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1. INTRODUCTION

Recently, a new kind of estimators was derived for the disturbances
in the general linear model, see [2]. They are best in the class of all linear
unbiased estimators having some a priori specified idempotent covariance
matrix of order n and rank n k, where n is the number of observations and
k the number of unknown parameters in the general linear model. It was shown
that, in particular cases, they reduce to the BLUS estimators and the BLU
estimators (the least-squares residuals), respectively. The new estimators
have the convenient property that their distribution does not depend on the
values taken by the explanatory variables which makes them particularly useful
for a test on serial correlation of the disturbances. The BLUS residuals also
possess this property but their covariance matrix must be chosen to be scalar
which is an unnecessary restriction in view of testing for serial correlation;
they are merely particular cases of the new estimators.

In [2] it was suggested that, in the relevant econometric applications,
a test on serial correlation based on the new estimators, given an appropriate
covariance matrix, might have a higher power than one based on BLUS estimators.
This suggestion is supported by observations made by Hannan [4] and Theil-Nagar
[7]. They pointed out that the regression vectors often behave in a particular
way. The new estimators can probably be constructed so as to approximate this
behaviour more accurately than the BLUS residuals. An additional advantage to
the BLUS estimators is that, in using the proposed estimators, there is no
.ambiguity as to the choice of the basis since no disturbances must be put equal
to zero (or something else) in advance.



The purpose of this paper is threefold. Firstly, in section 2, the

authors recommend a particular procedure to compute the estimates. Secondly,
the connection between the new estimators and the least-squares residuals is
examined in section 3. Finally, in section 4, powers of a test against serial
correlation are computed for same examples and compared with the corresponding
quantities of the BLUS test and the Durbin-Watson test.

(2.1)

2. COMPUTATIONAL ASPECTS

We consider the general linear model

= xa + u

where y is a vector of n values taken by the dependent variable, X an
n x k matrix of values taken by the k non-stochastic explanatory variables,
one of them being a constant term, a a vector of k unknown parameters and u a
vector of unknown random variables (the disturbances) with mean zero and
variance a

2
.

Let K be some n x (n - k) matrix satisfying K'K = I(n_k) and, let P
be an n x (n k) matrix whose columns are scaled eigenvectors corresponding
to the unit roots of M = I

(n) 
X(X'X)

-1
X'. Then the vector of new estimators

is given by

(2.2) v = K(K'MK) (P'K)-/P'y

where (MMK) is defined as QDQ', D being a diagonal matrix with the square
roots of the eigenvalues of MMK on its main diagonal and Q an orthogonal
matrix of corresponding eigenvectors.

It will now be shown that the matrix (MIRK) can be computed in a simple
way requiring only little time. The matrix K'MK has n 2k eigenvalues equal
to 1 if we assume K'X to have rank k. For then K'X(X'X)-1X'K has rank k and
K'MK = I(11-k) KIX(X'X)-/X1K has n - 2k unit roots. We can thus write for



(2.3)
n-k

2
K'MK = E 6.q. E q.q.

i
k+1

where e i = 1 k are the eigenvalues of K'MK differing from one,

. for i = 1, ..., k corresponding eigenvectors, and q1 for i = Iv+ 1

n k eigenvectors corresponding to the remaining eigenvalues of K'MK. The
2
6i 

are all non-negative because K'MK is positive semi-definite.

The positive square root of K'MK is then

(2.4) (K'MK) = E
1

n-k
+ E q.q!

1 1.
k+1

n-k
Making use of E 

q1qj= -( 
I
n-k)' 

2.4) can be rewritten as
1

(2.5) 1(K'MK) = Ton_k E (1 -
a. a.

1

Writing L for the orthogonal n x k matrix orthogonal to K satisfying

LL' + KK' = I
(n)' 

we shall prove the following lemma.

LEMMA 1. Let the eigenvalues of the k x k matrix XeL)-1X/KK'XWX)-1

be denoted by Ai and corresponding eigenvectors by ti i = 1, k. Then
2 -16. = 1/(1 + A.) and q. = WK'XX) t./iX. i = 1, k.1 1 1 1 1

Proof: By multiplication and making use of KK' + LL' = I
(n)' 

it is easily

verified that

(2.6) KIX(XILLTX)-/X/K = 0014Kr/(n,k)

-1Let be a scaled eigenvector of ()CIL) iX'KKIX(L'X) corresponding to the

eigenvalue Ai. Then we have

(2.7) (m)-1x,mx(Lfx) . = x.t.
1 1

Premultiplication of (2.7) by K'VWX) gives

(2.8) K'X(X'LL'X)-/X1KIKWLIX t.

from which we conclude that

(2.9 .= KIX(L'X) -it.

K'X(LIX)-12,1}



is an (unsealed) eigenvector of K'X(X'LL'K)- = (K'MK)'- - I

(and thus also of K'MK) corresponding to the eigenvalue Xi for

=

(2.10)

, k. It is also seen that

2a. = 1/(1 + xi)1 i = 1, k

n-k)

are the k eigenvalues of K'MK differing from one. Finally, the q. are

scaled by dividing them by

(2.11) {2,1(X'Lr1r KIVX(L'X t. =

which completes the proof.

Writing

Z = K'X(L'X)-/

we obtain for the square root of K'MK

(2.12) (K'MK)3 =
-k

= X?

1
k 1 - 1/(1 + X.)
E { )(zt)(zt),}A.1 1

Lemma 1 clearly simplifies the determination of the eigenvalues and

eigenvectors of K'MK considerably. They can be obtained from those of a

matrix of order k only by means of simple operations. Since k is often not

more than 2 or 3, the process usually takes very little time.

For the matrix P such a simple procedure has not been found and its

columns which are eigenvectors corresponding to the unit roots of

M = I
(n) 

- X(X'X
-1
) X' must be computed by means of a standard method for

the determination of eigenvalues and eigenvectors of a symmetric matrix.

It was proved in [2] that the columns of P need not necessarily be eigen-

vectors of M. It is sufficient that they form an orthonormal basis for the

space spanned by M.

The remaining operations required to obtain the estimators are elementary

and simple.
1

1
A computer program is available at the Econometric Institute and can be
obtained on request.



3. SOME PROPERTIES

In [2] it was shown that

(3.1) E(v) = E(u) = 0, E( = KK'a and = u'Mu

We shall now derive the average inaccuracy of the estimators v, defined

as the ratio of the expected sum of squares of the estimation errors to the

expected sum of squares of the disturbances to be estimated:

(3.2)

Writing

(3.3)

E{(v u)/(v u)}
E(u'u)

K(vmK)3(P'Kr/P'

we represent the error vector by

(3.4) v u = Blu u = B' I(n))u

Its expected inner product is

(3.5) E{(v - u)'(v u)} = E{W(B - I
(xi)

)(B' - I
(n

where use is made of ,

(3.6)

= a
2 
tr BB' +1

= a n-k+n-2trB

tr (BB') = tr (B'B) = tr (K'K) = tr (I
(n-k)

) = n - k

according to (3.3) and K'K = I

The trace of the matrix B can be expressed as follows.



E(u'u)

which is equal to

(3.8)

= tr K(VMK) (P Kr/P

= tr (K'MK) P'K)(P'K)

= tr QDQ'

= tr D

n-k
= E 6.

1

tr B = n - 2k + E 6.
1

1

since 6. 1= k  +1,.....,n k are equal to 1.

Combining (3.5) and (3.8) we obtain

(3.9) E{(v u)' 
2,

u)} = k3k - 2 E 6.)
1 1

Dividing 3.9) by E(u'u) = na , we obtain

(3.10) k 2= E 6i)
n n

1

The expected sum of squares of the estimation errors of the least-squares

estimators is

(3.11) - u)} = E{u' M

r (M 214 .i. I
M))

)(M -I
(n)

(n k- 2n + 2k+ n) = a
2 
k

It follows that the average inaccuracy of ft equals

u) (11 - u)} a
2k k
2 n
an

We shall call the ratio of 3.12) to (3.10) "the efficiency of v with respect

to q:2

2
This definition is analogous to one given by Koerts for the BLUS estimators
in [5].



(3.13)
I
v

0< <1

Further, we shall determine the expected sum of squares of the differences

between the estimators v and the least-squares residuals a = Mu as follows.

(3.14) E{( 11)1( ft)} = E{t0(3 - M)(B - m)

= a
2 
tr (BB - BM - MB +M)

= a
2 
{2(n k) - 2 tr B}

E 6.) = 2a2 E
1

1 1

where use is made of (3.6) (3.8), and BIX = 0 which follows from E(v) = O.

The efficiency is equal to 1 if the new estimators coincide with the least-

squares residuals, which occurs if the X.-matrix happens to be orthogonal to

the a priori chosen matrix K. In other cases it is smaller than one; this is

the price to paid for the additional restriction of a certain specified co-

variance matrix KK'a2. The more M differs from KK', the lower the efficiency.

E can be useful for analyzing X-matrices as indicated at the end of the next

section.

An interesting property is that (3.9) is equal to the sum of (3.11) and

(3.14). Thus the expected sum of squares of estimation errors of the new

estimators equals the sum of the expected sum of squares of estimation errors

of the least-squares estimators.

4. TESTING FOR SERIAL CORRELATION

It is known to be important that the covariance matrix of estimators

on which a test for serial correlation is based be independent of the

values taken by the explanatory variables. Only in that case tabulation of

the test statistic's significance points makes sense. The BLUS estimators

do have such a covariance matrix and lead to Hart's table with significance

points of the Von Neumann ratio. However, it has been shown in [1] that the

"BLUS power" may be considerably lower than the "Durbin-Watson" power. One
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additional disadvantage of the BLUS estimators is that a number of disturbance

estimators (equal to the number of explanatory variables including the constant

term) must a priori be chosen equal to zero which gives the BLUS estimators a

more or less ambiguous character.

The difference in power between "BLUS" and "Durbin-Watson' justifies an

attempt to find better estimators than the BLUS residuals whose covariance

matrix remains independent of the values taken by the explanatory variables.

For this purpose we can use the new estimators based on an appropriate co-

variance matrix
2
KK'. In the case of the BLUS estimators KK' is required to be

of the form I(11.40 filled up with zeros so that the class of admitted

covariance matrices is unnecessarily restricted.

The matrix KK' is completely determined by K, which should be
2chosen so that,on the average,a KK' approximates the covariance matrix a

2
M of the

(best linear unbiased) least-squares estimators as well as possible. Of course,

this makes only sense if, in the relevant applications, M and hence X show

some regularity. In other words, the X-matrices of distinct models should

fluctuate around some "mean X..matrix" with not too large variation. K should

then be based on this "mean X-matrix".

Does such an X-4matrix exist? It seems so. On the basis of remarks by

Hannan and Theil-Nagar it was pointed out in [2] that such a matrix may he

given by

where

(4.2) hi =
1
-[cos  
C. 2n

L = Ch .
1' ."

3-1T(5. - 1)
cos

2n

where 
C1 

= and C. = (n /2) for i =

... cos 
(2n - 1)7(i - 1) 

i =
2n

n.

If, on the average L approximates the X.-matrix sufficiently well, the same
-1holds for KK = I

(n) 
LL' and M = I, ) - X(X'X) X'. So we should choose K as

(
follows.

( 4.3 )
""

In [2] it was shown that the distribution of the Durbin-Watson statistic, based

on the new estimators with K as specified in (4.3), is that of the Durbin-Watson



upper bound and, hence, tables with significance points are available.

For illustrative purposes we shall compute the powers of a test

against positive serial correlation based on v with K as specified in (4.3)

and L as specified in (4.1) for some examples, and compare them with the cor-

responding powers of "BLUS" and "Durbin-Watson".

We use the test statistic

(14.1)

E v
2

1

-1where v = {v } = K(OMK) (P'10 P y
it

with (K'MW computed as indicated in (2.12). Appropriate significance

Points are taken from the Durbin-Watson upper-bound table.

The two examples are the "Textile example" as described in [6] which

has 15 observations on 2 explanatory variables (it = 3), and the "spirit

example" consisting of the first 15 observations of the example presented

by Durbin-Watson in [3], here also k = 3. In both examples the probability
of a Type-I error is taken equal to 0.05 and the alternative hypothesis is

a first-order Markov scheme u = 
put 1 

c with the c independent and- t
2normally distributed with mean zero and variance a . For three different

values of p the powers are computed by means of a method described in [6]

They are presented in the table below.

Powers in two examples

Textile example n = 15, k = 3, P(I) = 0.05

Durbin-Watson New test

.3 .19 .19

.6 .40 .39

.8 .51 .50

BLUS3

.14

.30

.41

Spirit example n = 15, k =3, P(I) = 0.05

.3

.6

.8

Durbin-Watson

.20

.46

.61

New test

.19

.43

.56

BLUS3

.16

.37

.52

3 
In both examples the last three disturbance estimates are a priori put
equal to zero.
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The results show that in both examples the powers of the new test lie

between those of "Durbin-Watson" and "BLUS", most of the difference between

the latter being regained by using the new estimators. Hence, to a certain

extent we can say that the X-matrices in both examples "behave like L".

_ The authors are conscious of the fact that the value of the procedure

depends on the question whether or not the X-matrices in economic models

where testing for serial correlation is necessary, generally behave in

this way. As said before remarks by Hannan and Theil-Nagar point to an

affirmative answer to this question. Moreover, the Textile example and the

Spirit example are both arbitrary models containing time series and thus
cases where testing for serial correlation is needed.

A thorough examination of the X-matrices which can arise in models

capable for testing against serial correlation can provide a more definite
answer. This can be done by determining for distinct relevant X-matrices
(either generated or taken from the literature) the efficiency E, defined
in (3.14) and see whether or not it shows large fluctuations.

It goes without saying that K may be taken different from that which
was adopted here e.g. by choosing some of the other columns hi. In
particular h

1 corresponds to the constant term in the regression so that
for a regression without a constant term this vector may perhaps better be
replaced by a different one. However, the distribution of Q will then no longer
be that of the Durbin-Watson upper bound and a new table of significance
points is needed. Such a table can be constructed by means of a procedure
described in [l, 6].
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