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1. INTRODUCTION AND SUMMARY

Given a finite number T of time series observations on each of
the (economic) variables x and ¥s one may estimate the well-known
Koyck's [2] distributed lag model

(1'1) yt = G:X.t -+ GJBX_t—1 + Q’BZX-t_’Z T e e o -+ U.t 9 0 f: B < 1

where X4 and Vi denote the observations on the “independent’ and
“dependent® variables x and ¥y respectively, at time t e
(t =1, « . ., T); by using the liviatan's [ 3] instrumental
variable technique or by any other suitable estimation procedure,
Liviatan's method is independent of the autocorrelation properties
of the u-disturbances and yields consistent estimates of the para-
meters a and B i.e. with negligible bias in large samples,

1 . ) .
This paper was wri%ten when the author was working as a Research

Associate at the Econometric Institute, Netherlands. I am thankful
to Professor W.H, Somermeyer for the help in the preparation of
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the omissions, ir any, the author alone is responsible,




Howevcr, the results .of large samplc theory may not hold zood

if the sample size is not sufficiently large which is the usual
situation encountered in econometric applications. Our interest,
therefore, lies in examining the behaviour of the estimator in small
samples. In an earlier paper Nagar and Gupta [L4] analyzed the bias,
to order ﬁ@ (T being the sample size), of the Liviatan estimator
under fairly general conditions, Later, the moment motrix, to order
3%2 » of the same estimator wes derived under the assumption of
inter-temporal independence of the disturbanccs,2 The present note
is a sequel to the above-mentioned articles [L] and [1]. It deals
with the analysis of Karl Pearson's measure of skewness MB1, to
order y% s of the probability distribution of the Liviatan's
consistent estimator. The bias, to order t% s of the residual
variance estimator is .also derived according to Liviatan's method of
estimation.

The next section of the article describes the estimation
procedure along with the underlying assumptions. The results 6n the
skewvness and the bias of the residual variance estimator are
enunciated in Section 3. Finally, Sections LL and 5 are devoted to the
derivation of the results.

2. THE BSTIMATION PROCEDURE3
Adopting the notation of the article [L], the model in (1.1)
can be written as (cf. [L4], Section 2)

(241) Vg = 0Xp + By 4 - W

or, in matrix notation

(202) y*;‘:‘: = Z6 + VV:;;;:; 9

where 7 = (x .. y.) is a motrix of size (T=-1) X 2, Xy Fuou and

U,y are column vectors with components Xg o ¥y and uy

(t=2, ... ,mT), respectively; x, , y, eand u, are column vectors

with components Xp 9 ¥y and ug (¢ =1, .,.T7 -1 ) , respectively,

and & = (g ) is a 2 x 1 parameter vector to be estimated.

2 of, Gupta [1]

The notation and part of the exposition given in the earlier paper
[4] has been used in presenting the analysis in this and subsequent
sections of the article, Accordingly, for explanation of symbols

and detailed steps, the reader is advised to refer to the above-—
mentioned article.




Under the assumptions

(a) Cov (xy » ft) = Cov <Xt—1 R Wt) =0

(Db) Eu, = 0, var u, =

xt's being non-stochastic, it is well known that the Liviatan

estimator

(2"3) “ = <(,1:> = (X?Z)_)‘ X?y:":':
5 R

of the parameter &, where X = (x,, X,) is a (T - 1) x 2 matrix of

2

observations on the instruments, is consistent.

3. STATEMENT OF THEOREMS

For presenting the results on the skewness and the bias of the

residual variance estimator, we further assume that

(c) cov (ut ’ ut,) =0 ,t #£1t!

(a) ,utislggg normally distributed with zero mean and constant
. 2
variance o .

The following results will now be proved in the subsequent
sections.

THEOREM 1. Under the Assumptions (a),(b), (c) and (d) given above,
Karl Pearson's coefficient of skewness, to order 4/T in probability,

of the probability distribution of the Liviatan estimator 8is given
by

-

(3.4) B, =6 o (gg)” % (g'Hg - B.g's).

[B(n'Hg + g'Hn) - (1 + B%).g'n],

1 O ® 00 O

an auxiliary unit matrix of size (T - 1) x (T - 1),




p— -
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°
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o

2

" (3.3) =XQ't

‘ P

e ol

is a vector of T - 1 elements of the second colum of the (T - 1) x 2
matrix XQ', the 2 x 2 matrix Q consisting of non-stochastic clements

and the 2 x 1 column vector . arc given by

-1
x} ..

. -
G as X . ax : B X 3t
(3.4) Q = and

X :§~: X e ax t Bx 0

respectively; the square matrix

o -

OOO. .OO
010, « 00
0O B1ea+400

o pT3 B8 1J

is of size T - 1, the matrix W of the variances and covariances
of the disturbances and the colum vector g of the non-stochastic
elements are defined in Section L of the text.

Before we state the next theorem, we define

~ . . . 2
T%T W£$ Wiy 25 an estimate of the residual variance Ow

in (2.1) where W .= Yay - 20
THEOREM 2. Under the assumptions of Theorem 4, the bias, to order

1/T in probability, of the estimator of the residual variance o%.lﬁ

W
given by

(3'6) _"j_'_"' E W:?e:z; W:ﬁc:}:"’ OX?V = 3[(1 + BBg)nYn - 4p n'Hn]

+ = tr [71QX'WXQ'2; - 27, 0x'W],

1

where

(3-7) Z,l: (X*;;g GBX* )

is a (T - 1) x 2 matrix of non-stochastic elements.




li. PROOF OF THEOREM 1LL

Denoting the estimator of the j - th (Jj = 1,2) parameter in the
2 X 1 column parameter vector & by g(j), we may obtain an expression
for its sampling error &(j) - 6(j) by premultiplying (& - &) by the
1 X 2 row vector e' which has its j - th element equal to 1 and the
other element equal to zero. This implies that e' = (1 0) if j = 1
and e' = (0 1) if j = 2. In the latter case e =t , Accordingly, by
using the analysis given in Section 3 of article [L4] and retaining
terms to O(T~3/2) only we can write

(Lat) 8(3) = 8(3) = e'(8-6) =c'h_ = e'h_ e'A_5/p
where .. . A_1/2 = QK'w,,
(L.2) A_y - QD1/2QX'W*$

A_zyo = @Dy oQD, /o@ Wy = QDA 'Way

suffixes of A indicating the order of magnitude in probability,

(Lo3) - Dy =x' (2 vy and Dy =X (Q (v, = u,)a)

are 2 x 2 matrices, the elements of which are O(T1/2) and 0(1)
respectively, and the column vector

e ] |
(Loly)

T-2
B

is of size T - 1. The third non-central moment u%,‘to order T-5/2
in probability, of the estimator &(j) about its true value 6(j) is
then obtained as

(he5)  py =B - 6(3)17 = (e'hy )0 + H(e'A_y )%

(e'A_y)] + 3E [(e‘_A.__Vz)2 (e'A__3/2)+ (e'A__Vz)(e'A_,I)Q]

L
For proving the theorems 1 and 2 we assume y4, the first element
of the vector y, to be fixed and non-stochas%ic

°




In order to evaluate (L.5), we introduce

(Le6) XQ' = (m n)

and : :
(La7) g' =e'QX' = (g, «ov gp)

where m and n denote the first and the second column of the ,
(T - 1) x 2 matrix XQ°', respectively, and g is a (T - 1) x 1 vector
of non-stochastic elements. It should be noted that

~

(L4.8) : for j
for jJ

Thus, under the assumptions (a) through (d) stated in the _
preceding sections and using (L.2), (4.5) - (L.7) it is easy to
verify that

E(e's_y /)7 =

4.9)
( E(e'a_y/p)(e'a )% = 0

and
(Le10) E(G'A;1/2)2<6'A-3/2)
E e'QX'w,, e'QX'w,, e'QDy QD1 QX'Wyy -
. 2 2
sy @'QX "W e QD QX "

because the first term on the right hand side of the first equality
sign in (4.10) and the terms in (L. 9) involve only odd order moments
of the normal distribution while +the second term on the right of the
equality sign in (4.10) yields an expression of O(1/T3) and is,
therefore, neglected. Hence, up to order 1/T5/2», we have

(Wet1) g = Em(e'a, ,)%(eta )]

Mand using (4.2), it can be written as

(La12) ”é = —BE(e‘QX‘vv;‘.”ke'Q,X’W;‘,;.,i w, . XQ' DV2 Q'e).




Replacing D1 by its right hand expression in (L4.3) and using
. 5 "
(4e6)y (Le7) we can rewrite (L.12) as

(Ll"13) “'_% == 2B (g'w*“’:g'W:}i'.}zv‘,:Z'c:I: n u:'}; g)"

Or, alternatively

. :
(LL’1L") “‘3 == 3 g'[Eu;k:;:g'u:;::;:u:;::;: n u;g; - BEu*:}:g'u::c:;cu'#n u\:e

- BE u:}e:;:g’u*u:{d:lrn U—:g: + B% u;:::j:gy U--,;:u:g; n ua!c

' 2
- BE U, g u:;:{:u;‘;::;: n u:'i: + B E u:,':g' u:;e:;:u:t'/. n u:f:

2
+B” E uug' wul. noul, - 53 Eu.g' wuinul lg

where use has been made of the relationship Woe = U — BU,

as defined in (2.2). If we pre and post multiply each of the terms
within square brackets in (L.14) by g' and g, respectively, it
immediately follows that third and fourth terms are respectively
equal to fifth and sixth terms. The value of the third expectation
can be obtained simply by interchanging n and g in the wvalue of the
second term. Moreover, the value of the last expectation within
brackets can easily be derived from that of fourth by symmtry. °
Accordingly, we are required to evaluate first, second, fourth and

seventh terms only and the value of the remaining terms then follows.

Let us now consider the first expectation within square
brackets in (L4.14).

(LI"‘15) k u:;z:kg' Qe B = E[ (u;j::::u:‘:c )(g'u:;q:;:) (u;g,z:;a n)]

Uptm_y
u3uT~1
)

U
Uty




— T -
0 (2g2n2 + %gtnt) (gzn3 + 8%n2) - (anT—1 + 8p_q4no
0 (gon; + g,n,) (2gzn; + 2g.n (g1, + gm_4N)

273 372 373 2tt) 3T71 T=1"%

T
(gontp_y + &p_4p)(E3Pp g + 8p_y0z) (28 _ynq_y + 3840

(8pnp + 8y 15)  (&zng + 7o) (8rPp_q+ gp_40yp)

:(;t [(g'n)H + gn'H + ng'H],

where n, g and H have been defined in (L4.6), (L.7) and (3.2),

- respectively. Similarly, it is easy to verify that

(L4.16) Second: E ug.g' u,ul nul = ct[g n' + Hng'H +(g'Hn) .H]

(Ll..'17) Third : E u;zg;:gg' u*ué;:_‘;:n 11,;; = 0{3[ n g' + Hgn!H + (n'Hg) OH]

(Le18) Fourth: E U g' ou,ul 2 Ot[(g'n).H + Hgn' + Hng']

o

Seventh: E . g' g i ’ =03[(n'Hg).I + thg, + gn'H]

Eighth : E u, g' wuln ul, =c5ﬁ[(g’g).l + gn' + ng'].

Hence, combining (L.1L4) through (L4.20) we get

(Le21)  p3= -30ﬁ [2{(1 + 28%)(g'n) - B(g'Hn) - 28 (n'Hg)} (g'Hg) +
+ 101 + 38°)(n'Hg) + 26%(g'Hn) - 38 (1 + 82)(g'n)(a'e)].

The first two moments, to order 1/T, of the Liviatan estimator
6(3) around its true parameter value &(j) have already been evaluated
in [4] (ef. equations (2, 13) and (2.9) ) which may be written as

(be22) = BL8(3) - ()] = - g'® n + o(1/12)
and :

(4e23)  wy =B[8(3) - &(3)1% = g'wg + ~(1/12)
where :

(Lo2h) @ s Wha = 0 (H' - B.I)

and

(Le25) W = Bwg, wiy = o [1 + 82).I - p(m + H)].




Using the well known relationship between moments
_ [ t v '3
()-l-026) U‘B = “'3 -3 U-Q LL1 Fo2 U'1 ’
we obtain the third central moment UB of 6(j), to order T“i/z, as

(4.27) by = ué + 3 (g'Wg)(g'a n),

6 O‘ﬁ (g'Hg - B.g'g)[ B(n'Hg + g'Hn) - (1 + 82).g'n],

where use has been made of (L.21),

Similarly, the second central moment o of the estimator_é(j)
is given Dby the relationship

(4e28)  py = - % = gtig + 0(1/12).
Finally, using (4.27), (L4.28) and applying the formula
Le29) B, = 2
(’9 B)‘_“"Bﬁ’
2

we get the result stated in Theorem 1.

5. PROOF OF THEOREM 2
Using (2.2), we can write
(5.1) Wi = Fiss - 20 = W = Z(S - &)
and, thus
B Why Was S Waw — 2 B wh, Z(% -8) +

+ B(8 - 8)1zt7(8 - o).

Since we are required to evaluate T%T E%;* %%$ to 0(1/T), it
18, therefore, sufficient if we retain terms to 0(1) only in
E ﬁ;* ﬁ** » Accordingly, we evaluate (5.2) term by term and obtain
for the leading term on the right of the equality sign as

(503) E W!

2
Y] W;k::a = (T - 1)0W 3

] where var w, = Oi for t =2, 4405 T»

t




In order to evaluate the next two terms, we first write
(5.4)
where the systematic part of 7 is given by

(5.5) -Z -ZJ‘ -+ _Z—O = (X:k:{-: G'BXQ: ) + (_9 ay1)

and.

(5.6) V=(0 v,)

1s the stochastic part of Z; ¥, and ¥, being the systematic and
non-systematic parts of the vector Yyus respectively, defined as

¥
(5+7) T = (cf.[4], Section 3)
Vo= uy - au,
Using (5.4), (5.5) and the result (3.8) of article [4], we find
the second cxpectation on the right of the equality sign in (5.2) as

1 X _ ? . 1 1
(5.8) Ewl, 2(8 -8) = E Wl 21A_1/2 + B wl, VA__1/2 + B Wiy VA,

where terms of order smaller than 4 have been neglected and A_1/2 ’
A_1 have been defined in (L4.2). It is now easy to see that6

(5.9) E wh. §1A;1/2 = tr (71QX'W)3

W being defined in (L4.25) and
. r T ' ? _
(5.10) B wi, VA_,\/2 =B wi, VQX'w,, = 0

because it involves third order moments of the normal distribution
which are zero according to assuption (c¢) given in Section 2, With
the help of the results given in (4.2), (4.6) and (5.6) , we write the
last term in (5.8) as '

— 1]
(5011) E W:';n:c VA__1 - E W:’;::;: (_Q Vzp) (rn'> (9 u‘:{t) <
n

L 1 '
= E Wia v n'un'we,

9

== n’[E(u'.;-a W;'}::jc )‘(W:'Z::Z‘. u;::) ]n

6 "tr'" stands for Ytrace of'.




-

where we have used the relationship Vi = Uy - au, and the term
involving au, has been neglected due to its smaller order than 1 in
probability. Now the value of the expression within square brackets
on the right of the third equality in (5.41) is simple to obtain

af'ter replacing Wy, DY (u** - BuU, ). Thus, we may directly write

(5+12) B Wy, VA, =

-oﬁ e T n' (62. I -B.Hn+ o(1).

Hence, substituting (5.9), (5.10) and (5.12) in (5.8) we get

(5.13) E Wi, 2(5 -8) = tr (Z,x'w) - of{ n' (g%.I - p.H)n,

to order '1' only.
Finally, we evaluate the last term in (5.2). For this purpose
we first split up the (T = 1) x 2 matrix V as

(5.14) v

where
(5.15) VV2 = (0 uy) and Vo = (0 - a u1),

the suffices of V indicating the order of magnitude in probability
and then by using (5.4) - (5.6) and (5.14) we obtain

4 - (7 = 1S .L—-
(5416) 2'%2 = (2, + %, + Vyso Vo) (Z, + Zo + Uy p ISP

Now combining (3.8) of article [L] and (5.16) given above, we
get the value of the last term on the right of the equality sign in
(5.2) as

i 5 - ! ? 3 -— - { ! VA
(517) E(6-0)'2'2(8 -58) = BAL /pBiB0A /o +
apt t
+BAL o Vi Vio Ay o

r !
where terms of order smaller then 4 have been neglected and Ah1/2

is given in (L.2). The value of the second member in (5.17) can
immediately be written as

' AN — 7 - ! 7!
(5.18) E AL, 2 Zihy o = W Ty B(A, p AL 0) T

tr (71QX'WXQ'_Z'1') .




12

The last member in (5.417) can easily be evaluated by substituting
the values of A*1/2 and Vﬁ/z from (4.2) and (5.15), respectively,
therein. Thus, it follows that

! ? _ ! 9 r
(5.19) E ALy /o Viso Vijo Ayjo =B Wi, XQ 0

where use has been made of the relationship in (L4.6). Substituting
(W = Buy) for Wixs We can rewrite (5.19) as

: t 1 '__ ? L ! -
(5.20) B Ao Viso Viso Ayyo = 0" [B Uy ul uy wly
- 28 E u;;g & 'U.:;: u:}: U':gs + B 2 E u:;: u-:';c u:,;c u :,:z ] e

The right hand expression can be evaluated as in the preceding
section and so we write

E u,, uy u, ul, = « I+ 0(4)
(5e21) B uy, uy v, u, = . H+ 0(1)

é E us}: 'Ll,;: u:}: 11;!; ' e I + O(ﬂ),

and, hence,

! LI. [} 2
(5.22) B Al Vi, Vijobysp = Toy n'[(1 +8%).I - 2 .H]n,

.

where terms of smaller order than 0(4) in probability have been
neglected,

Substituting (5.18) and (5.22) in (5.17), we get the value of
the last term in (5.2).

(5.23)  E (8 -6)'2'2(8 - &) = tp ('Z1m"WXQ'7“1') +
+ T oﬁ [(1 +8%n'n - 28 .n'H n].

-

Finally, combining (5.2), (5.3), (5.13) and (5+.23) and rearranging
the terms we get the result enunciated in Theorem 2.
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