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1. INTRODUCTION

In a recent paper1 we proposed a method of incorporating prior information

about structural parameters into the statistical analysis of simultaneous

- economic equation systems. This method is based on the assumption that we
have at least some prior information about all structural parameters while
none'of them is completely known in advance. Frequently, however, we would
like to postulate complete certainty about some parameters such as those
traditionally set equal to one for normalization purposes. On the other hand,
our brior information about parameters such as the constant term is often

so vague that we would prefer to specify non-informative prior densities

1 See Harkema (1969).

2 See for this concept Jeffreys (1961), p. 179 ff.




for them. This paper is concerned with a sequence of prior densities defined
on the space of the structural parameters by means of which the assumption
mentioned above can be relaxed so as to make allowance for complete certainty
or complete uncertainty about all parameters in the same column of the
matrix of structural parameters.

To facilitate reading, the following notational convention is used:
parameters of prior distributions can be recognized by a first subscript 0,
sample statistics by a first subscript 1, and parameters of posterior dis-
tributions by a first subscript 2.

The order of discussion is as follows. We first present a double
sequence of joint prior densities so that some marginal densities converge
in distribution to an a priori specified known real number, while some other
marginal densities can be made increasingly uniform over the entire real axis
In Subsection 2.2 the limiting behavior of the marginal prior distributions
is examined, while Subsection 2.3 gives the corresponding sequence of
posterior distributions on the space of the reduced form parameters. In
Subsections 3.1 and 3.2 we determine the limits of the parameters of the
sequence of posterior distributions and derive the limiting posterior
distribution. Section 4 discusses a modification of the assumptions and

summarizes our findings.

2. A SEQUENCE OF PRIOR AND POSTERIOR DISTRIBUTIONS

Let us consider the following system of simultaneous equations

Tg¥y * Tyghp * Bgqxy + 8y%, + 8, 0x,

Tor¥y * Tog¥p * Bpg¥y * BppXy * Byaxy

where ¥, is an m-dimensional vector of endogenous variables, Yo is a
p-dimensional vector of endogenous variables, X, is an r-dimensional vector
of exogenous variables, X, is an s-dimensional vector of exogenous variables,

X3 is a t-dimensional vector of exogenous variables, u is an m~-dimensional
vecto i

ector of disturbances, and Tiqs oo 8115 B405 A13, Toys Toos A21, bsps ?nd 8yg
are matrices of structural parameters of orders m x m,mXxp,mXr, mxs,

mXt,pXm,pXxXp,pxr,px s, and p x t respectively.




The system (2.1) is supposed to satisfy the following assumptions:3

(1) The matrix I' defined as

has full rank, which implies that an ordering of the endogenous variables
exists so that P22 is non-singular. Without loss of generality we assume
that Y, and Yo represent such an ordering. '
(ii) The matrices Tpys Tops Boys B,,, and Bs3s which pertain to that
- part of the system representing the identities, consist of known constants.
(iii) The m-dimensional vector of disturbances u is normally distributed
with zero mean and unknown variance-covariance matrix 2-1.
(iv) The vector of random variables u is distributed independently of

the vector of exogenous variables x.

2.1, The Sequence of Prior Distributions

We assume that we are willing to express our prior information about
the structural parameters which correspond to that part of the system
representing the behavioral relations by means of a matrix Normal;Wishart
distribution with m degrees of freedom. This means that our prior

4

distribution looks as follows:

(A, T | hgs Tgs M) =

l %(m+p+r+s+t ) e

|z xp {~2 tr Z[A - A IMTA - A"}

-® < A,, < @
1

;
|2]72 exp {-3} tr & Ty}

LI PDS

3 Note that we do not specify a normalization rule. A detailed discussion

as to why we do not normalize our system can be found in Harkema (1969),
Section 3. / ’

See, e.g., Harkema (1969 ), Section 2.




where the matrices Moij (i, 3 =1, ¢ee, 5) denote the appropriate submatrices

of M, and where T, and M, are supposed to be positive definite symmetric.
Frequently, however, we would like to postulate complete certainty

about some structural parameters. In meny case&? for example, the model is such |

(or can be mede so by adding new definitions) that it seems only natural

to specify an exact identity matrix for the matrix P11. In other cases6 small

partial reduced-form operations can be used to obtain a revised version of

the model so that it seems obvious to postulate an exact identity matrix for

the new F11ématrix. In addition to this tyve of certainty, an exogenous

variable sometimes shows up only in the identities. Clearly, in this case,

we would like to specify an exact zero column in one of the matrices A1i

(i =1, 2, 3). On the other hand, our information about the influence of

particular exogenous variables such as the constant term is often so vague

that a non-informative density seems to represent our prior knowledge

fairly well. To incorporate these considerations into the analysis, we

shall use the following double sequence of prior densities

5

See, e.g., the second Haavelmo consumption model and the food example

of Haavelmo and Girshick in Hood and Koopmans (1953) or the Klein I model
in Klein (1950).

See the Klein-Goldberger model in Klein and Goldberger (1956).
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l%(m+p+r+s+t)

(2.3) |z exp {-3tr £ [A - AL ML [A - AJ]')

;
|2]72 exp{ -3tr ¢ Tyl k, =1, 2, ...

where the identity matrices are of ordersm *xm, p Xp, r xXr, s x s, and

T

t x t respectively. In the next subsection we investigate the consequences
of this specification for the limiting behavior of the marginal prior

densities,

2.2, Limiting Behavior of the Marginal Prior Distributions

We begin our investigations with the limiting behavior of the marginal
prior distributions of the elements of F11. Denoting the i-th row of A
with A!, it can be proved8 that the marginal prior distribution of Ai is
' ]
Student with parameters l Lkl OLkz/t i and 1, where Al. and t

0i 0ii
denote the i-th row of AO and the (i, 1)-th element of T, respectively. If

0
(i, j =1, «ee, m) denotes the (i, j)-th element of Tiq it can be
9

verified” that the marginal prior distribution of A;s is also Student with

11 ..
0ij° k /(MOJ 0ii .) and 1, where AOlj and MOjj denote the (i, j)=th

element of P011 and the (J, J)-th element of Mé1respectively.1o Hence,

parameters A

T Note that we exclude the case of no information about the elements of T 12

This situation will be discussed briefly in Section L.
8 See Dickey (1967) or Harkema (1969), Section k.

9 See Raiffa and Schlaifer (1961), p. 259.

0 As usual the M 1] (i, § = 1, eesy 5) denote the appropriate submatrices of
M'




2,=1
)]
As is well-known, the corresponding distribution function is given by

X

(205) F (X) = [ sz(X.. I

i k /(M

033J 011)’ 1) dkij

)
I+ —J

0ij°?

k(x = A
= %-[arc tan { 01
MOJJ 0ii

On taking limits, we obtain

lim F, (x) if X < A...
K, 4 k2 013

lim F, (x) = if X > An..
K, 4o ke 01j)

Evidently, the marginal prior distributions of the elements of P11 converge in

distribution to the corresponding medians. This implies that we can specify an

exact identity matrix for Fyq by simply postulating T = I. It goes without

011
saying  that the elements of A12 converge in distribution to their medians

in the same way.

If Ay i m+j (i=1, .;., m; § =1, ees, p) denotes the (i, j)-th element of
?

Tyos it is easily verified that its marginal prior distribution is Student with
22

0i,m +5° (¢ 011 03J

(i, j)-th element of I 1, and the (j,j)=th element of My respectively. This

and M22. denote the

-1
.)” ', and 1, where AOl,m+j 2 03

parameters A

means that the marginal prior distributions of the elements of F12 and, of

course, also of those of A1:1are independent of the values of k and 2.
Finally, we have to examine the limiting behavior of the marginal prior
distributions of the elements of A,_. Let A . (1 =1, ceaymy J =1, caey t3

13 i,2+]
z=m+p+r + s) denote the (i, j)-th element of A

. 55 “1 1
distribution is Stuggnt with parameters AOi,z+j’ (22M0JJ 0i 1 , and 1,

. . “ & . ® ] j - j j - h
where AOI,Z+J aga MOJJ denote the (i, j)-th element of A013 and the (j,j)-t

element of Mg”, respectively. Hence, the corresponding distribution function
is given by

13,then its marginal prior

1
Fkl(X) = ;-[arc tan {

11
Compare the definition of L, in (2.3)




On taking limits, we obtain

(2.7) lim F (x) =3 all x
L
k, 20
Obviously, when & approaches infinity, the marginal prior distributions
of the elements of A13 become increasingly uniform over the entire real axis.
Apparently, the sequence of prior densities introduced in Subsection 2.1
enables us to handle very precise and very vague prior ideas about structural

parameters simultaneously.

2.3. The Sequence of Posterior Distributions

In order to obtain the reduced-form equations system, we begin by

eliminating the identities from (2.1). As T'__ is assumed to be non-singular,

22

-1 -1 -1
- T A X F22A23x3

-1
(2.8) = To1¥y = Toghoixy o2%02%2 ~

Yo = -To

Substitution of (2.8) into (2.1) gives

(2.9) Ay, + Bix, + B,x, + B3x3 =

where

ror

A =Ty = Tyolpoln

_ -1
By = 845 = Tyolophyy

The reduced form corresponding with (2.9) is given by

(2.11) ¥y = C“)x1 + C(2)x2 + 0(3)x3

where

e @ (3




which implies that v is normally distributed with zero mean and variance-

covariance matrix Sf1 = (A' A)-1.

To determine the sequence of posterior densities on the space of the

reduced-form parameters corresponding with the sequence of prior densities

defined in (2.3), we make extensive use of the results arrived at in

a previous paper and restate them here without further proof.12

Using the

‘same notation, we introduce the following definitions

Topboy

0

1

I

0

0

-1
Ty
0
I

0

obon  Toplps

0 0
1
0
0

I

i g~ Kl Mol &

[ 11
Qxk g
31
Wk
k1
ks

51
| Q0xs

Uy
%
%z
Ber

%4
%y
%
%

15 7]
Okg.
ks
Yous
Wiy

Q

where the Qgiz (i, 3 =1, 3, 4, 5) denote the appropriate submatrices of Qail.

- Before we can proceed to the sequence of posterior densities of the reduced-

form parameters, we still need a second set of definitions, namely,

12

See Harkema (1969), Section 3.




1
012 22 21

-1
o1i ~ To12T2824

where the identity matrices are of orders r xr, s xs, and t x t

respectively,

3! = 1
Poks = PoFoksPo

where the lower right-hand zero matrix is of order (r +s +t) x (r + s + t)

o 3 ! %
Poke ¥ T6 = PoPoxsP0 * T

= [Roike  Rooxs  Rozkg  Rolikyd

-1
[T o o OJDO OkESOkz

-1

S [T% + T&p% TEIR!

0kg Okl 0 0 Okl 0 0k2

Defining

(2.16)




22
where Gy and Gpyy 8re of orders (m xm) and (r + s +t) x (r + s + t)

respectively, it can be proved that the sequence of prior densities on
the space of the reduced-form coefficients is also of the matrix Normal-
Wishart form with parameters COkl’ sOkl’ NOkl’ and m degrees of freedom,

where SOkl is defined in (2.15) and COkZ and Hoy, ere defined by

(2.17) = el o2y ((3)y g

Coxz Ok2 Ok2 Ok2 02k R03k£ Rohkz]
-1
_ | .22
NOkl - [Gckl]

We then suppose that there is a sample of T observations on the endogenous
variables Y, and the exogenous variables Xys Xps Xg available and define
Y11 2 Vi

. .
. .
. .

Ypq oo Yy

S @ L),

. (1) (1) (2) (2) (3) (3)7
Xqq' eee X0 Xgq" eee Xgg T

) 2)

2

1) (1 (2
g e Xy g

If we now let C, = [C$1) C$2) C(3)

1 1 ] denote any solution of the "normal

equations"13

C1X'X = Y'X

and define

13 .
It must be stressed that we do not require the matrix X to have full
column rank. This is important in the case of large models where the

number of observations is generally smaller than the number of
exogenous variables.




= X'X
= rank (X) = rank (N1)
_T-p1

[y - xc;]'[Y - xc;]

it can be proved that the sequence of posterior densities on the space of
the reduced-form coefficients is also of the matrix Normal-Wishart form with

parameters C2k£’ S2k2’ N2k2’ and A2 degrees of freedom, where

Nokg =

-1
okeNoxg * C1N1 N,

= ] ]
Soxe = Soxe * 51 * CoxeMoxeCoxg * C1MC]

Cox Mok gCoxs

Hence, the sequence of posterior densities of the reduced-form coefficients

can be represented by

okp? Spkg? ¥

okg® A2) =

Im

exp {=3 tr @[C -Cc_, IN. [C -cC. 1'}

(2“)%m(r+s+t) 2ke" 2kg 2k g

1 1
3\ 3(a
2
||

-m-1)

2 exp {-3 tr QS

IS0 J
i
3\ 1 m
2 im(m-1) T [0, + 1 - 1)1
i=1

2k 2

In the next section we determine the limiting distribution of the sequence

of densities defined in (2.21).




3. THE LIMITING POSTERIOR DISTRIBUTION
OF THE REDUCED-FORM PARAMETERS

In order to exhibit the limiting distribution of the sequence of -
densities (2.21), we use a theorem due to Scheffé1h which says that the
density of the limiting distribution of a sequence of random variables
with densities {pn(x)}:=1 is equal to lim pn(x), if this limit is a proper
density. In the next two subsections fe” shall focus our attention on the
evaluation of lim sz(C, Q | Cka, Szkl’ N2k2’ A2). In order to simplify

the notation, 5é£+® shall delete the indices k and 2 from now on.

3.1. The Limiting Precision Matrix of the Reduced Form Coefficients

In this subsection, we are concerned with the determination of 1lim N

2
or, using (2.20), 1im (N0 + N1). On combining (2.16) and (2.17), wetr 27

. | ol .
discover that NO cén be rewritten as follows

(3.1) N, = (E c;‘1E')‘1 = EBE‘1EB

A0 "A

with
(3.2)

and

0

2 (t)]

where I(j) denotes the identity matrix of order j x j. Evidently, then

(3.4) lim N, = Hml% lim E' 1lim Ep
K, -0 K, o K, 4+ K 4

provided that these limits exist., In order to evaluate G51, we notice that
(2.14) and (2.15) lead to

k See Scheffé (1947).




, -1 -1
t H []
[PO + Té] [DOPODO + 1% %7

-1
= [DO(PO + FO)Dé]

-1 -1

= (D (P +F, )" D,

DY)”

the submatrices on the diagonal being of orders m x m and
(r +s+1t) x (r+s+t) respectively.
Substituting (3.5) into (3.2) .we can rewrite E as follows
-1 -1

(3.6) = EBEA(Dé)-1(Po + F, ) Dy ExEg

=1 -1,
Ep(Dg)" EGLEG(Py + Fo)EL]™ EQD, EiEy

tig)

In order to determine the limiting value of the matrix E, we start by evaluating

the limit of ECDO EAEB By inverting the matrix D

the definitions (3.3) and (3. T), we easily find

-1 -1
‘Ao B01 ‘Ao Boz

I 0

o defined in (2. 13) and using -

(0] I




It should be noted that the matrix B03’ and hence the matrix of location

parameters A (see 2.13) does not play any rdle in D%,

013
We then have to determine the limit of [EC(PO + FO)EC]-1. A convenient

way of evaluating this limit is to rewrite this matrix as:

-1 -1
(3.9) [EC(PO + FO)EC] = [EPE, * E.FEq]

e s ouls - 5 0030 RS s o

= [I + Eg Py Eq EcF(E, c to %

From (2.12) it can easily be seen that PO1 can be rewritten as follows

(3.10) By = Ep'ey = e

with

Hence,

-1 =1 =1 _ _~1 RS P R DU DU P
(3.11) E, Py B, = Eg ED(K )L My LT K ELE,

Inverting the matrices L and K defined in (2.3) and (2.12) and using (3.10)
and (3.7), we obtain

1K-1E'E-1 -

(3.12) lim L 1E,

K, 2+

0 0 0
-1 -1 -1
RPVIPY oobor “Toglop

0 I 0

-T

0 0 0




Clearly,

(3.13) lim E-1P-1E_1 = (F‘")'M—1F* = W
C ‘0 C 0
k,l—)co

0

It should be noted that the matrices MéJ = (M§1)' (3 =1, ¢suy 5) and
Lj

M =

: (Mgh). (3 =1, «ee, 5) do not show up in the matrix W..

0
From the definitions of F, and E, given in (3.5) and (3.7) respectively,

we easily obtain

(3.14) lim EF.E, = F,
K, 4

Combining (3.13) and (3.14), we find

. -1_=1_=1
(3.15) lim (I +E. P E.EFE.)=I+WF
K, g oYt to Tt fcoc 00

Using the definition of F in (3.5), we observe that (I + WOFO) can be

partitioned as follows

I+ Wo11T011 0 ' 0

Wo21F011 Ity O

I+ WOFO =

w031Fo11 0 I(s)

0 0
o

Wou1Fo11 t)

the leading submatrix being of order m x m. In order to prove that

(I +W.,.F...) is non-singular, we proceed as follows. As F is positive
o117 o1 011

.. -1 |
definite (see 3.5), I + W., .F = (F011 + W011)F 11+ From (3.12) and

011°011 -,
(3.13) we find Wy, = Fé1(ré2)‘1MO r;é Iyqe As MJ° is positive definite,

WO11 is at least positive semi-definite. Hence, F5:1 + WO11 is equal to the

sum of a positive definite and a positive semi-definite matrix. This implies

that I + W is equal to the product of two positive definite and hence

011¥011

non-singular matrices. Apparently, I + Wo11Fo11 and hence I + WOF0 is

- non-singular. From (3.15) we now easily find

| . -1_-1_~1 -1 _ -1
(3.17) lim (I + E, Py Eg ECFOEC) = (I + WOFO)
k, 8




Combining (3.9), (3.13), and (3.17) we obtain
. -1 _ -1 =K
(3.18) lim [E (P, + FOEI™ = (I + WoF) W, L
K, 2o

Taking (3.6), (3.8), and (3.18) together we find

(3.19) lim E = (D¢
: k, 2o

In order to discover the conditions under which the matrix E* is non-singular,

we observe, using (3.18) and (3.13), that

rank (L*) = rank (WO) = rank (F%*)

From the definition of F* given in (3.12), we find rank (F*) = (q + r + t)
where

(3.20) q = rank [F21 A22] <P

As L* is the limit of a sequence of positive definite symmetric matrices,15
we conclude that L* is a positive semi-definite matrix of order (m+r+s+t)
and rank (g + r + t). Observing that the rank of the matrix D* which has

been defined in (3.8) is equal to (r + s + t), it appears that a necessary
condition for the matrix E* to be positive definite is that q > s. Generally,
the only exogenous variables of which the influences are precisely known in
advance are those which show up in the identities only.16 This implies that
the rank of A22 and hence q at least will be equal to the number of exogenous
variables whose influences are precisely known in advance. Therefore, the
condition will almost always be met., A sufficient condition for the matrix E¥
to be positive definite can be established by requiring that the columrsof D¥
do not lie within the nullspace of the matrix L*. Henceforward we shall

assume this requirement has been met, implying that the matrix E* as well as
(E‘")"1 is positive definite.

1 . ’
> See (3.18) and notice that P0 is positive definite (see 2.12) and FO
positive semi-definite (see °3.4).

An example of such an exogenous varisble is given by the variable G

(goods demanded by the govermnment and foreigners) in the Klein I modelj
see Klein (1950), pp. 62-66.




Finally, teking (3.1), (3.3) and (3.19) together, we obtain

) -1
(3.21) lim N, = E_(E*®) = N&
K, pow O F Ep =05

Substituting (3.21) into (2.20) we find

(3.22) lim N, = N%* + N_ = N%
K, 2o 2 0 1 2

and, thus

lim |N,| = |m%]
K, g | 2 2

In concluding this subsection we want to stress three points. Firstly,

it should be noted that the matrices Ng and N1 are not required to have full
rank. The only restriction we have to impose to obtain a full rank posterior

oo
o

precision matrix N5 is that the nullspaces of Ng and N, be disjoint. Secondly,

of

we want to draw attention to the fact that the matrices Ng and Ng are in-

dependent of the matrix of location parameters A013 and the matrices

0
comments following (3.8) and (3.13). Finally, it can be proved17 that Ng

and N% do not depend on the absolute size of the values inserted into the

MM = (Mgl)' (i=1,4 j=1, ..., 5) as is easily verified from the

Més = (Mgl)' (i =2, 3, 5) but only on the value of the "correlations"

is
p' _ MOab
ab ~—
\4;11 MSS

Oaa Obb

(3.23) (i=2,3,5)

1T-See Appendix




» 3.2, Limiting Values of the Other Parameters of the Posterior Distribution

of the Reduced Form Coefficients

After evaluating the limit of NO’ the determination of the limits of 02

~and S, becomes a rather simple affair. Combining (2.15) and (2.17) we obtain

D’1P*G'1

(3.24) Ry = [Roy  Col = EgDy PR,

0 01

where

E [

the zero matrices being of ordersm X r, m xs,, and m x t, respectively.
Substituting (2.14) and (2.15) into (3.24) we find

-1

| N =1oxrpx %
(3.25) RO~— E.D, PO[PO + TO]

-1 ' nt w11
= EGDO DOPODOEDOBODO + To]

-1 -1
EPolPy + F 17Dy

-1q=1_=1
= EG[I + F P, ] D,

where FO has been defined in (3.5). Next, we rewrite R, as follows

, _ -1 -1 _=1_=1.=1 -1
(3.26) = EGEC [1 + ECFOECEC P, EC ] ECQJ

mlml =l =
= BolI + EFE.E. P E, 17 ED,

_ where E, has been defined in (3.7). From (3.24) we easily obtain

, » -1 =1 =17 =1 -1
.2 CN =E][I !
(3 7) o‘Q G[ + EGFE.E Py Eg ] E.Dg ExNg

'where-EA has been defined in (3.3). In order to determine 1lim CONO’ we

. . . -1 K, 8o
notice that substitution of (3.1) into E.D, E;N, leads to




‘ N S L TS
(3.28) EoDy Ejly = EDy EfERE By

Froﬁ (3.8), (3.19),and (3,21) we then obtain

- ) -1 , -1
(3.29) 1im ED. E'N_ = D*(E*)” E
, i, 1e Co A0 - TF

Combining (3.27), (3.17), and (3.29) we find

] | =T =1ow(pey=! = 7%
(3.30) lim Colly =E,[T + F W, 17 D*(E*)7'E, = Z

e K, 2 F
and thus from (2.20) and (3.22)

. ‘ . : 9 ' - 1
(3.31) lim C, = [Z* + C NXN%)
K, Lo 2 1 g( 2
Again‘it should bé noted that Z* does not depend oan013 and the
MSJ = (Mgl)' (i=1, b4; 3 =1, ., 5); moreover it can be proved

that Z* only depends on the prior "correlations" defined in (3.23) and

not on the absolute size of the* values inserted into the Més = (Mgi)'

(i =2, 3, 5). Finally, it is interesting to observe that the last t columns
of Z% are zero columns which follows from the fact that the last t columns
of EF are zero columns. ,

We still have to evaluate the limit of §, defined in (2.20). In order to
determine this limit, we first turn to S, and observe that, after substituting
(2,13) and (2.14) into (2.15), this matrix can be written as follows

I

(3.32) S = R01[TO + TO(Aa) POAQ TO]R61

From (3.26), (3.17), (3.7), and (2.13), we obtain

)-1 -1

= (I+ Foyq¥o11) Ag

(3.33) lim R

K gom O

18 See Appendix B.
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Foq7 80nd Wy, denoting the leading (m x m) submatrices of F, and W,

respectively. Moreover, it is clear from (3.13) and the definition of E
in (3.7) that ’

C

11
(3.34) lim P, =W
o K, Lo 0 011

Combining (3.32), (3.33), and (3.34) we obtain

lim 8. =

K, g0 O
- -1,-1 1 -1 -1 ' f-1 -1
= (T + FoqqWgqq) Ay [Tg + ToAg) WogqAg Tol(Ag) (T + Wy Foqy)

By substituting Foiq = AS?TO(Aé)—1 (see 3.5) this expression can be
simplified to

0 00 "0 011 -0

(3.35) lim S = [A'T"A +W... 1"} = s%

k200

As is easily verified, we can repeat the comments accompanying (3.22)

with respect to Ng also with respect to Sg.

Next, we observe that, after substituting (3.1), CON006 can be
rewritten as follows

1 = -1 1
(3.36) CoNoCY = CoEgE™ ExCh

From (3.24) and (3.26) we find

| _ O E NG S
(3.37) CoBg EG[I + EFEE; Py Eg ] E.D, E;Eg

Combining (3.8) and (3.17) we then obtain

. — - 1 ofe - oo
(3.38) lim CyEp= E,[T + FOWOJ D* = C¥
K, 8o

and hence, using (3.19),

3. 3 ' = (s -1 b3
(3.39) lim CN,CJ CO(E ) (CO)'
K, 2>
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Once agaln we can repeat our comments accompanying (3 22) with respect to
NS for 1lim CONOCO (see Appendix C). Upon substituting (3.35), (3.39),
(3 31), Kyt and (3.22) into (2.20), we obtain

(3.50) lin 5, = 5§ + 5, + ci(=9) 7' (cx) + CN,Cy = CEmE(cE)r = s
kaon 20 17D 53

In order to prove that 82 is positive definite we consider the following

sequence of matrices

(3.41) | ) [Cka COkz]NOkz[L2kg COkg] +

- : : : - '
[Coxy = €I [Ch, = C41" + 5,

_Clearly,ekz is at least positive semi-definite for all k and g+ Next, we

rewrite 0, as follows

kg

= ' '
,C3.h2) ' ekg Cekg[NOkg + N1]92kg + COkzNOkgCOKg

C,N.C! - [C

19,C3 okgNoke * C1N1jcekz

t
2kz[N0szOkz +*Neil + s,

Substituting N No , + N, and C Ny, + C,N, into (3.L2)

2k2 - “0kg 1 2kaNok e = CoxeNoke 1
obtain .

- 1 1
(3.43) % = CoreMokaCoxe * C15:C]

- ' ‘
CoxaMaxsCors * 8

As all the terms of the sequence are'at least positive semi-definite, the limit

is at least positive semi-definite also. Hence,

(3.h4k) 0% = 1im ©

K, g kL

= O%(p% ' l__ ED L
CO(E )" (c )+ c,N.C 02N2(c )' + 8

1 1




is at least positive semi-definite.Observing that Sg is positive definite,19

we conclude that Sg must be positive definite.
From (3.22), (3.31), and (3.40) we easily find that the limit of the

sequence of posterior densities defined in (2.21) is given by

N%, A,) =

(3.45) £#(c, @ | ¢}, s§, N5, A,

Yo
«
2 9

1 1
(r+s+t) m
o] 3ra+0)

3 - CIN: - CETt
(2")%m(r+s+t) expl -3 tr 2[C 02]N2[C 02]}

P 10
Is51 72 Jal
%Azm sm(m=1) m
2 b

I ri3(a. +1-1i)]
=1 2

-m-1)

2 exp {-3 tr Q s:-,;}

1

As this limit is a proper Normal-Wishart density, we conclude, using
Scheffé's theorem,20 that the density of the limiting posterior distribution

of the reduced-form coefficients is given by (3.45).

4. CONCLUSION

From the viewpoint of specification of information it may be interesting
to summarize which parameters of the prior distribution of the structural

parameters show up in the limiting posterior distribution of the reduced-

form coefficients. Turning to the location parameters first, the comments

under (3.23), (3.31), (3.35), and (3.39) clearly show that all location .
parameters of the prior distribution appear in the limiting posterior
distribution except for A013. However, as A013 relates to parameters about

which no prior information is available, this result is in accordance with

1 - . .
? Compare (3.35) and note that A'T 1A is positive definite and W

positive semi-definite. 070 "0 011

0 See Scheffé (1947).
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our expectations. By tracing the rSle which the scale parameters of the
prior distribution play in the llmltlng posterior distribution, we find from
the same comments that only the M 1] (i, j = 2, 3, 5) show up. As the

MSJ = (MJl) (i=1, 4 j=2,3, 5) have to do with 'torrelations"

between prior ideas about parameters which are completely known in
advance and parameters about which only probability statements can be made,

it seems only natural to postulate the MSJ = (Mgl)' (i=1,k4; j=2,3,5)

to be zero. This implies that the M J (i, j = 2, 3, 5) are solely dependent
on the Moij (i, =2, 3, 5). However the M,. (1, j=2,3,5)

constitute the precision matrix of the condltlonal prior distribution of
. ) _ 21
the structural parameters given that F11 = F011 and A12 = A012. But

this is precisely the situation to which our prior information relates. Hence,

we only need to specify our information with respect to T A12, and A

12? 13
and calculate from these specifications the values to be inserted into the
OlJ (i, j =2, 3, 5). As regards the parameters A5 about which we should
like to be non-informative, it is proved in the Appendices to this paper

that the limiting posterior distribution does not depend on the absolute

size of the values inserted into the MOiS (i =2, 3, 5) but only on the

value of the "correlations" defined in (3.23). Indeed, in many cases such
as the case of the constant term in a consumption function, our information
is so vague that we are not able or willing to express that information by
a probability statement although it is clear that a strong negative cor-
relation must exist between the .value of the constant term and the value
of the marginal propensity to consume.

A second point we want to stress is that the sample precision matrix
N1 has not been required to have full rank. The only restriction we have
to impose in order to obtain a proper limiting posterior distribution
is that the nullspaces of the limiting prior precision matrix Ng and the
sample precision matrix N1 are disjoint. This is important for large
models where, generally, the number of exogenous variables is larger than
the number of observations, implying that N, is a matrix of order

1
(r +s +t) x (r +s + t) while rank (N1) =T <r+s+t,

21 See Dickey (1967) or Harkema (1969).




Finally, we have to consider the case of no information about the

elements of F12 ﬁhich has been excluded in Subsection 2.1, Unfortunately,

it seems impossible to treat this case by means of the present analysis
because of the fact that the behavior of some sequences of matrices such as
E51P61E51 in (3.13) is not clear in this case. A rigorous analysis of the
technical problems involved in deriving the limiting posterior distribution

under these conditions, however, is outside the scope of this paper.
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APPENDIX A

In order to prove that Ni does not depend on the absolute size of the
values inserted into the Més = (Mgl)' (i =2, 3, 5) but only on the
"ocorrelations" defined in (3.23), we start by defining the following

matrices

I(m+r+s)

I(j) denoting the identity matrix of order j X Jj and HO denoting an arbitrary
nonsingular matrix of order t x t. From (3.5), (3.8), (3.12), and (3.21),

we then easily obtain the following equalities

(A.2) HBFoﬁé
(A.3) HpD¥

(A.4) HAF*

-1

Let us now consider the following matrix

Al ]
(A.6) M= HIMOH,

Analogous to (3.13), we then obtain

A ~-1 -1
i = PR T = ) Y s
(A.T) W, (F)'M~ 'F* = (F*) HyMy H,F
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or, after substituting (A.4) into (A.7),
-~ ' ._1
- )t X -
(A.8) W, = Hé(F ) My F*Hy HyW Hy
Next, we define, as in (3.18),

(A.9) L

-~ ...1«
+
(1 MBFB) g)

' -1' :
(I + ByWoHaFo)™ HLW B,

-1
Hﬁ(I + WOHBFOHé) wOHB

[}

or, after substituting (A.2) into (a.9),

I = grTe
(A.10) L HBL HB

By defining the analogue of (3.19) and substituting (A.3), we obtain

(A.11) E#%

E)VITADE = (DE)IHITER D
(D*)'L*p (D%) HLL*H D

(D) ', = H'E*
HC(D )LD HC HCE=HC

Hence, substituting (A.5) into the analogue of (3.21), we find

)

]

e -1
EF(E )T E

=1y =1 gy =1
F EFHC (E*) (HC) E

F

(247K

£
NO

Clearly, the matrix Ng is insensitive to transformations of the type (A.6).

Hence, if we take the matrix HO to be diagonal with diagonal elements

, HOii = (1/ g?i) (i=1, ..., t)our statement at the beginning of this -
Appendix easily follows,




APPENDIX B
In this Appendix we prove that Z*, defined in (3.30), also depends
only on the "correlations"defined in (3.23) and not on the absolute size of

the values inserted into the Més = (Mgl)' (i =2, 3, 5). From (3.5),-
(A.1), (3.24), and (3.8), we easily obtain the following equalities

(B.1)
-1
(B.2) EH, =E,
2= = px
(B.3) HD*H, =D
Aﬁalogous to (3.30) we now consider the following matrix
7% = T (B!
(B.k) Z% = EG[I + Fowdr D% (E*) E,
Substituting (A.11) and (A.5), we obtain
(3.5) p*(8%) ' = p*r7 (B%)~ " (u1) "'k
. Eg c ¢/ By
= D:':HE1 (E"‘)-1E ;

F

In the same way we find, after substituting (A.8) and (B.1),

(B.6) (1 + Foﬁo]'1 ‘ [1+ FoHéWOHB]-1

-1
[T + FOWOHB]

-1 -1
[HB (I + HBFOWO)HB]

-1 -1
HB (I + FOWO) HB




Hence, by combining (B.4), (B.5),and (B.6) and substituting (B.2) and
(B.3), we find

. -1 = IS .
(B.7) = E Hy (I + FOWO) HD*H (E%)"'E

F

"'1 KX to "'1 - EA
= EG(I + FOWO) D% (E*) EF =7

which proves the introductory statement in this Appendix.




APPENDIX ¢C

In order to prove that 1lim CONOC0 depends on the "correlations’

in (3 23) only and not on the,absolute size of the values inserted into
the MO = (Mgl)' (i =2, 3, 5), we start by con51der1ng the analogue
of (3.38)

(C.1) cx

% g 1= B3
& EG[I + FOWOJ D

By substituting (B.6), (B.2), and (A.3) into (C.1), it appears that Cg
can be rewritten as follows

% = b3
(c.2) _ EH B (1 + F W, ) HBD

=15 = O%
= EG(I + FOWO) D HC = COHC

combining (A.11) and (C.2), we obtain for the analogue of (3.39)

o) -1 0% )=
E*)" (c¥)'=

s =1 )~V gy~ %)
ol (E*)™ (HL)™ HY(C¥)
k(%) (cx)

0 0

which proves the first statement of this Appendix.









