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1. INTRODUCTION

In economic research, one frequently uses the so-called general linear model.

It can be written in matrix notation\as
(101) y=}:6+u

where y is a column vector of n values taken by the dependent variable, X a matrix
of order n x A of nonstochastic values taken by the A explanatory variables, 8 a
column vector of A unknown parameters, and u a vector of n normally distributed random

variables. It is important to distinguish this model from the regression model.

In the regression model, the X-matrix consists of particular values of random

variables while in the linear model, the X-matrix is composed of nonstochastic

or mathematical variables. This difference may seem to be slight but it has some

important consequences. In the regression model, for instance, there is generally
no functional relationship between the variables while the main hypothesis of the
linear model is that a functional relationship exists even though it may be

disturbed by random errors. The strong resemblance between these two models coupled

1"?l.’he authors want to thank Mr. A.S. Louter of the Econometric Institute for writing
the needed computer programs and his participation in several discussions.




with the fact that the same terminology has been introduced in both models has
caused confusion amons econometricians. One important example occurs in the
regression model vhere quantity known as the correlation coefficient has been
defined. It is considered as a messure of interdenendency between random veriables.
In the general linear model, a similar ouentity has been introduced also under the
name correlation coefficient. One is, of course, free to define such a quantity, but
problems arise if one starts using it as if it were 2 "true" correlation coefficient.
That is, as if the variables involved werc random variables when at least some of
them are nonstochastic;

The purpose of this paper is to study the problenms arising from attempts to
draw inferences by using the correlation coefficient in the general linear model,
To be more precise: we wish to consider whether or not it is possible in the
general linear model to use the correlation coefficient as a test variable for the
~ correct specification of an economic law. With respect to the specification given

in (1.1), throughout this paper we shall use the classicel assumptions:
(1) The X-matrix consists of nonstochestic elements and has full-column rank,
(2) The vector u is normelly distributed with mean vector zero and covariance
matrix 021.

The order of the discussion runs as follows. In section 2, the correlation

“coefficient is defined and its probebility limit is determined. In section 3,
the distribution of the correlation coefficient is (theoretically) derived. In
section 4, a number of examples are discussed and the influence of the X-matrix
on the distribution of the correlation coefficient is considered, In section 5,

some final conclusions are drawn.

2. DEFINITIONS AND PRELIMINARY RESULTS

2.1, The Linear Model with one Explanatory Variable

As we have already observed the correlation coefficient is often used in the
search for the "correct" specification of an economic law. Theoretical considerations
also play an important role in the solution of this choice problem. From the class
of theoretically acceptable specification,that'with the highest correlation
coefficient is usually chosen. In order to exemine this strategv in more detail,

we consider the linear model with one explanatory variable and a constant term

(2.1 P <+ . o
) yl o Bxl + u:L

where o and B are unknown parameters, x the value taken by the explanatory variable,




y the value teken by the dependent variable, and u the disturbance term. In this

model, the correlation coefficient is defined by

n
| (g - Dy - F)
(2.2) R = 221

Ve ! '
/ =2 -2
2 (x; =x)° £ (v, - 7)
. . 1
i=1 - 1=1
where X denotes the average of the values taken by the explanatorv variable and
¥y the sample mean of the dependent variable. The squared correlation coefficient

can be written as follows

(2.3)

i=1

th

where v, for i=1, «s., n stands for the i " least-squares estimated disturbance.

This can be proved as follows:

2 B 2 _ 1 2
(2.1) R S =
. i i=1 i=1 *

where a and b are the least-squares estimates of the parameters o and g respectively.,

If we define

(2.5)

(2,6)

which proves (2.3).




In order to get more insight into the hehavior of R2, we determine the

probability limit of the correlation coefficieng. From (2.3) and (2.1) we have

1— z V?

2 i 1

2

(2.7) R

-3 (u. - 7)°
1 n . 1
: 1=1

because
(2.8) vi =¥ = 8(x; - x) + (v, - 1)
and the cross product is equal to zero.

Before we can determine the probability limit of Re, we must make an assumption
about the behavior of the exnianatory veriable x for large values of n. One usually
n

assumes tha® I (xl - x) /n remains bounded for increasing values of n and tends
.. =1
to a2 limit + 02. This assumption is g auff1c1ent condition for the least—scuares

estimates of o and B to be consistent, 2 Let us now determine the probability limit

of R2.

Firstly, ccnsider thp nunerator of the quotient given in (2.7) which will
be denoted by 52 =z vy /n Hotice that

2
1 1
(2.9) , 5= = kA ;V =4 Zu = z'Mz
G o o

where M is the well-known projection matrix [T - X(X'X)—1X'],
Z a vector of normal variables with zero mean and unit variance, and where use is
made of the idempotency of M and the property that MX = 0. Thus the quantity z'Mz

is chi-square distributed with n - 2 degrees of freedom, n - 2 being the rank of M.
And thus

| 2
(2.10) n[s%] = %—- Elz'Mz] = -g—— (n - 2)

Of course, the well-known assumptions about the vectgr of disturbances u are also

needed., Moreover, it is not necessary for & (x - X)°/n to tend to a limit, it
only should be bounded. i




and

5 i i
(2.11) =-2§ var (z'z) =-2§ 2(n - 2)
n n

From (2.10) and (2.11), it follows that, for larse n, the expectation of s°

approaches 02 and the variance of s approaches zero, which implies that
noo, o

z vi/n converges in the quadratic mean to o“.

i=1 . .o .. .
Secondly, we consider the probability limit of the denominator of (2.7). By

assumption, we have

(2.12)

Moreover,

(2.13) 13 -0
According to the law of large NWrhers,we have

(2,14) plim

Hence we can conclude that

R .2 0252
(2.15) nlim R™ = 1 - 55 5= 55 —
B7S™ + o B7S® + ¢°

The following conclusions can now be drawn: (1) the probability limit of R? is
always smaller than 1 and - depending on the values of 82 and B - it can deviate

substantially from 1; (2) a positive relationshin exists hetween plim R2 and the

absolute value of B3 (3) if I (xi - i)g/n is not bounded but becomes infinite for

n approaching infinity, the probability limit of R2 is equal to 1. A decreasing trend

in the observations on the explanatory variable tends to lower plim R2.




2.2, The Linear Model with more than one Explanatory Variable

We now generalize the results of the previous section. To do this, we rust
intT¥Oduce the multiple correlation coefficient, This guantity is defined as the
simple correlation coefficient between the dependent variable y and the least-squares

prediction of y, which will be denoted by v*. In matrix notation:
(2,16) ' y* = ¥b
where X denotes the matrix of values taken by the explanatory variasbles and b the

vector of least-squares estimetes of the vector of unknown parameters Bi.

If we write
(2.17)

vhere ¥* is the average of the velues taken by y*, the multiple correlation

coefficient is defined as

(2.18)

In much the same way as for the simnle correlation coefficient, it can be shown

that the squared multiple correlation coefficient is equal to

(2.19)

. .th . .
where 4 for 1 =1, ..., n denotes the i"" least-squares estimated disturbance.

To prove this, we first consider the numerator of (2.18).
n n

(2.20) IoY.Y® To(Y¥ + v, )y
. jo1 1 i1

because

2,21 Sy, .
(2.21) X . DKt e # 0 X v

n

137 * b2 iE1X2ivi + see




where the explanatory variables are measured in deviation of their respective means.
The last equality sign of (2.21) follows directly from the normal equations and the

fact that a constant term is added in the specification. Hext, we rewrite the

) v? using (2.20)

(2.22)

oo
(2.23) L V.
. i
=1
from which (2.19) follows immediatelv.
e shall now determine the probability limit of the rultiple correlation

coefficient. Ve first write (2.19) in matrix notation

v M

v [T - lﬂI'JY
n

where we have used the fact that the vector of least-squeres residuals equals. My.
In (2.24), I is the identity matrix and 1 is a column vector with unity for each
of its elements. The matrix E, which is of course equal to [I ~-%11'], is an

operator which measures a varisble as deviation of its mean. Using the relation
(2.25) vy=Xb + v

we can write (2.2L)

u'Mu u'Mu

P _ —
(2.26) =1 - (Xb + v)'E(Xb + v) 1= D (X'EX)D + v'Ev + 2v'EXD

= 1 u'Mu = 1 u'Mu _
T T RXED + vEy T b (XEX)D + v'v

u'Ma
THI(XEND + u™u

=1

where we use the fact that v'EXb = 0, vhich follows from the normal equations
(see (2.21)),




In order to compute the probability limit of 32, we have to make an assumption
about the behavior of the matrix (X'EX). Ve assume that the matrix (X'EX)/n
remains bounded for large n and tends to 2 non-singular matrix A, This assumption
is sufficient for the least-squares estimator b of R to be consistent. Tt is a
straightforward generalization of that made in the case of the simple correlation
coefficient. We are now ready to determine the probaebility limit of RE. We have
already pointed out that the numerator of (2.26) u'Mu/n converges to 02 in

probability and, with regard to the denominator, we have by assumption
(2.27) plim b'(X'EX)b/n = B'AR
The probaebility limit of the multiple correlation coefficient is thus equal to

'Mu

(2.28) plim R° plim [1 - 3
Eb‘(X'h )

- B'AB
BTAR -+ 02 ‘
Notice that (2.28) is a streightforward generalization of (2.15). From (2.23) we can
conclude that the plim of R2 is alweys smaller then 1.
It is of interest to observe that besides the value of 02 the quadratic form

B'AB becomes important. The degrec of singularity of A in particular will influence

the probability limit of Rz.

3. THE DERIVATION OF THE DISTRIBUTION OF Rg

In this section, we describe how the distribution function of R2 can be

determined by means of numerical integration. In other words: we are looking for the
distribution function A

(3.1) F(r") = p[R? < r°]
where

(3.2) =1 XMW By - vy y' (B - My

y'Ey y'Ey vy




¥y being an n-element column vector of normally distributed random variables with

mean vector Xf and covariance matrix o°T. Substitution of (3.2) into (3.1) gives

(3.3) F(r®) = P[X-'-%-?—Eifi&i 27 = Ply (2 - M)y < rey'Ey]

Ply!' {1 - r9)E - M)y < 0]

Ply' (k& - M)y < 0]
. 2
where k is equal to 1 - r~,
Thus the problem of finding the distribution of a ratio of quadratic forms is
reduced simply to that of a mere quadratic form. The metrix kE - M is symmetric, so

it can be diagonalized by an appropriate orthogonal transformation as

(3.4) p'(kE - M)P = D

vhere D is a diagonal matrix with characteristic roots on its main diasgonal and P
is an orthogonal matrix of characteristic vectors. Let us next make the orthogonal
transformation z = P'y/o. The quadratic form in (3.3) then reduces to

(3.5) vy (XE - M)y = v'(PDP!)y = 62Dz = z' Mz

where z is a vector of normally distributed random variables with mean vector

P'XB/c and covarience matrix I, and A= °D. Hence (3.3) can be written as

(3.6) F(x®) = Plz'hz < 01 = P[ £ &,2° < 0]

=17

where A = {diag. Ai},B and where the z? are independent noncentral chi-square
variables, each with one degree of freedom and a non-centrality parameter 6? which
equals the squared jth element of the vector P'XB8/c.

Meking use of a result discovered by Imhof [ 1], we have

(3.7) P(r3) =l 1 A2 <ol=d_ 1y sinel) .
) -j=1 W 2 ™y uy (u)

where

(3.8) e(u) = 3 [tg_1(lju) + G?Aju(1 + A§u2 -7 - %rzu

Jj=1

3 The . are,equal to the characteristic roots of kE - M up to a multiplicative

constént 02.




and

6? 2.2

22
)
1 J

/(1+)\

n
(3.9) y(u) ) (1 + A )” xo { I }

J

The integral in (3.7) can be calculated by numerical integration making use of

l- Sin E(u) - 1 l;x (1 " 62)
uy(u =2 J

u-+0 J=1

The function uy(u) increases monotonically tovards infinity. Therefore, in numerical
work, the integration will be carried out over o finite range 0 < u < U. Hence

two different types of error exist:(1)the error arising from using an epproximate
rule to determine the integral, and (2) & truncetion error. The latter

t =JPR d‘u h(r,\ms an unper bo1}nd 1

- 1%
|z, | i;é lm | au

so this error can be controlled and thus ?(r ) can be computed to any desired desrce

of accuracy.
From this discussion it is clear thot both the X-matrix and the value of 02

) e .2 ) ] .
influence the distribution of R°. We study these influences in the next section.

IFLUENCE OF THT X-MATRIX

b,1, The Textile Examvle

Our first example deals with the demand for textiles in the Netherlends during
a time period of 15 years between the two world wars, thus n = 15, There are two
explanatory variables: the logarithm of real income per head and the logarithm of
the deflated price index of the commodity. A constant term is added and therefore
A = 3, For the vector of parameters B, we use estimates of the constant term,
and the income and price elasticities based on the available dats.

U31np the method described in section 3, we compute the distribution function
of P for different values of 02, given the X-matrix and the vector B. The results
can be seen in Table 1., It is interesting to see that, for values of 02 equal to 1
or 0.7, nearly all the probability mass is concentrated in the interval [0,0.5]
For ¢ = 0.01, the interval is somewhat larger, thoush elmost all the probability
mass still lies below 0.8, The influence of 02 is quite clear; the smaller the

values of 02, the more the probability density function of 32 is shifted towards the




right, This tendency can also be seen from the pictures on page 13. It is easy to

~understand this influence because ¢ appears in the denominator of the non-centrality

parameters 6?. The smeller 02 the larger 6? for j =1, «e0, n.

TABLE 1

02 = 0,1 02 = 0,01

(s}
2 2) (%)

r r

0.0000 0.0000 0.0000
0.0416 0.1565 0.0057
0.0833 0.2982 0.0166
0.1250 0.hk2hl 0.03k42
0.1666 0.5353 0.0599
0.2083 0.6310 0.0952
0.2500 f 0.7124 0.1408
0.2916 0.7823 0.1970
0.3333 0.8358 0.2636
0.3750 Q- 0.8803 0.3395
0.4166 ¢ 0.9152 0.4226
0.4583 ) 0.9418 0.5103
0.5000 ( 0.961k 0.5992
0.5416 0f¢ 0.9756 0.685)4
0.5833 QQ 0.9853 0.7652
0.6250 996¢ 0.9916 0.8352
0.6666 0.9954 0.8026
0.7083 9 0.9979 0.9364
0.7500 ) 0.9901 0.0668
0.7916 0 0.9907 0.985h
0.8333 0.9999 0.9949
0.8750 . 090¢ 0.0000 0.9983
0.9166 999 0.9996 0.99909
0.9583 100G 0.9999 0.0929
1,0000 1,0000 1.0000

The consequence of this result is imnortant for it implies that, given the
specific explanestory veriables used (the X-maetrix) and given the assumptions made
about the vector of random disturbances u, it is very unlikely that a correlation
coefficient higher than 0.8 will be found. In other words, if the vector y is really
generated by the given X-matrix and a vector of disturbances u, which is normally
distributed with mean vector zero and éovariance matrix 021, then a correlation
coefficient higher than 0.8 is verv unlikely. It is perhaps interesting to mention
that the correlation coefficient found in practice was 0,987, This result is very
unlikely in the light of the foregoing discussion and perhaps is an indication that
one has looked for explanatory variables which, for the given set of y values, yield

a high correlation coefficient. In any case, the assumptions secem to be in conflict

2
with oneanother unless one wants to accept a very small value of o .




. . . . . . 2 .
The question now arises of why the probability distribution of R~ 1is
concentrated so much at the lower values of R2. We discuss this interesting

question in the next section.

4.2, An Artificial Fxample

We now consider an artificial example in an attempt to trace the influence
of the X-matrix on the probability distribution of PE. e therefore construct
another X-matrix of the same order as the one used in the textile example.h The
ranges of the values taken by the explanatory variables are chosen in such a way
that they are approximately equal to the ranges of the variables used in the textile
example. Moreover, we use the same vector of parameters 8. The corresponding
distributions of Rz, for different values of 02, are computed and given in Table 2.
The differences between Tables 1 and 2 are very strikins., The distribution
of R2 is now completely shifted towards the right, that is, the probability
mass is concentrated at higher velues of RQ. This example shows how sensitive the

distribution of R is to changes in the X-matrix. Moreover, the influence of a

. 2
change in o seems to have an even more pronounced effect.

TABLL 2

02 = 0,01

r2 F(rg) i F(rz)

0.0000 0.0000 0.0000 0,0000
0.0416 0.0007 0.0000 0.0000
0.0833 0.0026 0.0000 0.0000
0.1250 0.0066 0.0000 0.0000
0.1666 0,0137 0.0000 0.0000
0.2083 0.0254 0.0000 0.0000
0.2500 0.,0L3L 0.0000 0.0000
0.2916 0.0606 0.0000 0.0000
0.3333 0.1059 0.0000 0.0000
0.3750 0.1540 0.0000 0.0000
0.4166 0.2150 0.0000 0.0000
0.4583 0.2892 0.0000 0.0000
0,5000 0.3755 0.0000 0.0000
0.5416 0.4713 0.0000 0.0000
0.5833 0.5725 0.0000 0.0000
0.6250 0.6736 0.0000 0.0000
0.6666 0.7632 0.0000 0.0000
0.7083 0.8499 0.0000 0,0000
0.7500 0.91k0 0.0003 0.0000
0.7916 0.9583 0.0027 0.0000
0.8333 0.9841 0.0199 0,0000
0.8750 0.9959 0.1155 0.0000
0.9166 0.9995 04471 0.0000
0.9583 00¢ 0.9170 0.0000
1.0000 ) 1.0000 1.0000

Both matrices are given in the appendix.
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What are the causes of this striking difference? Whatever they may be, they can

only influence the distribution of R2 along two lines, via the characteristic

roots Ai of the matrix (kE - M) or via the non-centrality parameters 5? for

J =1, «vs, n. We first consider the characteristic roots Aﬁ and thus examine

€

the matrix E - M, The matrix I is idempotent and has rank n - 1, for its trace is

(4o1) tr E=tr [T - %11'] =tr I - tr %11' =n -1
Moreover

- ,lv_'_lv-
(h,2) v = [T - =11 Ji= 1 - —1' =

which implies that the columns of E span the n - 1 dimensional orthogonal complement

of 1, With respect to the matrix M, we have
(4.3) M = [1 - X(X'X)" X' =X =X =0

If the first column of X is equal to 1, vhich implies that we are dealing with &

linear model containing s constant term,
(boh) My =0

Thus the n - A dimensional subspace spanned by the columns of M is orthogonal to 1.
But this means that the space spanned bvy the columns of M is a subspace of the space

spanned by the columns of E. Therefore
(k.5) EM =M and thus ME =M

because E is a projection matrix (E projects orthogonally along 1) and leaves all
vectors in the orthogonal complement of 1 unchanged. From (k.5),we can conclude that

E - M is idempotent, for

s
(4,6) : (E-M)(E-M)=E“-EM-ME+MQ=E-M-M+M=E-M

so its characteristic roots are either zero or one., The rank of E - M is equal to its

trace , *dequal to -

(4.7) tr (E-M) =trE-trM=n-il-(n-An)=47--1




Therefore A - 1 of its roots are equal to 1; the others are equal to zero.
Let us now consider the characteristic roots of the metrix kE - M, This matrix

has, in any case, one characteristic root equal to zero for
(4.8) (XE ~ M) =

hence 1 is an unscaled characteristic vector of kT - M belonzin~ to a zero root.
To determine the other roots, consider the characteristic vectors p of M for which
Mp = p. Furthermore we have Ep = p because E projects any vector orthogonally on
the orthogonal complement of 1 while the p's are vectors in the latter space.

We can then write
(L.9)

and hence, n - A roots of (LT 1) are equal to k ~ 1, To determine the remaining
A = 1 characteristic roots of (kE - M), we consider the characteristic vectors P

of M (other then 1) for which My = 0. Ve can write
(L.10) (kE - M)p = (XE - M)Ep = KEp - MEDP = kED - Mp = kEp = kp

from which it follows that A - 1 roots of (kE -~ M) are equal to k. Hence we have
proved that the characteristic roots of (kB - M) are independent of the X-metrix.
This important observation leads to the conclusion that the X-matrix influences
the distribution of Re only throush the non-centrality varameters 6? for
=1, «vs, n. We show, however, that onlv A - 1 of these non-contrélitv parameters
really matter, Remember, that the vector of non-centrality parameters is equal to
P'XB/0 where P is a square matrix of order n consisting of the characteristic vectors
of the matrix (XE - M). Ve have already seen that n - A of these lie in the space
spanned by the columns of M, for they possess the vroperty MP = D, see (L4.,9).
Since MX = 0, this implies that they lie in the spece orthogonal to the space spanned
by the columns of X.
Hence n - A columns of the matrix P are orthogonal to the columns of X, which
means that n - A non-centrality parameters are equal to zero. In other words, at most,

" A non-centrality parameters differ from zero. The characteristic roots A corresponding

to the A non-central chi-square distributed variables zJ (see (3.7)) are the roots

of (kB - M) belonging to its characteristic vectors with the property Mp =0. Thus
A - 1 of them are equal to k and one is equal to zero (see (L4.10)). This means that

the X-matrix influences the distribution of R2 through A - 1 non-centrality parameters.5

Besides the number of observations of course.




In section 2, we have shown that the distribution of R2 can be determined as

follows

(ho11) F(x?) = Pl z Azt < 0]

: 2
If we change the value of r~, we chanse the relevant roots Ai for, apart from

e o . 2 :
the zero root and the multiplicetive constant o~, they are equal to k = 1 - r2.

This implies that the characteristic vectors of %XE - M change and so do the relevant
non-centrality parameters 6?. This fact is shown in Table 3 where the non-centrality
parameters for both the textile example and the artificia; example are given for

different values of r2. The variance of the disturbances is kept equal to 1.

TABLE 2

Textile example Artificial example

A 6? ' . 6?
d J : d

0,900 0.083 8.063
0.900 0.002 5,108
0.000 66,916 45,312

58.483

0.800 0.083 T.163
0.800 0.002 R0¢ 6.008
0.000 66,916 45,312

- 580)“"0’3

0.600 1.456
0.5600 11,715
0.000 45,312

6? = 58,483

Ay

67.001

I~

e
—_

Notice, that the non-centrality varameter corresponding to the zero root does not
Y I g g

-
Gepend on the value of v . .3 is clecx because itz characteristic vector is
. . - ’

identically equal to 1/vn and thus independent of r<,




From the table we also learn thet the sums of squares of the 65 are equal to

2 ..
¢.ch other for any value of r°~, This is s0 hecause

' ) )
(k,12) RIX'P'PXE /0" = B'X'ZB/0

wnich meens that.the matrix of charecteristic vectors cancels if we consider the sum
of squares of the non-centrality parameters. We can now draw the interesting
conclusion thet knowledge of the individual 6? is of no importance if one is
interested in the distribution o* Rg. It is oﬁlv the sum of squares of the relevant
A« T non-centrality parameters that really matters. This is true for two reasons:
(1) for a given value of r2 all relevant Ai are equal to each other except fof the
zero root. This root, however, causes no t}ouble because its corresponding non-
centrality parameter is slways the seme and (2) the non-central chi-square
distribution is additive, that is the sum of n independent non-central chi-square
Gistributed variables is again non--central chi-saquare distributed with 2 non-
zentrality parameter equel to the sum of the individual Gi's. This can easily be

<

ovroved with the aic of its characteristic function

hEt
S
exp fT—:~§§E}
Oui statement follews from the Ta the characteristic function of a sum of
independent random variables is equzl to the product of the individual cheracteristic
functions,

It seems therefore reasonsble w0 use the sum of sguares of the A - 1 relevant
non-centrality parametsrs as a measiure of skewness of +the distribution of 92.
For e lerge sum of squares implies that the distribution of R is concentrated at

values close to one. Tor the v ectical research worker, this implies that the

expression B8'X'X8, = or betiter an estimate of 1t, becomes important.

Finelly, the difference between the textile and the artificial examples
becomes clear if we consider the corresponding non-centrality parameters. Tn the
artificial example, they are much larger. The distribution of R2 is therefore

v

shifted towards the richt,

4

k.3, Changing Variables

In meny cases, the "final" specification of an economic relationship is
determined by introducing, one after another different explanatory variables. In
practice, specification with the highest correlation coefficient is usually preferred.
In this section, we discuss this strategy in more detail. Our procedure runs as

follows. Ve stert with a model with two explanatoryv variables. A constant term is

added, thus A = 3, The explanatory veriables will be denoted by X1, X? and X3.
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The distribution of R2 has been determined for different values of 02. The results
are given in Table L, Jext, we introduce another explanatory variable Xh’ and
the distribution of R is again computed, The results are given in Table 5.

Comparing Tebles b and 5, it becomes clear how difficult it is to make g
choice between these two linear models on the basis of the correlation coefficient.
In fact , correlation coefficients belonging to different linear models can hardly
be compared, for each coefficient should bhe interpreted in the light of its own
probability distribution. However, it is precisely this distribution which depends
on the specific explanatory variables used in the linear model., From Table 5, we
see that the influence of the introduction of X, cannot be ignored. The distribution
of R2 changes considerably. In the case of threé explanatory variables, 82.97 percent
of the totel probability mass lies in the interval [0, 0,7] vhile, in the case of
four explanatory variables, the percentage is much lower, 37.9, This means that,
on purely technical grounds, a much lerger correlation coefficient should be expected,

In Table 8, we see the effect of the introduction of an additional explanatory

»)
varisble X], the distribution of R” is shifted even more towards the right.,

In the Tables 6 and T, we have kept the number of explanatory variables equal
to 4, but the models differ from each other by one explanatory variable. Also from
,these Tables we see how sensitive the distribution of R2 is to the X-matrix. Here
again we see how difficult it is to evaluate different values of R2 without knowing

the underlying distribution.

TABLE 4. THE DISTRIBUTION FUNCTIONS OF 72 FOR THE EXPLAITATORY VARIABLES X1 X2, X3

16

0.,0003 0.0008 0.0L63
0.0032 0.0565 0.1713
0.0241 0,171 0.37k2
0.0954 0.3760 0.6001
0.2667 0.6251 0.8115
0.5461 0.8410 0.9370
0.8297 0.961k 0.9880
0.9760 0,906A 0.9992
0.9997 0.2999 0.9000
1.0000 1.0000 1.0000

22,1547 -~ 12,k521 T.9757
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TABLE 5. THE DISTRIBUTION FUNCTIONS OF RE FOR THE

EXPLANATORY VARTABLES Xis Xps Xg5 X,

)
n

D

0,0n00 0.0001
0,0000 0.002"
0.0002 0,01y
0,0025 0.0656
0.07190 0.2050
0.h6he
0.7716
0.9607
0.9993
17,0000

el el NoNeoNeNoNe

EI.MUCO

.8

>

~
-

= L0 o

v

OO OO OOOOCD

O\ Co—= v\

22,2408
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TABLE 6. THE DISTRIZUTICH FPUNCTIONS OF R2 FOR THE

ey X Y AT A e - g
EXPLANATORY VARIABLES X, . X,, 433 ¥g

o) A ) ~

Lt ~

g =9 ;T = 16 o" = 25

NS

jize]

0,000 0.0000 0.000::
C.0000 0.000 . 0.0055
0. 0000 0.0025 0.0312
0,000 0.0175 0.1135
C.0025 0. 0821 0,2950
0,025 0,265 C.571

0.1727 0.6020 0.83389
0.6052 0.9077 0,9761
0.9756 0.9977 0.9995
1.0000 1.0000C 1.0000

ocNoNoNoNeoNe)
% 4 ®
N W\ WY =
O

[oNeReNoNoRe)

o

52.6035 29,5395 13,9373




TABLE 7. THE DISTRIBUTION FUNCTIONS OF R> FOR THE
EXPLANATORY VARIABLES X, X,, ¥, X

2 _ 55

jos]
n

(@]

0,0000 ‘ 0.0032
0.0000 s 0.0258
0.0003 .010 0.0055
0.0037 S 0.2570
0.0269 37 0.4956
0.1316 , 0.7499
0.Lk200 0.9260
0.8216 At 0.0015
0.9939 a 0,0090
1.0000 1.0000

* e o
oo o NoNoNeNoNe R
v

.

bl eReNoNoNeoNoNe)
®* e
O\ CO OV £ W N —

37.5362 21,1141 13.5130
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TABLE 8. THE DISTRIBUTTION FUNCTION OF R2 FOR THT

EXPLANATORY VARTIABLES X X5 X3’ Xh AND X

1? p

2 16 2

o o =25

0.0000 0.0000 0.0000
0.0000 0.0000 0.0006
0.0000 0.0002 0.0060
0.00C0 0.0023 0.0332
0.0001 0.0186 0.12863
0.0032 0.100k 0.3433
0,0L58 0.3562 0.6672
0.33%4 0.7701 0,9263
0.9132 0,9893 0.9981
1,0000 1,0000 1.0000

66,0293 37.1415 23,7706




5. SOME CONCLUDING RREMARKS

We now summarize the results:

(1) The distribution of the correlation coefficient depends on the matrix X
of explanatory variables. Its probability distribution is certainly not robust with
respect to changes in this matrix.

(2) The X~-matrix influences the distribution of R2 only through A - 1
non-centrality parameters 6?.

(3) The variance 02 influences the distribution of Rg also via the A - 1
non-centrality parameters, for 02 anpears in the denominator of the non-centrality
parameters 6j = P'XR/0 and also via the corresnonding A..

(4) It is dangerous to compare correlation coefficients belonging to distinct
models because, for a given wvalue of 02, this distributions depend on the
X-matrices. For a given value of 02 an increase of R2 may happen for purely
technical reasons.

(5) The correlation coefficient should be interpreted in the light of its own
distribution. This, however, can only be done if we know the value of 02, For this
purpose, we cannot use an estimate of 02 based on the least-squares disturbances,
because the choice of the X-metrix implies an estimate of 6%, The only way out seems

- . - o - - - .
to start with an & priori value for ¢~, Given this value and a particular X-matrix;

the distribution of R° cen be determined. The following strategv to check the
reality of the model can then be used. If the value of R2 found in practice is
acceptable in the light of this distribution we accept the model, if it is highly
unprobable, we reject the model and look for another one.

In a future paper the authors will discuss the influence of auto-correlation

. . . 2 . . . .
on the distribution of R". Moreover, they will examine the question of how the sum

of squares of 6? for j =1, «oey A = 1 can be used to get a quick information about

the distribution of Pg.
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Tmhof, J.P. (1961)."Computine the Distribution of Ouadratic Forms in Normal
- ! (ol ~ 2. C -
Veriables". Biometrika , Vol. 48, 3 and L, w»p. 410-k26,




APPENDTIZX

The X-matrix of the textile example is:

and the
B1=

By

B3=

The X~ﬁatrix of

and the

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

cowfficients are:

1.3739
1.1432

et d el eed el ed md ek =3 el ed el e S

coefficients are:

= 1.3739

1.1432

1,985¢
1,9017
2.0000
2,0208
2,0208
2.0394
2,0Lhs5
2,050k
2.0386
2,022k
2,0073
1.9796
1,9841
1.9895
2.0103

the artificial example is:

O

..
o =
RN RS R =

D S0 F

.« & .
— Ul \D\D
oD~ —

=
—
—

1.6570
1.9380

1.8776
1.5L03
1.0707
0.5839
0.198¢0
0.0100
0.0635
0.346k
0.7892
1,2837
1.7087
1.9602
1,9766
1.7539
1.3466







