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1. INTRODUCTION AND SUMMARY

Given a finite number T of time series observations on each of
the (economic) variables x and y, one may estimate the well-known
Koyck's [2] distributed lag model

(1.1) yt = axt ± apxt_i aP
2
xt_2 + + Ut 0 < p

where xt and yt denote the observations on the "independent" and
"dependent variables x and y, respectively, at time t
(t = 1, . . T); by using the liviatan's [3] instrumental
variable technique or by any other suitable estimation procedure.
Liviatan's method is independent of the autocorrelation properties
of the u-disturbances and yields consistent estimates of the para-
meters a and p i.e. with negligible bias in large samples.

This paper was written when the author was working as a ResearchAssociate at the Econometric Institute, Netherlands. I am thankfulto Professor W.H. Somermeyer for the help in the preparation ofthis note. Part of this research work was completed at the timeof author's registration for his doctoral clegree under the super-vision of Professor A.L. Nagar at the Delhi School of Economics,Delhi. I am greatful to him for the valuable guidance. However, forthe omissions, if any, the author alone is responsible.
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However, tllo raaultaaf large sample theory may not hold 'good
if the sample size is not sufficiently large which is the usual
situation encountered in econometric applications. Our interest,
therefore, lies in examining the behaviour of the estimator in small
samples. In an earlier paper Nagar and Gupta [4] analyzed the bias,
to order 1/2 (T being the sample size), of the Liviatan estimator
under fairly general conditions. Later, the moment matrix, to order
1/T2 of the same estimator was derived under the assumption of
inter-temporal independence of the disturbances.

2
 The present note

is a sequel to the above-mentioned articles [4] and [1]. It deals
with the analysis of Karl Pearson's measure of skewness toPi 9
order 1/1, 

9 
of the probability distribution of the Liviatan's

consistent estimator. The bias, to order 1/T 
9 
of the residual

variance estimator is .also derived according to Liviatan's method of
estimation.

The next section of the article describes the estimation
procedure along with the underlying assumptions. The results bn the
skewness and the bias of the residual variance estimator are
enunciated in Section 3. Finally, Sections 4 and 5 are devoted to the
derivation of the results.

2. THE ESTIMATION PROCEDURE3

Adopting the notation of the article [4] 9
can be written as (cf. [4], Section 2)

the model in (1.1)

(2.1) yt = axt PYt_i ± wt -7
't 

u
t 
- pu

t-1

or, in matrix notation

(2.2) y, = Za VI* 9 =

where z= (x ( y0 is a matrix of size (T-1) x 2,

are column vectors with components xt 9 yt and ut

(t = 29 o • 9 T), respectively;

with components x
t 1 y

t 
and u

t 
(t = 1,

and 6 = (a ) is a 2 x parameter vector to be estimated.P

9 3r*

and

and are column vectors

2 
Cf. Gupta [1]

000 T- I ) , respectively,

The notation and part of the exposition given in the earlier paper
[4] has been used in presenting the analysis in this and subsequent
sections of the article. Accordingly, for explanation of symbolsand detailed steps, the reader is advised to refer to the abovementioned article.
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Under the assumptions

(a) Coy (x - )t 9 t/ = COY (X
t-1 wt) =

(b) Eu
t 
= 0, var u

t 
= 0u

2 
for all t

x
t

is being non-stochastic, it is well known that the Liviatan

estimator

(2.3) (a) = 
(X'Z)-1

(3'

of the parameter 6, where X = x„) is a (T I) x 2 matrix of

observations on the instruments, is consistent.

3. STATEMENT OF THEOREMS

For presenting the results an the skewness and the bias of the

residual variance estimator, we further assume that

(c) Coy (ut u
t') = t

(d) :Lit's are normally distributed with zero mean and constant

variance 0
2 
.

U

The following results will now be proved in the subsequent

sections.

THEOREM 1, Under the ..L2E.12.T2-11212.,L (a),(b), (c) and (d) given above,
Karl Pearson's coefficient of skewness, to order 1/T in probability,

of _the probability distribution of the Liviatan estimator is Fiven
by.

(3.1)

where

(3.2) H

7
= 6 04 (eEg) P .g 'g).

[P(n Tlig g'Hn) - (1 4. 132)eg'ni p

is an auxiliary unit matrix of size (T 1) x (T - 1) 2



(3.3) n =

L.

n
2

• =XVI,

n,

is a vector of T I elements of the second column of the (T - 1) x 2

matrix XW, the 2 x 2 matrix Q .22D21.___st. of non-stochastic elements

and the 2 x I column vector t. are fziven by

(3.4) Q =

"crt
al.**

x

respectively; the square matrix

(3.5) B =

O 0 0 . • *. 0 0

O 1 0 „ 0 0

• p. 1 . • . 00
•

• T-3
13

and =
(01) 9

is of size T 1, the matrix W of the variances and covariances
of the disturbances and the column vector g of the non-stochastic
elements are defined in Section L. of the text.

Before we state the next theorem, we define

1 ^
• n , as an estimate of the residual variance 0

2
T-1

in (2.1) where 17/**= y**

THEOREM 2. Under the 22a21122112L2 of Theorem 1, the bias, to order
21/T in robalty, of the estimator of the residual variance Ow is

given by

(3.6) E -V.- 02 = 04[(1 3P2)n inT-1 w

-1 tr
1
qx Q rff - 2

1

- where

(3.7) 71= (x** ax, )

is a (T 1) x 2 matrix of non-stochastic elements.



in probability, of the estimator 80) about its true value

then obtained as

(4.5)

4. PROOF OF THEOREM 14

Denoting the estimator of the j ta (j = 1,2) parameter in the

2 x I column parameter vector 6 by OM, we may obtain an expression

for its sampling error -6(j) 6(j) by premultiplying - (5) by the

x 2 row vector e' which has its j th element equal to 1 and the

other element equal to zero. This implies that e' = (1 0) if j = 1

and e' = (0 1) if j = 2. In the latter case e =t . Accordingly, by

using the analysis given in Section 3 of article [4] and retaining
terms to 0(T-34/2) only we can write

(4.1)

where

(4.2)

•••••

15(j) = e'(ô -a) = ±

A
-1/2

= QD1/2

= QD1/2 D nn ryvt vi**

suffixes. of A indicating the order of magnitude in probability,

( 14- 3 ) . D1 = ( 0 u and D = X' (0
0

(y1 -

arc 2 x 2 matrices, the elements of which are 0(T
Id/2
) and OM

respectively, and the column vector

CL =

1

13

0T-2]

is of size T I. The third non-central moment Pi, to order T-5/2

6(j) is

= E[8(j) 6(j)].3 = E (e'A_1/2)3 + 3E[(e'A....1/2)2

N
+ 3E [(eT.A....1/2)

2
 
(e1-3/2)4- (efA-1/2)(etA-1)2]

For proving the theorems 1 and 2 we assume yi, the first element
of the vector y* to be fixed and non-stochastic.



In order to evaluate (4.5), we introduce

. (44,6) XQ 1 = (m n) =

and

(4.7) g' = e fQX ?

n
2

mT n
T

ors

where m and n denote the first and the second column of the
(T - 1) x 2 matrix XQ,', respectively, and g is a (T - 1) x I vector
of non-stochastic elements. It should be noted that

(4.8) g=m for j = I

= n for j =2

Thus, under the assumptions (a) through (d) stated in the
preceding sections and using (4.2), (4.5) - (4.7) it is easy to
verify that

E(e1A-1/2)3 =0
(4.9) ‘E(e lA v2)(e T.A.....1)

2
 = 0

and

(-1-4,10) E(e fA_1/2)2(e'A_3/2)

= E

E e liWw**

=

tTW e f QD1 QD1 WV_ w -
-2- 7

** e fQD0

because the first term on the right hand side of the first ecipality
sign in (4.10) and the terms in (4.9) involve only odd order moments
of the normal distribution while the second term on the right of the
equality sign in (4.10) yields an expression of O(1/T3) and is,
therefore, neglected. Hence, up to order VT/2 we have

(4.11) =

and, using (4.2) it can be written as

(L12) 113 = —3E(e tutw„e
X0 tD t We):;1* 1/2 •



Replacing Di by its right hand expression in
.•

(4.6), (407) we can rewrite (4.12) as

(4.13) 11; = - 3E ( g iiv**

Or, alternatively

( LI- .1 1-) p,3 = - 3 gt[Eu **

n

(4.3)

n u, Eu (t.
tTu u--"-- ** **

p

and using

n u,xt

pE u*g t u. n U + p2 E u gt n* %.

+13
2 
E n u?„ - [33 E u,„g t u u•! n -a! g

7

where use has been made of the relationship w = pu*
as defined in (2.2). If we pre and post multiply each of the terms
within square brackets in (4.114) by gt and g respectively, it
immediately follows that third andfourth terms are respectively
equal to fifth and sixth terms. The value of the third. expectation
can be obtained simply by interchanging n and g in the value of the
second term. Moreover, the value of the last expectation within
brackets can easily be derived from that of fourth by symmtry. •
Accordingly, we are required to evaluate first, second, fourth and
seventh terms only and the value of the remaining terms then follows.

Let us now consider the first expectation within square
brackets in (4.14).

(4.15) E * u!, n 1.1!„, = )(gtu,,,)(u n)]*

= E

2u211.1 u
2 u21

u3ui u3u2

uTlul uTs.../u2

uT 1.11 uT u2

••••

(Tz gt uvzT nt ut)

2



T

[ 

0 (2g2n2 + zg n ) (g2n3 + g3n2)
2 t t 

T
O (g2n3 + g3n2) (2g3n3 -I- .gtnt)

eoe (g24T-1
(g 3n 13 T-1

gT_in2)7

+ -T-1
n 
3

• (g2nT..1 g1n2)(g3nT..1 
gT-1n3) (2gT-111T-1 g̀-tn•

• (g2nT gT n2) (g3nT + gTn3) 
(gTnT-14. gT-inT)

=0 [(g tn).11 + gn tli + ng'11],

where n, g and H have been defined in (4.6)9 (4.7) and (3.2),
- respectively. Similarly, it is easy to verify that

(4.16) Second:

(4.17) Third :

(4.18) Fourth:

(4.19) Seventh:

and

(4.20) Eighth :

,g'E u** 

E u uu
t

n = ou4[g n' Hng1I-1 +(g-'1111).H]

E n u'

g'E u U. U•,
;i:;41 n -*

= [n g' Hgn!1-1 (n.flig).H]

= 04[(g'n) + Hgn' +

=0 1-11(n'Hg).i + li tng t +

• u* g t uu n u
= 11.[ g n) •I gnf ngt] •

Hence, combining (4.i4) through (4.20) we get

(4.21)

g(j)

= -340 [21(1 4. 2P
2
)(g'n) (3(g tlin) - 2P (n'Hg)i (g'Hg) +

1. 1 
(i
 4. 3p2)(ntlig) 

2(32(g'Hn) - 3(3 0 (32)(g'n)i(eg)30

The first two moments, to order VT, of the Liviatan estimator
around its true parameter value OM have already been evaluated

in [4] (cf. equations (2.13) and (2.9) ) which may be written as

(4.22)

and

(4.23)

where

(4.24)

and

(4.25)

E[( j) 6( j)] = - g12 n 0(1/T2)

p2 = Er6(i) ocin2 = g'Wg r(1/T2)

= o2 (1-1' (3.1)

isAT = = 02 [1 + (32) .1 
• 
- 13(-1 H')].

2 = Eu*
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Using the well known relationship between moments

(4•26) 113 = - 3 1.1:1 +243 /

-we obtain the third central moment [1
3 

of (5( j) to order T5/2, as

(4.27) t1.3 = 3 4- 3 (eWg)(g'2 n),

= 6 o4(.g' g)[ (n +

where use has been made of (4.21).

Similarly, the second central moment
is given by the relationship

(4.28) 2 
— 

= gtig = pit112 /T ).

112

g' ) (1 +
2
) .gtni

of the estimator o(j)

Finally, using (4.27), (4.28) and applying the formula

(4029) 4.-01 = 377
P2

we get the result stated in Theorem 1.

5. PROOF OF THEOREM 2
Using (2.2) we can write

(5.1) w** = Y**

and, thus
^ 

(5.2) E
^
-** E w.f."4

= W**

4;41

- a)

-2 E W z(O - +

6)1Z 1Z(8 - 6).

I ^ ^Since we are required to evaluate w to 0(1/T) 9 it
is, therefore, sufficient if we retain terms to 0(1) only in
E cv*,* . Accordingly, we evaluate (5.2) term by term and obtain
for the leading term on the right of the equality sign as

(5.3) E w * w**
\ 2= (T 1).0 $

where var w = 02 for t = 2, T.t w



0

(5.4)

In order to evaluate the next two terms, we first write

z = v

where the systematic part of Z is given by

(5.5) .2 = +
and

(5.6) V = .77* )

= ( X * * ay
1
)

is the stochastic part of Z; 7,.;, and T-4, being the systematic and
non-systematic parts of the vector y*, respectively, defined as

(5,7)

Y* = Y*

y* = ayi calx*

Tr,,A = u au..1

(cf.[4], Section 3)

Using (5.4), (5.5) and the result (3.8) of article [14], we find
the second txpeatation on the right of' the equality sign in (5.2). as

(5.8) E w', z(-6 -a) = E le 7 fA- E w',, VA / + E w.. A 9ep'41 ht*, 1A ....1/ 2 , V _i

where terms of order smaller than 1 have been neglected and
have been defined in (4.2). It is now easy to see that6 '

(5.9) E w' 
* 
Z
1 A1/ 

/ 
2 
= tr QX'1V),* --- 

VI being defined in (4.25) and

*
(5.10) E w, 

VA1/2 = E IC-* V =

because it involves third order moments of the normal distribution
which are zero according to assuption (c) given in Section 2. With
the help of the results given in (4.2), (4.6) and (5.6),
last term in (5.8) as

• (5.11) E w VA 1 = E (044

Iv**- E n

- n i[E(u, ) u*h4 • 4!* *

"tr" stands for "trace of".

we write the

u) Cut)*
n
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where we have used the relationship = u* aul and the term
involving aul has been neglected due to its smaller order than I in
probability. Now the value of the expression within square brackets
on the right of the third equality in (5.11) is simple to obtain
after replacing Nu*,. by (u.4, pu* ). Thus, we may directly write

(5.12) E w,!,* VA 1 = 0.14' T n' (32. -f3 H)n o(1).
U 6

Hence, substituting (5.9), (5.10) and (5.12) in (5.8) we get

(5.13) E 77;* Z6 - = tr (71WW) T 04 n' 02.1 - polOnt

to order '1' only.

Finally, we evaluate the last term in (5.2). For this purpose
we first split up the (T - 1) x 2 matrix V as

(5.14) V = V11/
2 

+ V0

where

(5.15) V1/2 = (9_ u*) and V
0 
= (0 - a u

1
),

the suffices of V indicating the order of magnitude in probability
and then by using (5.4) - (5.6) and (5.14) we obtain

(5.16) Z lZ = (71 +To IT1/2 V6)?(TI V1/2 V.0).

Now combining (3.8) of article [4] and (5.16) given above, we
get the value of the last term on the right of the equality sign in
(5.2) as

(5.17) E (o -6 )?Vz(8 -6 ) = EA
-
t1/2 r-Z-1A-1/2

+ EA' V /2 V1/2 A 1/21/2 1/2 -1/2

where where terms of order smaller than have been neglected and
is given in (4.2). The value of the second member in (5.17) can
immediately be written as

(5.18) E A
-
'
1/2

--e t= tr Z1 E(A_I/2 A11/2)

= tr (710„X'VEKQ 'Z71) .



The last member in (5.17) can easily be evaluated by substituting
the values of A...1/2 and 171/2 from (4.2) and (5.15), respectively,
therein. Thus, it follows that

(5.19) E /2 v./2 -v1/2 = E w XQ' FO 044*

0.00

0

loaf

v

12

**

= E wj,* n uj;, u* h'

where use has been made of the relationship in (4.6). Substituting
(u** Pu*) for w**, we can rewrfte (5.19) as

(5.20) E A l v-1/2 1/2 1/2 -1/2

- 2P E u** u! u• u!

= n' [E u 101. u• uf •** *m

2p u, 14. ]n.

The right hand expression can be evaluated as in the preceding
section and so we write

(5.21)

E u* * U ..,t7t U.

E u**

E u, u u* u*

= T (14 .I ÷

= T S4u . H 0(1)

= T (54 I + y

and, hence,

(5.22) E A'1/2 VI
/
, V A 1/2 TT n t

- 12 1/2 -1/2
2, - 2p .H]n 5,

where terms of smaller order than 0(1) in probability have been
neglected.

Substituting (5.18) and (5.22) in (5.17), we get the value of
the last term in (5.2).

(5.23) E (8 -6 ) - 6) = tr (710„X 'INXQ

r tT a Lku i 2)n fn .n'H n].

- Finally, combining (5.2), (5.3), (5.13) and (5.23) and rearranging
the terms we get the result enunciated in Theorem 2.



3

REFERENCES

. [1] Gupta, Y.P., "The Moment Matrix of the Liviatan's Consistent

Estimator in a Distributed Lag Mode,

San 7E, Volume 30, Series B9 Parts I & 29 pp. 89-96.

[2] Koyck, Distributed Lao's and Investment Analysis,

Amsterdam, 1954.

[3] Liviatan, N., "Consistent Estimation of Distributed Lags",
International Economic Review, Volume 4, 1963.

[4] Nagar, A.L. and Y.P. Gupta, "The Bias of Liviatant s Consistent
Estimator in a Distributed Lag Model",
Econometrica, Volume 36, April (1968), pp. 337-342.






