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In a recent paper
1
 we proposed a method of incorporating prior information

about structural parameters into the statistical analysis of simultaneous

economic equation systems. This method is based on the assumption that we

have at least some prior information about all structural parameters while

none of them is completely known in advance. Frequently, however, we would

like to postulate complete certainty about some parameters such as those

traditionally set equal to one for normalization purposes. On the other hand,

our prior information about parameters such as the constant term is often

so vague that we would prefer to specify non-informative
2
 prior densities

1

2

ee Harkema (1969).

e for this concept Jeffreys 1961 p. 179 ff.
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for them. This paper is concerned with a sequence of prior densities defined

on the space of the structural parameters by means of which the assumption

mentioned above can be relaxed so as to make allowance for complete certainty

or complete uncertainty about all parameters in the same column of the

matrix of structural parameters.

To facilitate reading, the following notational convention is used:

parameters of prior distributions can be recognized by a first subscript 0,

sample statistics by a first subscript 1, and parameters of posterior dis-

tributions by a first subscript 2.

The order of discussion is as follows. We first present a double

sequence of joint prior densities so that some marginal densities converge

in distribution to an a priori specified known real number, while some other

marginal densities can be made increasingly uniform over the entire real axis

In Subsection 2.2 the limiting behavior of the marginal prior distributions

is examined, while Subsection 2.3 gives the corresponding sequence of

posterior distributions on the space of the reduced form parameters. In

Subsections 3.1 and 3.2 we determine the limits of the parameters of the

sequence of posterior distributions and derive the limiting posterior

distribution. Section 4 discusses a modification of the assumptions and

summarizes our findings.

(2.1)

2. A SEQUENCE OF PRIOR AND POSTERIOR DISTRIBUTIONS

Let us consider the following system of simultaneous equations

r
11
y
1 
+ r

12
y
2 
+ 

A11x1 
+ 1

12
x +A x = u133

r 1y1 
+ r22 

4. 
1
x1 A22x2 A23x3 = °

where yl is an m-dimensional vector of endogenous variables, y2 is a

p-dimensional vector of endogenous variables
' 

x
1 
is an r-dimensional vector

of exogenous variables, x2 is an s-dimensional vector of exogenous variables,

x
3 
is a t-dimensional vector of exogenous variables, u is an m-dimensional

vector of disturbances, and r11, r12,
All' Al2' A13, 1'21' r22' A21' 

A22, and A23

are matrices of structural parameters of orders m x m, m x p, m x r, m x s,

m x t, p X M, p x p, p x r, p x s, and p x t respectively.
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The system (2.1) is supposed to satisfy the following assumptions:
3

(i) The matrix r defined as

r =[r11 r
12

r
21 22

MN,

.16

has full rank, which implies that an ordering of the endogenous variables

exists so that ris non-singular. Without loss of generality we assume
that yl and y2 represent such an ordering.

(ii) The matrices r21,e 21' A22' 
and A23, which pertain to thatA

part of the system representing the identities, consist of known constants.

(iii) The m-dimensional vector of disturbances u is normally distributed
-1with zero mean and unknown variance-covariance matrix E .

(iv) The vector of random variables u is distributed independently of

the vector of exogenous variables x.

2.1. The Sequence of Prior Distributions 

We assume that we are willing to express our prior information about

the structural parameters which correspond to that part of the system

representing the behavioral relations by means of a matrix Normal-Wishart

distribution with m degrees of freedom. This means that our prior

distribution looks as follows:

( 2. 2 )

f ( A , Z A
0' 

T
O'

11
1

1E1
2
(m
1T+r+s+t) 

exp -2 tr E[A

IZI 2 exp {-i tr E T}
lj

E PDS

00

3
Note that we do not specify a normalization rule. A detailed discussion
as to why we do not normalize our system can be found in Harkema (1969),
Section 3.

4 
See, e.g., Harkena (1969), Section 2.
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with

A = [r
11 

r
12 

A
11 

A
12

M =
0

all r
012 

A
011 

A
012 

A
013
]

M011 
M012 

M
013 M014 

m
015

M021 m
022 

m
023 

m024 m025

M
031 

m
032 

M
033 

m
034 

m035

M0141 m042 m043 m044 m045

M051 m052 m053 m054 m055

where the matrices M
oij (1, j = 1, ..., 15) denote the appropriate submatrices

of M
0 
and where T

0 
and M are supposed to be positive definite symmetric.0

Frequently, however, we would like to postulate complete certainty

about some structural parameters. In many cases,5 for example, the model is such 1

(or can be made so by adding new definitions) that it seems only natural

to specify an exact identity matrix for the matrix r11. In other cases6 small
partial reduced-form operations can be used to obtain a revised version of

the model so that it seems obvious to postulate an exact identity matrix for

the new r11-matrix. In addition to this type of certainty, an exogenous

variable sometimes shows up only in the identities. Clearly, in this case,

we would like to specify an exact zero column in one of the matrices Ali

(i = 1, 2, 3). On the other hand, our information about the influence of

particular exogenous variables such as the constant term is often so vague

that a non-informative density seems to represent our prior knowledge

fairly well. To incorporate these considerations into the analysis, we

shall use the following double sequence of prior densities

5 
See, e.g., the second Haavelmo consumption model and the food example
of Haaveimo and Girshick in Hood and Koopmans (1953) or the Klein I model
in Klein (1950).

6
See the Klein-Goldberger model in Klein and Goldberger (1956).



This situation will be discussed briefly in Section 4.

8 
See Dickey (1967) or Harkema (1969), Section 4.

9 See Raiffa and Schlaifer (1961), p. 259.

10
As usual the Mio*j (i,
M-61.

with

f (kEIAT L4L ) cc
' 0' 0' k 0 ki

3(m+p+r+s+t) exp -itr E [A - 
AO]LktMOLkt

I I-1 —3tr E T

kI 0 0 0 0

0 1 0 0 0

Lk 
. 

0 0 I 0 0

0 0 0 kI 0

0000I

k, 2, = 1, 2,

p

• • •

5

where the identity matrices are of orders in x m, p X p, r x r, s x s, and

t x t respectively.7 In the next subsection we investigate the consequences

of this specification for the limiting behavior of the marginal prior

densities.

2.2. Limiting Behavior of the Marginal Prior Distributions

We begin our investigations with the limiting behavior of the marginal

prior distributions of the elements of r11. Denoting the i-th row of A
8

with A' it can be proved that the marginal prior distribution of Al is

Student with parameters AL, 
LkLM0Lkt/t0ii' 

and 1, where XL and toii
denote the i-th row of A

0 
and the (i, i)-th element of T

0 
respectively. If

A.. (i, j = 1, ..., m) denotes the (i, j)-th element of r11, it can beij 0
verified that the marginal prior distribution of Au is also Student with

11 1parameters A . k2( .tOii 
) and 1,where 

Oij 
and M 1

jj 
denote the (i, j)-th

O 
element of r011 and the (j, j)-th element of Ml 1 respectively.

10 
Hence,

0

7 
Note that we exclude the case of no information about the elements of r1

= 1, ..., 5) denote the appropriate submatrices of
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(2.4)

k
2

[1 4. 11 ij XOij
)2]-1

M .t
Ojj Oii

As is well-known, the corresponding distribution function is given by

(2.5) ) = f f (x.. X k
2
(

1
..
1
t ..) 1) dX..

kZ. lj Ojj Oil '13

k(x - X .)1 Oij  1+ 1.1=-- [arc tan {
' 2'Ti

Ojj Oil

Co

On taking limits we obtain

( 2 .6 )

lim F
kZ(x) 

= 0
k,Z-+co

lim F
kZ
(x) = 1

k,270.00
if

Evidently, the marginal prior distributions of the elements of r11 converge in
distribution to the corresponding medians. This implies that we can specify an

exact identity matrix for r11 by simply postulating roil = .It goes without
saying

11
 that the elements of 

12 
converge in distribution to their medians

in the same way.

If 
X.1,m+j 

(i = 1, m- j = 1, ..., p) denotes the (i, j)-th element of

r12, it is easily verified that its marginal prior distribution is Student with
22

d M
Ojj 

denote thejj01,m+0 011 O '
22

(I, j)-th element of r012 and the (j,j)-th element of Mo ' 
respectively. This

means that the marginal prior distributions of the elements of r12 and,- of

course, also of those of 
A1111 

are independent of the values of k and Z.

Finally, we have to examine the limiting behavior of the marginal prior

distributions of the elements of A 
13 

Let A 
i.,z+j 

(i = 1, ..., m; j = 1, t;
°

z =m+p+r+ s) denote the (i, j)-th element of A13;then its marginal prior

distribution is Student with parameters X
i,z+

j
' 

(22M55.t )-1 and 1,
0 Ojj Oii '55where X„U, and M,.. denote the (i, j)-th element of A01 and the (j,)-th

1,4-r3 cc ujj 3

element of 
M0 ' 
" respectively. Hence, the corresponding distribution function

is given by

,F
kZ
(x) = 01z+j -- [arc tan {   } + ir]7 2

Z 
Ojj 

VM55
 Oil

Compare the definition of in 2.3)



On taking limits, we obtain

(2.7) lim

k92;+°°

= all x

Obviously, when t approaches infinity, the marginal prior distributions

of the elements of A 
13 

become increasingly uniform over the entire real axis.

Apparently, the sequence of prior densities introduced in Subsection 2.1

enables us to handle very precise and very vague prior ideas about structural

parameters simultaneously.

2.3. The Sequence of Posterior Distributions 

In order to obtain the reduced-form equations system, we begin by

eliminating the identities from (2.1). As ris assumed to be non-singular,

(2.8)

Substitution of 2.8) into (2.1) gives

(2.9)

where

(2.10)

Y -2 1Y1 -

+ B x + B
2
x + B x = u

3 3

-1
A =

11 ri2r22r21

-1
B. =A -rre

12 22 2i

The reduced form corresponding with (2.9) is given by

(2.11)

where

1

-1 -1
Ax-rAx- r

-1 
x22 1 1 22 2 2 22 23 3

(i = 1, 2, 3)

1)x 4. c(2) x2 C(3) 
x3 

+ v1 

1
] [B

1 B3] E C

V = Au
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• which implies that v is normally distributed with zero mean and variance-

covariance matrix ci
F1

(A l E A)
-1

To determine the sequence of posterior densities on the space of the

reduced-form parameters corresponding with the sequence of prior densities

defined in (2.3), we make extensive use of the results arrived at in

a previous paper and restate them here without further proof.
12 

U
s
ing the

same notation we introduce the following definitions

K=

(2.12)

and

ONO

-1 
-1. 

-1 •r
22r21 21 r2 222 r

2223

0 o I o o

o o I o

o 0 o o I

QOkç KLIt 2,MOLk 2,K I

- 11 13 14 15
Q0kt QOkIt (10kt Q0k9..
31 
Q 

34 35
0kt OP

-1 
= 

Q
33
ki?, Q%k9. Q Okt

Ola, 41 43 44 45 •
QOkst Q

0k2. Q0kt Q
0k2.

51 53 54 55
gOkit (10kt (10kt Qa te.. -

ij . -1where the %k9.(1, j = 1, 3, 4, 5) denote the appropriate submatrices of Qokt.

Before we can proceed to the sequence of posterior densities of the reduced-

form parameters, we still need a second set of definitions, namely,

12
See Harkema 1969), Section 3.



(2.13)

—1
A = rA0
 

— r012r22r21

-1
B.=A .-r r ,06, •oi 011 012 2c 23.

0

B
01 

B
02 

B
03

I o o

o I o

o o I

(i = 1, 2, 3)

where the identity matrices are of orders r x r, s x s, and t x t

respectively,

(2.14)

P* = D P DI
Okt 0 Okt 0

T* =
0

where the lower right-hand zero matrix is of order (r + s + t) x (r + s + t)

G = * + .1 = P DI + T*
Okt 0k2. su 0 Okt 0 0

(2.15) R
Okt 

= [
Olkt 

R
02kt 

R
03kt 

R
04kt
]

and

Defining

(2.16)

- -1
0]D

1 
P* G

0 Okt Okt

-1
S = R

Okt 
[T* + T*P* T*DI

Okt 0 0 Okt 0 Okt

G
- 11

G
12 -

G
-1 

= 
Okt Okt

Okt 21
G
22

Okt Okt
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where G
11 22

and G
Okt 

are of orders (m x m) and (r + s + t) x (r + s + t)Okk
respectively, it can be proved that the sequence of prior densities on

the space of the reduced-form coefficients is also of the matrix Normal-

Wishart form with parameters Cokt,
Okt' NOW 

and m degrees of freedom,

where S
010 

is defined in (2.15) and C
Okt 

and N are defined by
Ok14,,

(2.17) R
03kk

E (1) c(2) (3)1 rC
Okk 

=
Okk Okk Okk 02kt

C J = LR R
04kt
]

]

N = [G22
Okk Oki

We then suppose that there is a sample of T observations on the endogenous

variables y
1 

and the exogenous variables x x
2' 

x3 available and define

Yll Ylm

YTm

(2.18) X = [X(1) X(2) X(3)]

-x(1) x(1) x(2) x(2)II ." lr 11 is
(3) (3) —
x11 ". x1t

. . . . . •. . . . . .
' . . . 

• •(1) (1) x(2) (2) x(3) (3)
xT1 ". xTr -T1 ."

(3)1If we now let C = L r C(1) c(2) 
J denote any solution of the "normal1

equations"13

and define

C
1 
X'X = Y'X

13 1t must be stressed that we do not require the matrix X to have full
column rank. This is important in the case of large models where the
number of observations is generally smaller than the number of
exogenous variables.



(2.19)

=X'X

p1 = rank (X) = rank N
1
)

- p 
1

= [Y - XC']'[Y XC
1
']

1 

11

it can be proved that the sequence of posterior densities on the space of

the reduced-form coefficients is also of the matrix Normal-Wishart form with

parameters C
2kt Sa' 

N
2kt' 

and A
2 
degrees of freedom, wheret 

(2.20)

and

N
2k 

=
0

+N

+ C N ]Nt Okt 1 1 2kt

= m + T

2kt = 30k2.
+ C N C' + C

kt Okt Okt

N I
kt 2kt

C 
2kt

Hence, the sequence of posterior densities of the reduced-form coefficients

can be represented by

(2.21)

i(r+s+t) 2

2k2, 1
(2r0 m(r+s+t)

I I

I 2kti

C S
2kt' 2kt' 2k2,'

exp tr Q[C - C
2kt ]N2 t 

[C C
2kt

]'}

RA6- -1)
II exp {- tr QS2k2,}

Zm(m-1) 

i

m
2 n r[i(x + 1 —

=1

In the next section we determine the limiting distribution of the sequence

of densities defined in (2.21).



or, using (2.20), lim (NA + N,). On combining (2.16) and (2.17), wek'jt4G°
ka,+.00 '

discover that N
o 
can be rewritten as follows

(3.1)

with

(3.2)

and

(3.3)

-1
N
o 
= (E

A 
G El = EBE

-1 
EB

0 A

-
E =EEG

1 
ElE

BAO AB

0

OUP

E
B

where I
(j) 

denotes the identity matrix of order j x

(3.14)

0

I 0(5)

j. Evidently, then

lim N
0 
= lim E

B 
lim E

-1 
lim E

B
k,2,4c0 k,2,9'°°

12

3. THE LIMITING POSTERIOR DISTRIBUTION

OF THE REDUCED-FORM PARAMETERS

In order to exhibit the limiting distribution of the sequence of
,

densities (2.21), we use a theorem due to Scheff
14

e which says that the

density of the limiting distribution of a sequence of random variables

with densities {p (x)}c° is equal to lim p
n
(x), if this limit is a proper

n n=1
n400

density. In the next two subsections we shall focus our attention on the

evaluation of lim 
k 1 

fvo(C,OIC 
S210, 

N x
2
). In order to simplify

4°° "' 
2kt' ' 2100 

the notation, w4 shall delete the indices k and t from now on.

3.1. The Limiting Precision Matrix of the Reduced Form Coefficients

In this subsection we are concerned with the determination of lim N
2

provided that these limits exist. In order to evaluate G 1, we notice that
0

(2.14) and (2.15) lead to

14
See Scheffe (1947).
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(3.5)

where

1-1 
= LP* + TJ* 

0 0

+ F

[- ,-1 A1 
T (A j 01

0 0

0 0

* -1

the submatrices on the diagonal being of orders m x m and

(r + s + t) x (r + s + t) respectively.

Substituting 3.5) into (3.2) we can rewrite E as follows

(3.6) E = EBEA(D;)

with

(3.7)

+F
0
)

= E
B 
E
A 
(DI 

C 
[E

C 
+ F0 

E

(In)
O I 0 0

Cr)

0 0 I 0
(s)

O 0 0 LI

—l
EcDo EEB

(t)
MINI

In order to determine the limiting value of the matrix E, we start by evaluating
-

the limit of 
EC 
D1 

EtEB. 
By inverting the matrix D

o 
defined in (2.13) and using0 A 

the definitions (3.3) and (3.7), we easily find

(3.8) lim E D
-1
EiE =

CO ABk,L400

-A
-1
B 

-1
-A B

0 01 0 02

I 0 0

O I 0

O 0 I
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It should be noted that the matrix B03, and hence the matrix of location

parameters 
1013 

(see 2.13) does not play any role in D.

We then have to determine the limit of [E0(P0 + Fo)E0]-/. A convenient

way of evaluating this limit is to rewrite this matrix as:

(3.9) + F ) 0]
-1 

= 
[Ecp

oEo + E0F0E0]-/

- - -
= [I + E

1 P1 
E

C 0 C
]
-1 

E
-1
P
-1
E
-1

C 0 C

From 2.12 it can easily be seen that Po can be rewritten as follows

(3.10

with

Hence,

(3.11)

- -1
= EDQ

1
0 E; =

(m) 
0 0 0

0 0 I 0 0
(r)

E
-1
P
-1
E
-1 

=
C 0 C

(t)

ED(K' 
)-1L-1m-11,-1K71EIE-1

0 -D C

ME,

Inverting the matrices L and K defined in (2.3) and (2.12) and using 3.10)

and (3.7) we obtain

(3.12)

0

22r'21

0

- - -
lim L

1 K1 
EfE

1
 =

D C

0

0

-1
21 

-r
22

A
22 

0

E



hj mo = (mo
j4), (j = 1,

Clearly,

(3.13) lim
-1 -1
C 0 C

It should be noted that the matrices M1J =
0

j1
(j = 1, ...,

..., 5) do not show up in the matrix W0.

15

) and

From the definitions of Fo and Ec given in (3.5) and (3.7) respectively,

we easily obtain

(3.14) lim E F
k,t4.00

Combining 3.13 d (3.14), we find

(3.15) aim (I + E.c./P-0/E
k,t+0.0

= F
0

) = I + W F0 0

Using the definition of Fo in (3.5), we observe that (I + can be

partitioned as follows

(3.16) I + W
0 
F
0 
=

I + W
011
7
011

W
021

F
011

W F
031 011

W041
F
011 

0

0

0

0

0

our

the leading submetrix being of order m x m. In order to prove that

(I + W011F011) is non-singular, we proceed as follows. As F011 is positive

definite (see From (3.12) and
3.5), W011F011 :,(F-0111 woli)511'

= rt 1-1m----1(3.13) we find W r r As Wo-̀  is positive definite,
011 21' 22' 0 22 21. 

-1
is at least 

W01 
positive semi-definite. Hence, Foil + is equal to the 

1 W011
sum of a positive definite and a positive semi-definite matrix. This implies

that I + 
W011F011 

is equal to the product of two positive definite and hence

non-singular matrices. Apparently, 
W011F011 

and hence I + We° is

non-singular. From (3.15) we now easily find

(3.17) , -1 - -
lim (I + E 

1
c Po E

1
c EcF0Ec)

k,k400
(I + W F

0 0
-1



Combining 3.9), (3.13), and (3.17) we obtain

(3.18)

Taking 3.6), 3.8), and (3.18) together we find

(3.19) lim E = (D*)

-
liM [E

C 
(P
0 +F)E] 

= +W
0
F
0
) W

0 
= L*

In order to discover the conditions under which the matrix E* is non-singular,

we observe, using (3.18) and (3.13), that

rank (L*) = rank (W0) = rank (F*

From the definition of F* given in (3.12), we find rank (Fic) = (q + r + t)

where

(3.20) q = rank Cr
1 d22 

< p
—

As L* is the limit of a sequence of positive definite symmetric matrices,15

we conclude that L* is a positive semi-definite matrix of order (m + r + s + t)

and rank (q + r + t). Observing that the rank of the matrix D* which has

been defined in (3.8) is equal to (r + s + t), it appears that a necessary

condition for the matrix E* to be positive definite is that q > S. Generally,

the only exogenous variables of which the influences are precisely known in

advance are those which show up in the identities only.
16 

This implies that

the rank of A
22 

and hence q at least will be equal to the number of exogenous

variables whose influences are precisely known in advance. Therefore, the

condition will almost always be met. A sufficient condition for the matrix E*

to be positive definite can be established by requiring that the columwof D*

do not lie within the nullspace of the matrix L*. Henceforward we shall

assume this requirement has been met, implying that the matrix E* as well as
,-1

(E*) is positive definite.

15 
See (3.18) and notice that P, is positive definite (see 2.12) and Fo
positive semi-definite (see w3.4).

6
An example of such an exogenous variable is given by the variable G
(goods demanded by the government and foreigners) in the Klein I model;
see Klein (1950), pp. 62-66.



Finally, taking 3.1), (3.3) and (3.19) together, we obtain

(3.21)

where

lim N
0 
= EF(E*)-/EF E N*

0k, L-'

EF = lim E
B 
=

k,2,400

ism

inn

Substituting 3.21) into (2.20) we find

0 I (s)

(3.22) lim N2 NI E
k,2,400

and, thus

lim 1N21 = IN*I2

*
2

17

In concluding this subsection we want to stress three points. Firstly,

it should be noted that the matrices N* and N1 are not required to have full0
rank. The only restriction we have to impose to obtain a full rank posterior

precision matrix matrix 1\1 is that the nullspaces of N and N1 be disjoint. Secondly,
we want to draw attention to the fact that the matrices n and W21: are in-

dependent of the matrix of location parameters A
-013 

and the matrices

= (Mii)' = 1, 4, j = 1, ..., 5) as is easily verified from the0
comments following (3.8) and (3.13). Finally, it can be proved

17 
that 118

and II* do not depend on the absolute size of the values inserted into the4r 2 ;
E (M5j)1 (1 = 2, 3, 5) but only on the value of the "correlations"0 0

(3.23)

IT 
See Appendix A.

Mi5
Oab 

Pab
M
55

Oaa Obb

(i = 2, 3, 5)
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3.2. Limiting Values of the Other Parameters of the Posterior Distribution

of the Reduced Form Coefficients

After evaluating the limit of No, the determination of the limits of C2

and S 
2 
becomes a rather simple affair. Combining (2.15) and (2.17) we obtain

(3.24)

where

=
01

- -
EG 
D

1
 PG0 0 0

the zero matrices being of orders in x r, in x s, and in x respectively.

Substituting (2.14) and (2.15) into (3.24) we find

(3.25) = -
0 

1P*[P* + T*]-10 0

= E D
-1
D P DI

GO 000

+ F0]

-
= E + F 0P 1]

0

1

.4.

0

-1

where F has been defined in 3.5). Next, we rewrite Ro as follows

(3.26) - -+E
C
FE

C
E

1 
P

C 0
-1 -1

E
C
D
O

- - - - -= E
G 
[ 

+ECFO 
E

1 P1 
E
11

u 
E_D

C 0  0

where E has been defined in (3.7). From (3.24) we easily obtain

(3.27) C - - -,+ECFOECE1 
P

1 E1 
J

C 0 C

-.1

• where EA has been defined in (3.3). In order to determine lim CoN

notice that substitution of (3.1) into EcD-0-1T0 leads to k'2.-***
0' we



(3.28)

From 3.8

(3.29)

Combining 3.27

(3.30

and thus from 2.20) and 3.22

(3.31) lim C2 =
k,2,40°

3.19),and (3.21) we then obtain

-1
lim EcD E'N D*(g*)-1 FA 0

k,2.4.c°

(3. 7) and (3.29) we find

lim C N =Er, + F W D*(E*)

2

Again it should be noted that Z- does not depend on A

*

013
lj .11 . . 18
M = ) (1 = 1, 4; j = 1, ..., 5); moreover it can be proved
0 0
that Zr* on3,y depends on the prior "correlations" defined in (3.23) and

.5 5i
q.bsolute size of the valuesinserted into the Mlo = (Mo

19

.• .• • • 411.

not on the

(i = 2, 3, 5).

and the

Finally, it is interesting to observe that the last t columns

of Z* are zero columns which follows from the fact that the last t columns

of E are zero columns.

We still have to cvaluate the Li.m.t of S defined in (2.20). In order to

determine this limit, we first turn to S
0 
and observe that, after substituting

(2,13) and (2.14) into (?.15) this matrix can be written as follows

(3.32) ET 4-01 0
11 -) P A0 0 01

From 3.26), 3.17 (3.7), and (2.13 we obtain

(3.33

See Appendix B.

Ilm R01
k,2,400

I+ F
011

W
011
)
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F
011 

and W
011 

denoting the leading m x m) sUhmatrices of F
0 

and W
0

respectively. Moreover, it is clear from (3.13) and the definition of E
C

in (3.7) that

(3.34)
11

lim P0 = w
011

k,t4.00

Combining 3.32), (3.33), and 3.34) we obtain

lim Sn =
k,t4.00

= (1 + F01N11' 0

By substituting Foll = AT 0(

simplified to

(3.35)
m 

S° 
= 'T

-1
0 0

k,2,4403 

-1
+ T 

-1
W T
011 0 0 )-- + W F

011 011

(see 3.5) this expression can be

-1
+ W

011 
s*
0

As is easily verified, we can repeat the comments accompanying (3.22)

with respect to Nfi also with respect to 58.

Next, we observe that, after substituting (3.1), C0N0C ' can be0
rewritten as follows

(3.36) C0N0CI=COEBE
0 

From 3.24) and (3.26) we find

(3.37

Combining 3.8). and 3.17) we then obtain

(3.38)

and hence, using (3.19),

(3.39)

lim C
O

k,k,-+00

lim
k,2,-*co

= E

=

+ F W
0 0

*

= E
G
[I +

C 0 0 C 0 A B

= *

o
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Once again we can repeat our comments accompanying (3.22) with respect to
N* for lim C N c' (see Appendix C). Upon substituting 3.35), (3.39),0 0 0 0
(3.31), 15.1544G° and (3.22) into (2.20), we obtain

(3.40) liiii= S* +
0 

fc(E*)
0

et.)

C*N*( *)t E *2 2 2 2

In order to prove that S2 is positive definite we consider the following
sequence of matrices

( 3 . 4 1 )

[c2

2,
c - c +2 t Ok

z 
C
1 

+ S1.

Clearly,01( is at least positive semi-definite for all k and Next, we
rewrite 0 as follows

Itt

(3.42) ok +NIN ft 0k 1

I,

0k270

- C N C' +2k2, Okt Okt

Substituting
N210, = Okt

obtain

and 
C210,

2k 2,

+

+ C N
o

IttN0

2 2,

Ok

+ C
l 

into . we

= ' + C(3.43)
10, 010, O0k21

- C' + St 21a 210, 1

As all the terms of the sequence are at least positive semi-definite, the limit
is at least positive semi-definite also. Hence,

(3.44)

+ C 0 0 1 2 2 2
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is at least positive semi-definite.Observing that S* is positive definite,
19

0
we conclude that S* must be positive definite.2

From (3.22), (3.31), and (3.40) we easily find that the limit of the

sequence of posterior densities defined in (2.21) is given by

(3.45)

Ici i(r+s+t) IN*11112

(27 )im(r+5+
t)

I * S* N*2, 2' 2'

tr [C C*]N* C C*P
2 2 2

1X2 1"2-m-/Is*I IQI
2 exp -1 tr 1 S*)

2
6a4m-1) m

2 w n r[i(x2 4' 1 —i=1

As this limit is a proper Normal-Wishart density, we conclude, using
Scheffe's theorem,2° that the density of the limiting posterior distribution

of the reduced-form coefficients is given by (3.45).

4. CONCLUSION

From the viewpoint of specification of information it may be interesting
to summarize which parameters of the prior distribution of the structural
parameters show up in the limiting posterior distribution of the reduced-
form coefficients. Turning to the location parameters first, the comments
under (3.23), (3.31), (3.35), and (3.39) clearly show that all location.
parameters of the prior distribution appear in the limiting posterior
distribution except for A013. However, as A013 relates to parameters about
which no prior information is available, this result is in accordance with

19
Compare (3.35) and note that AT 1A0 is positive definite and W011
positive semi-definite.

20
See Scheffe (1947).
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our expectations. By tracing the rale which the scale parameters of the

prior distribution play in the limiting posterior distribution, we find from

the same comments that only the Mio'j (i, j = 2, 3, 5) show up. As the

= (i = 1, 4; j = 2, 3, 5) have to do with eborrelations"0 0
between prior ideas about parameters which are completely known in

advance and parameters about which only probability statements can be made,
4 4 ••

it seems only natural to postulate tilt Mjd4 = (M1?)1)' (i = 1, 4; j = 2, 3, 5)
to be zero. This implies that the MV (i, j = 2, 3, 5) are solely dependent

on the Moii (i, j = 2, 3, 5). However, the Moii (i, j = 2, 3, 5)
constitute the precision matrix of the conditional prior distribution of

21 „.1.the structural parameters given that r1 and Al _ = But

this 
= roll 2 A012. -"'

this is precisely the situation to which our prior information relates. Hence,

we only need to specify our information with respect to r
12' 

A
12' 

and A
13

and calculate from these specifications the values to be inserted into the

MOij 
(i
' 

j = 2, 3, 5). As regards the parameters A
13 

about which we should

like to be non-informative, it is proved in the Appendices to this paper

that the limiting posterior distribution does not depend on the absolute

size of the values inserted into the M
015 

(i = 2, 3 5) but only on the

value of the "correlations" defined in (3.23). Indeed, in many cases such

as the case of the constant term in a consumption function, our information

is so vague that we are not able or willing to express that information by

a probability statement although it is clear that a strong negative cor-

relation must exist between the .value of the constant term and the value

of the marginal propensity to consume.

A second point we want to stress is that the sample precision matrix

N has not been required to have full rank. The only restriction we have1
to impose in order to obtain a proper limiting posterior distribution

is that the nullspaces of the limiting prior precision matrix N8 and the

sample precision matrix Ni are disjoint. This is important for large

models where, generally, the number of exogenous variables is larger than

the number of observations, implying that N1 is a matrix of order

(r +s+ t)x(r +s+ t) while rank (NO =T<r+s+ t.

21 
See Dickey (1967) or Harkema (1969).
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Finally, we have to consider the case of no information about the
elements of r

12 
which has been excluded in Subsection 2.1, Unfortunately,

it seems impossible to treat this case by means of the present analysis
because of the fact that the behavior of some seauences of matrices such as
E
C 
-1
P
0 
-1
EC 
-1 

in (3.13) is not clear in this case. A rigorous analysis of the
technical problems involved in deriving the limiting posterior distribution
under these conditions, however, is outside the scope of this paper.
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APPENDIX

In order to prove that N does not depend on the absolute size of the
. u
1

values inserted into the 
M5 
o 

- (M51 (1 = 2, 3, 5) but only on the
0

"correlations" defined in (3.23), we start by defining the following

matrices

(A.1) H
A

0

mi-p+r+s)

H
C

I,
kr+s)

0

0

m+r+s)

I(j) denoting the identity matrix of order j X j and Ho denoting an arbitrary

nonsingular matrix of order t x t. From (3.5), (3.8), (3.12), and (3.21),

we then easily obtain the following equalities

(A.2)

(A. 3 )

(A.5)

HBFOHI = Fo

HBD* = D*Hc

.H
A 
F* = F*H

B-

= E
F

Let us now consider the following matrix

(A.6)

Analogous to 3.13), we then obtain

(A.7)
/ 1

= (F) 'M F* = (Ft) H'M- HAF0 A 0



or, after substituting A.4 into (A.7),

(A.8) = H(F) M-1FecH = H1W H0 B 0 B 160B

Next, we define, as in (3.18),

(A.9) = I 4.

= (1 VoHBForiHiswoHB

= H' 0HBF0q)-1140HB

or, after substituting (A.2) into A.9),

(A.10) L* = HIL*H
B B

26

By defining the analogue of 3.19) and substituting (A.3), we obtain

(A.11) E* = (D*)'t*D* = (D*)tHIJAHBD*

= IND*PL*D*H = HIE*HC C C

Hence, substituting (A.5) into the analogue of (3.21 we find

55
ii

H
O

= (1/ 
Oii
) (i = 1, ..., t),our statement at the beginning of this

Appendix easily follows,

= EFa* = E
F
H
C

= EF(E*)-1EF = *No

Clearly, the matrix Ne6 is insensitive to transformations of the type (A.6).
Hence, if we take the matrix H

0 
to be diagonal with diagonal elements
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APPENDIX

In this Appendix we prove that Z*, defined in (3.30), also depends

only on the "correlationedefined in (3.23) and not on the absolute size

the values inserted into the Mi5 = (1451P (i = 2, 3, 5). From (3.5),0 0
(A.)), (3.24) and (3.8) we easily obtain the following equalities

(B.1)

(B.2)

(B.3)

Analogous to 3.30

(B.4)

Substituting A.11

(B.5)

FIP=F =HF
0 B 0 130

-1
= E

G b G

ye< = DA

we now consider the following matrix

2* . EGa + F IV/D*(E*)-/EF

and (A.5), we obtain

D(E)-1E, =
-1, ,% -1, % -1

"H
c 

kE") 01'
C
) E

F

, -1, %-1
"H
c 

kE*) E -
F

In the same way we find, after substituting A.8) and (B.)),

(B.6) [I + 
F0 0 

= [I + F
0 
H'W

0 
H
b
A-1B 

1
=[I+F

0
W
0
H
B
J
-1

H13F0W0)H13] -1

-1, %-1
H= H

B 
+FW

0 0
) 

B

of
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Hence, by combining B.4), B.5),and B.6) and substituting B.2) an

(B.3) we find

(B.7) Z* = E
G 
H (
B

+F

= E (I + Fo

) HB
D*H 

E*)-1E
C

)-11)*(E*)
=

which proves the introductory statement in this Appendix.
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APPENDIXC

In order to prove that lim C N C' depends on the correlations'
1

ItI2,4.0 0 0 0
in (3.23) only and not on the absolute size of the values inserted into

5 the Mi _ - (M5 ) (i = 2 3, 5), we start by considering the analogue0 0
of (3.38)

(c. ) ,
a* =E[I +F

0
Wi
0-1 

D*0 

By substituting (B.6), (B.2), and (A.3) into (C.1), it appears that C''6

can be rewritten as follows

(C.2) C* =EH
-1
(I 

+F0W0 
H
B 
D*0 G B 

,-1= EG(I +FW D*H = C*H0 
I 

C 0 C

Hence combining (A.11) and (C.2) we obtain for the analogue of 3.39)

(C.3) c*(E*) (
0
C*)1=

0 

-1, .-1 -1
11 

,= C*H H kE*) 1(C'010 C C C 0

.-1,= C*kE*) (C*)0 0

which proves the first statement of this Appendix.
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