,- 2); compare (4.6) and (4.7).
So we advise anyone who uses (4.7) to carry out some sensitivity analysis

for acceptable variations of the prior parameters. Some of the most obvious

possibilities pr practical application are discussed in Remark (4) below.

(3) In case the investigator has no information (or very little) on

a and h, he may wish to consider the limiting behavior of (5.11) as a tends
to infinity. As it has already been mentioned, it will turn out that no

unique limit of y'. /y'. can be obtained unless a specific assumption isa a 
made about "how fast" these quantities tend to zero in comparison with

each other. It is impossible to give general rules here, but there are some

particular cases in which rather natural solutions are available. For these

we refer to the following remark.

(4) We now briefly describe some alternative models for which the
comparability problems for both natural-conjugate and uniform prior

distributions are relatively small. Let, for example, the models differ only

as to alternative assumptions on the disturbances, such as homoskedasticity

versus heteroskedasticity, or independent versus Markov autocorrelated

disturbances. In such cases, it seems acceptable to specify identical prior

distributions on a, and no serious problems arise in specifying the prior
parameters pertaining to the precision. Another example for which we hope



to solve the problems of specifying the prior parameters in a consistent way
is that of a set of distributed lag models, where the most probable lag
parameter must be found. As a third example, we mention the comparison_
of alternative proxy-variables for explanatory variables which can not be
measured. Also in such a case one may often assume that the prior parameters
are independent of the way in which the explanatory variables are
approximated. For an example of such a problem, we refer to a recent
paper by Harkema and Kloek (1969), where this subject is treated by means
of the natural-conjugate approach. This example also illustrates that, for
purposes of prediction and decision, one is not forced to choose a single model,
but may proceed with a mixture of all or some conditional posterior
distributions.
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APPENDIX

In this appendix we derive the second equality of (4.6e). We neglect

the subscripts, since the result holds for any of the models considered

provided the N matrix has full rank. We make repeated use of the following

property, which holds for arbitrary non-singular matrices A and B of the

same order:

(A.1) A + B)-/

Our starting point is Ault" and we find from (4.6e) that

(A.2) = + itN'b' + xv + b Nb - "tN"b"

We proceed by rewriting the terms of (A.2) containing b, b', and b", as

follows

(A.3)

where

(A.4)

(A.5) T
2 
=

(A.6)

t t
b' N'b' + b Nb

' N'b' + b Nb - (N'b' + Nb + 
N-1 

(N'b' + Nb

= b'
t
N'b' + b Nb - (Nib' +

= b'
t
N'b + b - {b + (N'

)-11(N

-1 t 
{(N')

b'
t
N'b' + b Nb - b'

t
{( 

)-1
+ N

{(N')-1 +

= T
1 
+ T2 - T

3

-1 1

)-1-47k-1)-1Nl(N'b' + Nb)

N 1 (N N'b' + b)

N'b'-btN(
)-1,1(14,

b N( {(N')-/ +

T
1 
= b'

t
Nib' -btt(Nt) -1 + N 

-1
N
-1

N'b

- b N(1,11)- i(
-1

+ N

1

T
3 
= b'

t
{(NI)

-1 
+ N}b - btN(N')-1{(N') 

-1 -1
1
- 

N'b'



We continue to apply (A.1) to obtain

(A.7) T
3 

E b't{(
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-1N 1 b+b
t
N( 

-
{(N') +N}NN'b'

= 
11.1 1.1.11) tN(N, 

= b't{(N')-/ + N-1}-/b + btNN-/{( ')- 
1 4. N-1}-1(N,)-114,13,

%-1= 2b
t
{(N') + } b'

Next we consider T
l' 

and find

(A.8) T
1 

,t
N'b' b'

t
{(N')

-1 
+ N

-1
}
-1

N
-1

N'b'=

= b'
t
N'b' + N-1)-1b, wt{(N,)-1 N-1}-1(N-

N 
1_,

+ 1)b'

= b tNib'+b'
t
W {k) +N } bt-b'

t
{(11')

-1
+N

-1}-1{N
-
0

1
+ 1) }N'b'

-1 -1 ,

= b'
t
{(N')

-1 
4-

and in the same way

-1(A.9) T2 _bNb b N(N'){(N')
-1 

+

,-1= b
t
{(N')  + N } b

Combining A.7), (A.8), and (A.9), we obtain for (A.3)

(A.10) b'tN'b' + Nb - btit
N"b" =

= b'
t
{(N')

-1 
+ N

-1
}
-1 

+ {(W)-/ + N-1}-/b - at{ar)

= (b t)t{(N,)1 

b')

Now A uv" compare (A.2)) can be written as

(A.11) = + Av + (b bt)t((Nt

q.e.d.

-1 -1,
+ N kb b')






