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1. INTRODUCTION

Sometimes one uses the chi-square test or the likelihood-ratio test for testina

goodness of fit. Serious problems exist with regard to these two tests, problems

which can easily be overlooked "b-: which are nevertheless of importance for the

practical research worker.

One problem is that no analytical expression is known for the distribution of

the test-statistics concerned even not under the null-hypothesis Ho. But foranately

this distribution is asymptotically known, for large samples which does not alter

the fact that we have to be content with a critical region determined on the basis

of an only approximate distribution. Little is known about the degree of

approximation for small N.

Another problem is concerned with the pcwer of the above tests. Even in the

case where an alternative hypothesis H1 is specified, the power is completely unknowr

because one does not know the distribution of the chi-square and LR-test-statistics

under H
1' 

even not asymptotically. To this day all efforts to find this distribution

have failed because of the serious analytical difficulties which arise.

As was menDned befo're, the above two problems are of importance for the

practical research worker and hence for the econometrician. In fact, when using a

test, knowledge about the degree of approximation of the distribution under Ho and

1
We are indebted to Prof. J. Koerts for many valuable suggestions.
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the power of this test is indispencible. Therefore we shall investigate these

problems by means of a simulation study. Perhaps, from an analytical point of view,

this approach is not very satisfactory. But nevertheless we need more insight in the

properties of these goodness-of-fit tests and thus, for the time being, we shall

have to take resort to a simulation approach.

The order of discussion is as follows:

In section 2 we describe the tests that will be investigated. After that, in section

3, the general criteria for the quality of tests are discussed. Next, section 4 is

devoted to the method of simulation we used, whereas the last section gives the

results and the conclusions.

2. THREE GOODNESS -OF-FIT TESTS

2.1, The Likelihood-Ratio Test

Let xl, xr be a sample of IT independent observations on a random variable

with unknown distribution function F(x). Suppose that we want to test the null-

hypothesis

(2.1)

against the alternative hypothesis

(2.2)

H
0 

F(x) = F0(x)

H1° 
F(x) = F

1 
(x)

we shall assume that F
0 
(x) is completely specified, in other words (2.1) is a ajmple

hypothesis. The range of the variate :Xis divided into K mutually exclusive classes.

We may then calculate the probability of an Observation falling in each

the null-hypothesis  is true, since F0(x) is completely specified. These

will be denoted by p
Ok' k

K classes are given by nk
thfalling in the k class is

= 1, .1.c., K. The numbers of observations

with E n
k 
= N. If the true probability

k=1

class, given

probabilities

falling in the

of an Observation

denoted by p
k 
the n

k' 
k = 1, ..., K, are multinomially

distributed and hence the likelihood of the sample is

(2.3) L(nk, Pk = n Pk
k=1

It is easy to verify that the likelihood (2;3) is maxir-i  zed when we substitute the

Maximum-Likelihood estimators for pk
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Under the null-hypothesis the likelihood is

n
k(2.5)

L(rik' P
k=1

 POk

so that the LR-statistic for testing Ho against HI is

L(nDc )
-  N K P nk(2 Ok ' .6) = = 

1N (2)

L(nk, Dk) k=1 
n
k

The crial region is 0 < A < A, where A is chosen to give the desired probability

of a Type-I error

The exact distribution of (2.6) is unknown but we do know that as N 00, -2 log A

is asymptotically distributed in the chi-square ft:7n with K - 1 degrees of freedom.

2.2. The Chi-square rest

Another test commonly used for testing Ho is the chi-square test which was

originally proposed by Karl Pearson0 Th test-criterion is

0

2 
K (n

k 
- Np )

(2.7) X = E
k=1 KPOk

and is, just as -2 log A, for large samples approximately chsquare distributed with

K 1 degrees of freedom. This follows from the fact that the n
k 

are multinomially

distributed with parameters 
Ok 

k = 1, ..., K. It is well-known that the multinomial

distribution approaches the normal distribution for large U. Thus for large N the n
k

are rz=L-1:--- distributed with means Npok, The exponent of this normal dis-

tribution proves to be a quadratic form which is exactly the chi-square test-statistic

(2.7). Thus X
2 
has an asymptotic chi-square distribution with K - 1 degrees of freedom.

The right-hand tail of this distribution is taken as the place of the critical region.

Furthermore, the chi-square test is asymptotically equivalent with the LR-test,
2that is to say, for large samples X takes the same value as -2 log A. From time to

time the suggestion has been made that, for small samples, the LR-test is to be

preferred to the chi-square test in view of possible higher power [1]. In section 5.29

however, we shall see that this happens only in a special case.
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2.3. The Chi-ssuar9. Test on Transformed Observations

We can also apply the usual chi-square test to the transformed observations.

One has used e.g. the well-known probability-integral transformation. Thus if

is a given sample and if the null-hypothesis to be tested is

H0. 
° F(x) = F0

 
(x), (x) we make the transformation

(2.8) y. = F
0 
(x.)

a.
(i = 1 5 ..., N)

The yi (i = 1 9 N) have then a uniform distribution over the interval (0, 1).

It is suggested that this finite range has some advantage over an infinite range

(--c0, 00) in view of the division into subclasses. We may divide the interval (0, 1)

into K classes of equal length which means at the same time that these classes

have equal probabilities of containing an observation yi. These probabilities are

all equal to 1/K. The number of yi's falling in class k will be called nit.;.. The

test statistic is the ordinary chi-square test-statistic applied to the n and

has the form

(2.9)

. N2
E -

k=1
=

v. K
= E

N k=1
-IT

This test-statistic has also an asymptotic chi-square distribution with K 1

degrees of freed= just as the ordinary chi-square test-statistic and the critical

region should be chosen in the right-hand tail.

3. THE QUALITY OF TESTS

For the determination of a critical region for the tests (2.6), (2.7) and (2.8)

one uses the chi-square distribution with K - 1 degrees of freedom. With the help

of tables of the x
2
-distribution a critical region is chosen corresponding to a
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desired probability of a Type-I error p(I). The true probability of a Type-I error,

say E(I), however, is in general only equal to p(I) if the true distribution of

the test-statistic concerned is identical with the distribution on which the critical

region is based. We know that, for the three tests we are considering, this is only

true for large samples. Thus for small N there will be a difference between p(I)

and Id*(I). It is not very clear how large the sample should be in order to make

the approximation precise enough.

As is already mentioned above the data should be grouped into classes: the

essence of the x
2
-test and of the LR-test is to reduce the problem to the multinamial

distribution. As to the x
2
-test, it is generally believed that the use of the

approximating chi-square distribution is precise enough for practical purposes

if all the Np
k 
> 10 [3, p. 420]. If some of the ND

k 
< 10 it would be advisable

= -
to pool these groups so that every group contains at least 10 expected observations.

It stands to reason that the sample should be large enough to make this pooling

possible. However, there is no general agreement about the admissable minimum of the

theoretical probabilities Npir. Kendall [2, p.440], for example, mentions a number

of 5. Cochran [1], on the contrary, has shown that one or two frequencies may be

allowed to fall to 1 or even lower, if X
2 
has at least 6 degrees of freedom, without

disturbing the test with p(I) = .05 or .01. For an econometrician this is a crucial

problem because in economics there are seldot more than 20 or 30 observations in a

particular situation.

However, the quality of a test is not only determined by p(I) but it is equally

important to know the probability of a Type-II error p(II). In practical applications

this reverse of the medal is often neglected. This may have serious consequences.

In many cases a research worker uses a test the probability of a Type-I error of

which is e.g. .05 without knowing or bothering about the probability of a Type-II

error. The man is very happy because he may be sure that on the average in only five

of a hundred samples he will reject the null-hypothesis when it is true. But often

he is not aware of the fact that in perhaps fifty or more of a hundred samples he

accepts the null-hypothesis while it is not true.

How is it possible that so many people who test a hypothesis do not pay attention

to the power of their test? The answer to this question is not very difficult: the

probability of a Type-I error can be determined by using the distribution of the

test-statistic under the null-hypothesis. Of many test-statistics that are used in

practice these distributions are known. If they are not exactly known an approximate

distribution can often be used for large samples, such as in the LR-test and the

chi-square test. In order to obtFin the probability of a Type-II error, however,

it is necessary to know the distribution of the test-statiatie_ej.ven that the

alternative hypothesis HI is true. For most tests that are used these diitributionq.,
have not been found, even not for large samples.



In the next section we are going to describe the simulation method by which

we shall try to elucidate the problems posed in this section to a certain extent.

4. THE SIMULATION METHOD

We want to examine the probability of a Type-II error, that is the probability

of accepting the null-hypothesis when it is not true. As the probability of a Type-II

error equals 1 minus the power it does not make any difference whether we investigate

the probability of a Type-II error or gather information about the power of a test.

The power of a test is thus the probability of rejecting the nullhypothesis when

it is not true. In this section we shall describe the method with which we tried to

wretch some information about the power of our three tests from the secrecy.

If we want to get some insight into the power of a certain test it is necessary

to specify the alternative hypothesis. As the chi-sqaure test, the LR-test and the

X*
2
-test are almost always used without specifying a clear alternative hypothesis

1

we investigated the power under some more or less different alternative hypotheses.

To get concrete results specification of the stem= of the distributions is un-

avoidable. We have chosen the normal forn. Of course this is a restrictive procedure

but there are no reasons to assume that the results would have been very different

when another form of the distributions would have been chosen. We examined the power

of testing the null-h othesis Ho: F(x) = N(0, 1) against the alternative hypothesis

H1: F(x) = U(11, a) for different values of and a. It should be kept in mind that
. .,in practice we should never use the .t
2 
-test, t" 

2 
-test. ana gt-test in such a case.

For if the distribution under H
0 

and that under H
1 
differ only in location and scale

we are able to find more powerful tests. The three tests are typically tests of

the form Ho: F(x) = F0(x) against H1: F(x) F0(x) and hence no alternative hypothesi

is specified.

Ahundred samples were drawn from a normal distribution with a mean and a

standard deviation a, so that the alternative hypothesis was true. Using the tables

of the chi-square distribution a critical region was determined for a given proba-

bility of a Type.-.I error. The test statistic was calculated and the number of times

that the test statistic took a value in the critical region was determined. This

number divided by hundred gives us an estimate of the power of the test which is

equal to 1 - p(II). This was done for the three tests described in section 2,

for 5 different values of p(I), for snmples consisting of 20,30, 50, and 100

Observations, and for several alternative hypotheses.

1
For a goodness-of-fit test is typically-not a test on the parameters of a known
distribution but a test on the shape of the distribution.



The range of the variate X was divided into 4, 6, 10, and 20 classes

respectively, where the classes were taken to cover equal ranges of the variate,

except at an extreme where the range of the variate is infinite. We could also

have chosen classes with equal hypothetical probabilities. But this would not

necessarily have improved the power of the tests. For if the number of classes is

not too large the equal-probabilities method may well result in a loss of sensivity

at the extremes of the range of the variate. Nevertheless, the grouping of the .

observations into classes ic a somewhat Obscure problem. In the derivation of the

asymptotic chi-square distribution of the chi-sauare test-statistic for example,

the fact is used that the multinomial distribution approaches the normal distribution

for large U, but this is only true for not too small Npir.

In section 3 we touched already upon the problem of the influence of the

magnitude of the Npl: on the difference between the probability of a Type-I error

on which the critical region is founded 1,(I) and the true probability of a Type-I

error p(i). In section 5.1 we shall show some by simulation obtained result

with respect to this last problem. After that, in section 5.2, we shall turn the

power.

5. RESULTS AND CONCLUSIONS

5.1. The Type -I errLez

A Type-I ce:Tor iE 11,Lae when the null-hypothesis is rejected though it is true,

If the distribution of the test-statistic is known under the null-hypothesis a

critical region can he det€:rnined for a given probability of a Type-I error. Mostly

this distribution is not exactly knugn, however Then sometimes an approximate

distribution for large samples may be used to determine a critical region. As was

mentioned already in the previous sections the three test-statistics we consider

in this paper only have such approximate distributicn3. They are all asymptotically

2
x -distributed with K - 1 degrees of freedom, w';:lare K denotes the number of classes

into which the range of the variate is divided. So we used the tables of the
2

dix -stribution to determine a critical region for a given p(I). Owing to this

approximative character of the x2-distribution the true probability of a Type-I

error, say p*(I),will in general differ from p(I). It is well-known that one factor

which is responsible for the order of magnitude of this difference is the average

number of Observations falling in each class (see section 3). In order to get an

idea about the size of difference between p(I) and p(I) and ebout the influence

of the average number of observations per class we estimated p (I) by simulation

for several cases. We shall denote our estimates by D(I). We have drawn a hundred

samples of IT observations from a normal distribution with mean zero and standard

deviation one and we tested the null-hypotheais H x N(0, 1) and counted the
v
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number of times that the test-statistic was larger than the critical value which

was taken from the appropriate
2
-tables. This number divided by 100 gives 13(I).

This was done for different values of N, K and p(I). The results are shown in

Table 1. The first column gives the number of times that the nulLhypothesis was re-

jected for the x
2
-test, the second for the LR-test, and the third for the x* -test.

p(I) = .005

p(I) = .01

P(I) = .025

p(I) = .05

p(I) = elo

Table 1

100 x D(I) for H
o
; p = 0 a

2 
= 1

K N = 20 N = 30 N = 50 N = 100

4 I 1 0 1 0 o 1 o 0 a o 0 0
610 00 0 0 0 0 0 0 0 0 0
10 ! 1 1 0 0 1 0 0 0 0 1 2 0
20 ' 0 0 0 0 0 0 0 0 0 0 0 0

K N = 20 IT = 30 N = 50 N = 100

4 1 0 1 0 0 1 0 0 0 0 0 0
6 3 0 1 0 0 0 0 0 0 0 0 0
10 1 1 1 1 1 0 0 0 0 2 2 0
20 0 0 0 0 0 0 0 0 0 0 1 0

r

K N = 20 N = 30 N = 50 N = 100

4 2 0 3 1 1
,

3 0 0 1 1 0 1
6 4 0 3 2 2 2 0 0 0 1 0 0
10 3 2 1 1 3 1 2 1 0 3 3 •1
20 1 0 0 2 2 0 , 0 0 0 0 1 0

K N = 20 N = 30 N= 50 N = 100

4 2 1 5 6 1 4 o 3 3 2 0 3
6 6 5 4 5 3 4 1 0 0 4 0 3
10 5 4 2 1 5 2 8 4 0 5 5 2
20 4 1 1 3 I0I 2 1 0 1 2 0

K N = 20 N = 30 IT = 50 N = 100

4 12 4 10 8 3 9 6513 2 1 6
6 9 9 7 11 7 9 3 3 8 5 6 8
10 8 6 5 10 7 6 8 13 2 7 9 7
20 5 4 7 5 13 4 7 5 0 4 3 2

The figures of this table show that the D(I) are low, even for small samples and

this is just what we want. That the average number of observations in each class T
does not have a significant influence on D(I) can be seen from the figures of the

next table where %I) is shown for a given p(I) = .025.
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Table 2

Estimated p(I) for the case where the theoretical p(I) = 0.25

D(I)

N = 20 N = 30 N= 50 N  = 100

4 .02 .01 .0 .01

6 .O1 .02 .0 .01

10 .03 .01 .02 .03
20 .01 .02 .0 .0

Thus we may conclude that in our case the approximate character of the chi-sauare

distribution does not have serious consequences for the Quality of the three tests

we used.

5.2. Ty22:1L error

In this section we discuss the power of the three tests we investigate, for dif-

ferent alternative hypotheses. Again a hundred samples were drawn from a normal

distribution of mean p and standard deviation a. We tested the null-hypothesis
,

Ho: X N(0, I) against the alternative hypothesis H1: X q, N(p, a2).1 We chose a

critical region corresponding to a given p(I) and counted the number of tines that

the value of the test-statistic fell into the critical region. We did this for

different sample sizes and for different numbers of classes. This procedure was

repeated for alternative values of p(I) equal to .005, .025, .05, and .1, respectively,

and for p = 0,1 and for a
2 
= .5, 1.5, and 2.2

Let us start by considering the case where p = 0 and a
2 
= .5. The first re-

markable thing to notice is that the power is very low when the number of observations

is not at least equal to 100. Another interesting fact is that the LR-test gives the

highest power in almost all cases and that this power reaches its highest value when

the number of classes is chosen to be equal to 4 or 6. Table 4 gives the error

probabilities for a special case.

1
No use was made of the fact that the sample was drawn from an N(p, a2) distribution.

2 
N 

2
egative values of 11 were not considered because testing Hi: p = -Po, a

2 
= ao

against Ho: p = 0, G
2 
= 1 will in general give the same results as testing

2 2 .
H1: P = P0' 

a = 
0 

against H
0 

p = 0, a
2 
= I.
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Table 3

Error-probabilities of the LR-test with Ho: p = 0, a2 = .5 where Er = 50 and K =

D(I)

.005 .77

.01 .70

.025 .49

.05 .37

.1 .28

We can also use the figures of Table 3 to illustrate the necessity of knowing the

power of a test when determining an optimal critical region and to show that it is not

enough to confine to the probability of a Type-I error alone.

The most important reason why the power of a test is not taken into consideration

when specifying a critical region, is that in many cases the distribution of the

test-statistic under the alternative hypothesis and thus the power of the test

are not known. If the power of a test is unknown we have no indication for the

quality of the test-procedure. Furthermore we cannot be sure to have chosen an

optimal value for p(I) as p(I) and p(II) should be determined simultaneously.

In most practical situations one takes p(I) equal to .025 or .05. In Table 3 we

see that the corresponding estimated D(II)'s are .49 and .37 respectively. But we
can also choose a p(I) equal to .01 or .1 giving values of %II) equal to .70 and

.28 respectively. Which combination of p(I) and n(II) should be chosen depends on

the relative importance of the errors of both types in each particular

situation. This may be described by means of a loss function giving weights to the

errors. If these weights are ci and c2 for p(I) and p(II) respectively, the expected

loss will be equal to L = ci p(I) c2 p(II). Table 4 shows the various expected los-

ses for alternative values of c
1 
and c

2.

Table 4

Expected losses for Hi: p = 0, a
2 
= .5 with N = 50 and K = 6.

p(I) D(II) c1 = ) C2 
=4 = c

2 
= c = 4, =4 c1 

.005 .77 .58 .39 .20

.01 .70 .53 .36 .18

.025 .49 .37 .26 .14

.05 .37 ,29 . 21 .13

.1 .23 .24 .19 .15
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From this table we can draw the conclusion that, if the loss-function were as we

have specified it and if our decision-criterion is to minimize the expected loss, we

have to choose a critical region of size .1 for the case where cl = 
5 
C2 _

p(I) = .1 for the case where c
1 
= ;12- and c

2 
= 3, and p(I) = 05 for the case where

3
C1 - 

- 
 4, c2 4*- 1 Notice that in none of these three cases the value of .025 for p(I)

(Which is often chosen in practical situations) is optimal. In some cases when the

distribution of the test-statistic under the alternative hypothesis is known, one

often uses a so-called I best" test. This is a test which minimizes D(II) for a given

value of p(I) and for a fixed N. Nevertheless one should realize that the concept

of a loss function is ignored here, for there is still one degree of freedom: p(I).

We believe that in many cases one has at least some intuitive ideas about a loss

function. To give an example:

Suppose that a manufacturer tests the quality of the products leaving his

factory and that he tests the null-hypothesis Ho: "the quality is good enough to

sell the goods" against the alternative H1: the quality is too bae. Let us further

assume that the test is based on a sample of size N, for a certain lot of goods.

We can imagine that a higher p(I) means higher costs. For p(I) is the probability of

rejecting Ho when it is true, in other words: the goods from which the sample is

drawn are rejected though the quality is good. This leads to extra costs for the

producer. Thus in the above case we can identify p(I) with a kind of risk for the

producer. On the other side, in this way of thinking is p(II) to be interpreted as

a sort of risk for the consumers of the goods, for D(II) is the probability of

accepting Ho though it is not true, in other words: the goods from which the sample is

drawn are accepted and sold though the quality is bad. It is reasonable to assume

that a higher risk for the consumers lowers the demand for the goods of our producer

and thus we can think of p(II) as a variable in the demand function for the product

which moves inversely with the quantity demanded. Thus because p(I) and p(II) cannot

be varied independently of each other for a given value of N, cl and c2 will depend

on the structure and on the parameters of the demand-function and of the cost-function.

No doubt an eatnpreneur will often have some idea about his demand-function and about

his cost-function and hence about his loss function.
a

We shall now turn to the case where F 1.1 = 0 and a = 1.5. Now the x -test

gives the best results in contrast with the previous case (H
1 

p = 0, a
2 
= .5) where

the LR-test yields the highest power. Table 5 illustrates this point clearly.
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Table 5

Estimated powers of three tests in the case p(I) = .025 and K = 6

p = 0 2 
2

= .5 p = 0, ua 
 
=1.5

2 
N 

2 
L. _ ___  

20 .03 .09 .06 .26 .11 .05

30 .08 .21 .09 .33 .15 .07

50 .24 .51 .24 .41 .17 .15

100 .74 .85 .63 .57 .33 .23

If we compare the figures under H1: p = 0, u
2 
= .5 with those under

H
1
: p = 0, a

2 
= 1.5 we notice that the change of a2 from .5 to 1.5 rises the power

of the x
2
-test and lowers that of the LR-test with only two exceptions: for N = 20

where the power of the LR-test rises with .02 and for N = 100 where the power of the

2 .2
X -test falls considerably. The power of the X4 -test shows the same pattern as that

of the LR-tcst, that is to say: it falls when a
2 

is increased from .5 to 1.5.

Table 6

Error-probabilities for the x
2

 -test in H
1 ° 

° p = 09 G
2 
= 1.5 where N = 50 and K =

lo(I) 

.005 .74

.01 .70

.025 .59

.05 .53

.44

We discover, in comparing the figures with those of the first two columns of Table 4

which gives the error-probabilities of the LR-test, that for H1: p = 0, a
2 
= 1.5,

the power is higher or the same for all values of p(I) except for p(I) = .005.

Nevertheless it will be clear that the power is very low, too low for practical

applications, even if N = 100, as becomes clear from Table 7.

Table 7

Error-probabilities of the x
2
-test with H1: p = 0, u

2

p(I)

.005 .59

.01 .54

.025 .43

.05 .37

.1 .30

= 1.5 where N = 100 and K = 6.
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As is to be expected the quality of the tests rises considerably when we have

an alternative hypothesis HI: p = 09 a
2 
= 2.0. Again the x

2
 -test turns out to be

the best . The D(II) are lowest for K = 6 or 10. A sample consisting of 50
observations gives a rather good power. Even in the case when N = 30 we get a power

which is much higher than that connected with the two alternative hypotheses dis-

cussed above, with an N equal to 100. The following table may illustrate this

point.

Table 8

Error-probabilities of the x
2
-test with H1 ° p = 0, a

2 
= 2 where K = 6.

N = 30 N = 50

D(II) 
.005 .37 .25
.01 .28 .22
.025 .23 .12

.05 .20 .07

.1 .19 .05

It may be interesting to consider the same kind of table for 10 instead of

6 classes:

Table 9

Error-probabilities of the x
2 
-test with H

1 ° 
• = 09 a

2 
= 2 where K = 10

N = 30 N = 50

DM %II) l'5(II)

.005 .37 .22

.01 .32 .14

.025 .27 .09

.05 .21 .09

.1 .13 .07

If we take K equal to 20 we get the same picture as above, hence we conclude

that it does not make much difference for the power of the test if we divide the

range into 67 10 or 20 classes.
Let us now consider an alternative hypothesis with p = 1 and a

2 
= .5. We again

show the error-probabilities in the following table,



Table 10

Error-probabilities of the x
2
-test with H1 ° p = 1

2 
= .5 where K = 6

N = 20 N = 30 .7 = 50

p(I) fi(II) -15(II) i5(II) 

.005 .09 .01 .0

.01 .05 .0 .0

.025 .03 .o .o

.05 .01 .o .0

.1 .01 .o .o

In this case it is not necessary to have more than 20 observations in order to

obtain an acceptable power. We also noticed that a different number of

classes chosen will hardly change the error-probabilities, except for K = 4 which

gives worse results. For table 10 we have again chosen the chi-square test because

it remains a little better than the other two tests, though the difference in

quality is no longer very important.

It is interesting to compare Table 10 with Table 2 where H1 was p = 0 and a2 =

The variances of the two cases are the same but the mean has been shifted to the

right with a unit. We see that the power is increased by this shift. This was to be

expected because, in Table 10, besides the variance also the mean differs from Ho.

The next hypothesis which we want to discuss is H,: p = 1, a
2 
= 1 and differs

from its predecessor only in the variance. That this change in variance of the

alternative hypothesis has only a minor influence on p(II) may be seen by comparing

the figures of Table 10 with those of the following table.

Table 11

Error-probabilities of the x
2
-test with H

1 
p = 1, a

2 
= 1 where K = 10

N = 20 N = 30

p(I) p(II) D(II)
.005 .11 .02

.01 .09 .01

.025 .o6 .01

.05 .06 .01

.1 .06 .0
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We had to choose the x
2
-test again because it is still slightly better than the other

two tests. The number of classes should be taken equal to 6, 10 or 20. For practical

purposes the differences between the P(II) in Table 10 and those in Table 11 nay be
neglected. Thus we see that in our case, where the mean of the distribution under Hi

differs from that of the distribution under H
0 
by a whole unit, the power of the

x
2

 -test is rather robust against a change in the variance of H
1
.

The next table deals with a H
1 
with p = 1 but now we take a

2 
larger than 1, in

fact equal to 1.5.

Table 12

Error-probabilities of the x
2
-test with H

1. 
• p = 1, a

2 
= 1.5 where K = 10.

N = 20 N = 30

p(I) D(II) D(II)

.005 .09 .02

.01 .11 .01

.025 .07 .01

.05 .04 .00

.1 .05 .00

Here we also take the X2-testbecause it is superior to the other two tests and

we see that a sample size equal to 20 is sufficient. As to the number of classes

to be chosen, the worst we can do is to take K equal to 4. It does not make much

diMrence, however, whether we take 6, 10 or 20 classes. The D(II) are again

hardly influenced by the change of the variance. This strengthens our conclusion

about the insensibility of the x
2
-test to changes in the variance of Hi, which was

drawn in the previous paragraph. We may illustrate this by means of the following

table where we compare four different cases.

Table 13

Error-probabilities of the x
2
-test where N = 20 and K = 10

p(I) =  a
2 
= .5 p=1a2 =1 p = 1, a

2 
= 1.5 p = 1,

2 
= 2

.005 .07 .11 .09 .08

.01 ' .o6 .09 .11 .08

.025 .03 .06 .07 .06

.05 .03 .06 .04 .05

.1 .01 .06 .05 .03
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The last column of Table 13 gives the error-probabilities for a H
1
: P = 1, and

G
2 
= 2, the last case which is investigated. Again it does not make much difference

whether we take K equal to 6, 10 or 20 and the chi-sauare test yields the best

error-prdbabilities. A sample size of N = 20 proves to he sufficient.

5.3. Summary of the Results

Resuming our results we can say that the LR-test had a higher power than the

x
2
-test and than the X 2-test in only one case of the 7 we investigated, namely

that with p = 0 and a2 = .05. In all other cases the x2-test dotinates the other two.

tests. Next we give the following table.

Table 14

Test to Ir E D(II)H
1 be used ) =a.• 1

2 N K
_II a ..... --

0 .5 - 4 or 6 LR 100 6 .52
20 1.5 - 6 or 10 X 50 6 .45
20 2 50 4 x 5o 6 .14
21 .5 20 4 x 20 6 .04
21 1 20 4 x 20 10 .08
21 1.5 20 ur 30 4 x 20 10 .07
21 2 20 or 30 4 x 20 10 .06

where the first two columns specify the alternative hypothesis. The third column

gives the number of observations required to obtain a satisfactory power. The 4th

and 
5th 

column show the number of classes to be chosen and the test to be used

respectively. To give an idea of the qualities of the tests the last column gives

the average power (averaged over the 5 p(I)'s that are considered) for values of N
and K specified in the two previous columns.

Usually, in econometrics, we do not have more than 20 or 30 observations. But

from Table 14 we 1.6;:rnthat for N equal to 20 or 30, the x2-test has only a high

power if the "true" distribution differs from the hypothetical distribution in locati,.

If these two distributions have the same mean the results of the x
2
-test are very bad.

1
The first two places of column 3 are empty because an N equal to 100 (the highest
we observed) did not yet give an acceptable power.
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The fourth column of Table 14 shows that in thc relevant situations one should

take K larger than 4. Our results indicate that it is much more dangerous to choose

K too small than to choose K too large.

Of course our conclusions only hold for normal distributions, for our

maintained hypothesis was: F(x) is normal. But it is not probable that choosing

a different shape for the distribution of X will yield better results. Another

aspect we did not investigate is the influLnce on the power of first estimating

the mean and the variance of the distribution from the sample, before specifying

the null-hypothesis. But here also we may expect that estimation will not improve

our results. In the opposite, we believe that the powers will be much lower, especial-

ly when the mean is estimated accurately.

Nevertheless a next paper will be devoted to the effect of estimation on the

power and we shall use there non-normal distributions.






