

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Station, o.s.

Netherlands School of Economics UNDATION OF ECONOMETRIC INSTITUTE

MAR 9 1367

Report 6507

THE INFORMATION APPROACH
TO THE PREDICTION OF INTERREGIONAL TRADE FLOWS

by Pedro Uribe, C.G. de Leeuw and H. Theil

THE INFORMATION APPROACH TO THE PREDICTION OF INTERREGIONAL TRADE FLOWS

by Pedro Uribe, 1 C.G. de Leeuw and H. Theil

Contents

		Page
1.	Introduction	1
2.	International Transaction Shares from the Stand-	-
	point of Information Theory	1
3.	Some Empirical Results; A Third Prediction	
	Method	4
4.	The Fourth Method: RAS	8
5•	The Information Inaccuracy of Forecasts of	
	Import and Export Distributions for Individual	
	Regions	9
6.	Tracing the E.E.C. and Communist Policy Effects	10
Ref	ferences	12
Apr	pendix	13

1. INTRODUCTION

In a recent article [5] published in the <u>Cahiers économiques de Bruxelles</u> Professor J. Waelbroeck analyzed world trade flows in a very interesting way. He took total exports to and total imports from each region as given and applied the RAS method - originally constructed for input-output analysis - to analyze the extent to which flows known from an earlier table can account for flows in a later year. The approach has some resemblance to certain aspects of bivariate information theory. The present paper takes this theory as a starting point to provide an alternative method of analysis. The empirical part of the paper is based on the same data as those which are used by Waelbroeck. It turns out that the two methods yield virtually equivalent results, which is not really surprising, but which sheds an interesting light on the nature of the RAS method.

2. INTERNATIONAL TRANSACTION SHARES FROM THE STANDPOINT OF INFORMATION THEORY

We divide the world into n regions and indicate by X_{ij} the flow of exports from region i to region j, by $X_{i.} = \sum X_{ij}$ (sum over j) total exports from region i, by $X_{i.} = \sum X_{ij}$ (sum over i) total imports by region j, and by $X_{i.} = \sum \sum X_{ij}$ world trade. We divide all these flows

Mr. Uribe wrote this article while being a guest of the Econometric Institute under a grant of the International Technical Assistance of the Dutch government.

by world trade, so that we obtain

(2.1)
$$x_{ij} = \frac{X_{ij}}{X} \qquad x_{i.} = \frac{X_{i.}}{X} \qquad x_{ij} = \frac{X_{ij}}{X}$$

which are, respectively, the share of the flow from i to j in world trade, the share of i in world exports, and the share of j in world imports. Since the x_{ij} are nonnegative and add up to 1, they can be regarded as probabilities of a bivariate distribution, and the x_{i} and x_{i} as the corresponding marginal probabilities.

We assume that the flows X_{ij} refer to some previous year. Let it be our task to predict the flows for some later year, to be denoted by Y_{ij} , under the condition that the marginal totals Y_{i} , Y_{ij} are given. Hence it is sufficient to predict the shares $y_{ij} = Y_{ij}/Y_{i}$, given all $y_{i} = Y_{i}/Y_{i}$, and $y_{i} = Y_{i}/Y_{i}$, where Y_{i} is the same function of Y_{ij} as X_{i} , is of X_{ij} .

One prediction method is

(2.2)
$$\hat{y}_{ij}^1 = y_{i}, y_{ij}$$
 i, $j = 1, ..., n$

which amounts to the assumption of import-export independence. It means that exports from i to j are supposed to be considerable when i exports much and j imports much, and that the flow from i to j becomes less when either i exports little or j imports little or both. Although there is undoubtedly some truth in this assumption, it is clearly of a very approximate nature. Some region i may export little to some other region j, in spite of substantial values of y_i, and y_i, simply because their distance is sizable or because their governments have troubles with each other. Now some of these causes have a quasi-permanent character, such as distance and possibly political problems. It is therefore conceivable that we can improve on the prediction method (2.2) by taking account of the flow distribution in an earlier year. So we return to the year of our x_i;

For that year it will, generally, not be true that $x_{ij} = x_i x_j$ holds for all pairs (i, j). The left-hand side will exceed the right-hand side for some pairs - those whose trade is above the independence level; the left-hand side will be lower than the right-hand side for other pairs - those who trade with each other at below-independence level. Consider

$$\log \frac{x_{ij}}{x_{i}^{x} \cdot i}$$

which is known in information theory (see [2], pp. 30-31) as the <u>mutual information</u> between i and j; that is, in this case, between the exporting region i and the importing region j. It will be positive when the trade from i to j is above the independence level, negative when it is below that level. An obvious prediction method, presumably

superior to (2.2), amounts to assuming that this mutual information remains unchanged. That is,

$$\frac{y_{i,j}^!}{y_{i,y,j}} = \frac{x_{i,j}}{x_{i,x,j}}$$
 i, j = 1, ..., n

where y'ij is the forecast of yij. We thus have:

(2.4)
$$y'_{ij} = \frac{y_{i,}y_{,j}}{x_{i,}x_{,j}} x_{ij}$$
 i, $j = 1, ..., n$

Note, however, that the $y_{ij}^{!}$ do not necessarily add up to 1. This can be remedied easily by adjusting them proportionally:

(2.5)
$$\hat{y}_{ij}^{2} = \frac{y_{ij}'}{n} \quad i, j = 1, ..., n$$

$$\sum_{h=1}^{\Sigma} \sum_{k=1}^{\Sigma} y_{hk}'$$

An important question is: Now that we have obtained two competing sets of forecasts, how can we evaluate their merits when they are both compared with the observed yij values? We can, of course, compare all n² pairs of individual prediction errors, but this is quite inconvenient unless n is very small. Moreover, the individual comparisons will usually not lead to a straightforward overall evaluation of all n2 predictions combined. An alternative method, also derived from information theory, seems preferable. We regard the forecast \hat{y}_{ij} as a "prior" probability, which is followed later on by a "message" on the actual values, i.e., the observed values yii, which are regarded as "posterior" probabilities. We consider the forecasts to be accurate when the realizations (the posterior probabilities) give little information, given the forecasts made (the prior probabilities). Conversely, we consider the forecasts to be inaccurate when the realizations contain a great deal of information, given the forecasts. The information content of a message leading to the posterior probabilities $y_{i,j}$, given the prior probabilities $\hat{y}_{i,j}$, is defined in information theory as

(2.6)
$$I = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{ij} \log \frac{y_{ij}}{\hat{y}_{ij}}$$

This measure, which takes larger values when the differences between corresponding values \hat{y}_{ij} and y_{ij} become larger, is known as the information inaccuracy of the forecasts \hat{y}_{ij} with respect to the realizations y_{ij} ; see [4]. We shall use 2 as the base of our logarithms, as is usual in information theory, in which case I is expressed in "bits." Note that the independence prediction method (2.2) leads to the following value for I:

$$\begin{array}{cccc}
n & n \\
\Sigma & \Sigma \\
i=1 & j=1
\end{array}$$
 $y_{ij} \log \frac{y_{ij}}{y_{i,y,j}}$

On comparing this with the discussion below (2.3) we conclude that this is simply the expected mutual information of the n^2 flows y_{ij} in the year to be predicted.

3. SOME EMPIRICAL RESULTS; A THIRD PREDICTION METHOD

We shall now apply the prediction procedures (2.2) and (2.5) to import and export data of the years 1938, 1948, 1951-52, and 1959-60 of the following 8 regions: 2

- North America
- Latin America
- Germany
- Other E.B.C. countries
- United Kingdom
- Other E.F.T.A. countries
- Communist countries
- Rest of the world

For each prediction method we can take any of the four years as a base and predict (forecast or "backcast") any of the other years. For the simple independence method (2.2) there is, of course, only one set of predictions for each year. The following are its inaccuracy values:

1938	.2061	bit
1948	.2540	bit
1951-52	• 3479	bit
1959-60	• 3532	bit

The values are increasing over time, which implies a trend away from independence.

The figures just given must be regarded as a kind of upper limit to the inaccuracy value obtained by the use of more sophisticated prediction procedures. Table 1 shows the extent to which this is indeed the case. Each cell of the table consists of three figures, the first of which refers to \hat{y}_{ij}^2 as defined in (2.5); the second will be discussed at the end of this section, the third in the next section. On

The data are the same as those used by M. Waelbroeck except that Japan, which was taken by him as a separate region, is allocated here to the rest of the world. This is motivated by the zero flow from Other E.E.C. countries to Japan in 1938, followed by positive flows in later years, which would have led to infinite inaccuracy values. Note further that Germany should be interpreted as Western Germany after the War, and that Yugoslavia has been allocated to the rest of the world rather than to the Communist countries.

comparing the \hat{y}_{ij}^2 figures with those of \hat{y}_{ij} discussed above, we find that they are considerably lower except when 1938 is backcast by means of the early postwar data. Hence it is indeed true that we gain in prediction accuracy when we take account of the flow pattern of an earlier year.

	OF FOUR ALTERI	NATIVE PREDI	CTION METHODS						
Base year	Year to be predicted								
	1938	1948	1951-52	1959-60					
1938		1146 995 996	1616 1553 1552	1728 1701 1702					
1948	2908 2702 2617		964 906 900	1747 1479 1439					
1951-52	2478 2402 2367	994 948 948	The second secon	456 338 340					
1959-60	1572 1511 1492	920 728 735	3 2 0 247 246						

TABLE 1. INFORMATION INACCURACY VALUES OF FOUR ALTERNATIVE PREDICTION METHODS

Note. All values are in 10⁻¹⁴ bits.

The prediction method (2.5) has been derived from y_{ij}^{\prime} as defined in (2.4) in such a way that it satisfies the constraint that the double sum over \hat{y}_{ij}^2 be equal to 1. It is important to realize, however, that the single sum of these \hat{y}_{ij}^2 over j is not equal to the y_i which is taken as given, and that the sum of \hat{y}_{ij}^2 over i is not equal to y_{ij}^2 . This is pursued in Table 2, which contains $y_{i}^{\prime} = \sum y_{ij}^{\prime}$ (sum over j) and $y_{ij}^{\prime} = \sum y_{ij}^{\prime}$ (sum over i) as well as the observed y_{i} , y_{ij}^{\prime} . It turns out that the double sum y_{i}^{\prime} is close to 1 in all cases, so that the correction (2.5) is of minor importance (at most 2 per cent and frequently much less). However, the discrepancies $y_{i}^{\prime} - y_{i}^{\prime}$ and $y_{ij}^{\prime} - y_{ij}^{\prime}$ are larger. This difference between the behavior of subtotals and grand total is not really surprising, which can be argued as follows.

Let us write

(3.1)
$$y_{i} = (1 + \delta_{i})x_{i}$$
 $y_{i} = (1 + \epsilon_{i})x_{i}$

Then we find after summation over i and over j, respectively (

(3.2)
$$\sum_{i=1}^{n} x_{i} \delta_{i} = \sum_{j=1}^{n} x_{j} \epsilon_{j} = 0$$

Going back to (2.4), we find for the unadjusted forecast $y_{ij}^{!}$:

$$y_{ij}^{i} = (1 + \delta_{i})(1 + \epsilon_{j})x_{ij}$$

so that the marginal sums are

$$y_{i.}' = (1 + \delta_{i}) \sum_{j=1}^{n} (1 + \varepsilon_{j}) x_{ij} = (1 + \delta_{i}) x_{i.} + (1 + \delta_{i}) \sum_{j=1}^{n} x_{ij} \varepsilon_{j}$$

$$= y_{i.} + (1 + \delta_{i}) \sum_{j=1}^{n} x_{ij} \varepsilon_{j}$$

and

$$y_{ij}' = (1 + \epsilon_j) \sum_{i=1}^{n} (1 + \delta_i) x_{ij} = y_{ij} + (1 + \epsilon_j) \sum_{i=1}^{n} x_{ij} \delta_i$$

This shows that the discrepancies $y_i' - y_i$ and $y_j' - y_j$ are of the same order of magnitude as the ϵ 's and the δ 's, respectively. Consider now the double sum:

$$(3.3) y' = \sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} y_{i} + \sum_{i=1}^{n} (1 + \delta_{i}) \sum_{j=1}^{n} x_{ij} \varepsilon_{j}$$

$$= 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \varepsilon_{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \delta_{i} \varepsilon_{j}$$

$$= 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \delta_{i} \varepsilon_{j}$$

$$= 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \delta_{i} \varepsilon_{j}$$

where use is made of

see (3.2). The result (3.3) shows that y' is equal to 1 apart from a discrepancy which is of the second order of smallness in the δ 's and ϵ 's.

Given that the forecast (2.5) does not satisfy its marginal constraints, one may wonder whether we can adjust the y_{ij}^{l} defined in (2.4) in such a way that it satisfies both the "total" constraint[as 2.5 already does] and also each of the marginal constraints. Since our criterion for the merits of forecasts is the information criterion (2.6), an obvious procedure is to define a third set of forecasts \hat{y}_{ij}^{3} which minimize the information inaccuracy with respect to \hat{y}_{ij}^{2} :

$$\begin{array}{cccc}
 & \text{n} & \text{n} \\
 & \Sigma & \Sigma & \hat{y}_{ij}^2 & \log \frac{\hat{y}_{ij}^3}{\hat{y}_{ii}^2} \\
 & & \text{i=1 j=1} & \end{array}$$

subject to

TABLE 2. OBSERVED AND PREDICTED ROW AND COLUMN TOTALS $(y_i, y_i, y_j, y_j, y_j) \times 10^{4}$

Year predicted	Base year of prediction	North America	Latin America	Germany	Other E.E.C. countries	United Kingdom	Other E.F.T.A. countries	Communist	Rest of the world	Total
		_			otal regiona		divided b	y world tra	<u>de</u>)	
1938	6bserved (1938)	1674	729	962	897	1032	742	1015	2949	10000
	1948	1701	672	888	915	1000	768	1051	2977	9972
	1951-52	1543	660	907	962	949	860	982	3177	10040
	1959-60	1669	• 703	922	933	992	824	793	3239	10076
1948	observed (1948)	2731	1136	123	1011	1 099	569	644	2686	10000
	1938	2961	1132	138	962	1192	538	604	2511	10039
	1951-52	2774	1130	132	1017	1096	573	573	2703	9998
	1959-60	3043	1160	134	968	1141	552	465	2758	10222
1951-52	observed (1951-52)	2355	918	464	1238	888	609	824	2704	10000
	1938	2501	933	502	1169	982	557	782	2576	10003
	1948	2372	913	422	1223	905	597	888	2653	9974
	1959-60	2571	945	478	1184	931	586	659	2770	10123
1959–60	observed (1959-60)	2012	696	877	1394	797	645	1205	2374	10000
	1938	2016	704	976	1329	854	615	1224	2267	9984
	1948	2020	664	810	1382	780	664	1587	2252	10160
	1951-52	1858	673	856	1398	749	680	1580	2358	10152
ý.										

			Column	totals (total regio	nal import	s divided	by world t	rade)	
1938	obse r ved (1938)	1198	58,8	1036	1224	1655	661	714	2923	10000
	1948	988	437	790	1518	1751	824	889	2776	9972
	1951 - 52	1065	521 ₄	971	1316	1668	756	846	2895	10040
	1959 - 60	1211	554	1008	1225	1749	648	662	3020	10076
1948	observed (1948)	1653	965	276	1469	1243	7°29	627	3038	10000
	1938	2012	1050	287	1258	1333	593	511	2994	10039
	1951 – 52	1822	1024	277	1370	1227	646	529	3103	9998
	1959 – 60	2027	1095	284	1294	1334	587	434	3166	10222
1951-	52 observed (1951-52)	1728	839	454	1292	1098	665	771	3154	10000
	1938	1919	892	473	1203	1158	602	680	3075	10003
	1948	1581	761	420	1434	1122	748	860	3047	9974
	1959-60	1938	892	470	1223	1171	594	620	3215	10123
1959-6	60 observed (1959-60)	1667	635	768	1314	891	743	1193	2789	10000
	1938	1667	678	792	1334	895	780	1151	2688	9984
	1948	1367	520	656	1595	887	955	1583	2597	10160
	1951-52	1470	602	736	1374	850	852	1530	2738	10152

Note: All figures are to be multiplied by 10⁻⁴

This is what may be called a "two-stage information forecast." The first stage consists of computing preliminary forecasts y_{ij}^{\prime} on the basis of constant mutual information values. These preliminary forecasts are adjusted proportionally so as to obtain \hat{y}_{ij}^2 , after which \hat{y}_{ij}^3 is obtained by minimizing, subject to (3.5), the information inaccuracy (3.4) in which \hat{y}_{ij}^2 is the "actual" and \hat{y}_{ij}^3 the "predicted" value.

The actual task of minimizing (3.4) subject to (3.5) is rather awkward. The differences between the various forecasts are rather small, however, so that we may decide to expand the inaccuracy according to powers of $\hat{y}_{ij}^3 - \hat{y}_{ij}^2$. The leading nonzero term is quadratic and is proportional to a chi-square:

So we minimize the quadratic form (3.6) subject to the linear constraints (3.5), which is a straightforward procedure. The information inaccuracy values are shown in each call of Table 1 (second number). The results indicate that there is a uniform improvement over the method (2.5). We conclude that it is important to take the marginal constraints seriously.

4. THE FOURTH METHOD: RAS

The method employed by M. Waelbroeck himself is the RAS method, which was originally designed by tone and Brown [3] for the adjustment of input coefficient matrices. It amounts to the computation of n values $\mathbf{r_i}$ and n values $\mathbf{s_j}$ such that

(4.1)
$$\hat{y}_{ij}^{\mu} = r_i x_{ij} s_j$$
 i, $j = 1, ..., n$

satisfies the constraints

Stephan's method has been used; see e.g. Deming [1], pp. 121-124. Note that it is immaterial for \hat{y}_{1}^{2} , whether we use \hat{y}_{1}^{2} , in (3.6) or \hat{y}_{1}^{2} . Hence the proportional adjustment of the preliminary forecasts is not really necessary.

The inaccuracy values are shown on the third line of each cell of Table 1. They turn out to be of the same order of magnitude as those of the first line, which is not really surprising. If we would identify r_i with y_i , x_i , and s_j with y_j , the forecast (4.1) would be the same as y_{ij} defined in (2.4). This identification is not really correct, of course, since \hat{y}_{ij}^4 does and y_{ij}^i does not satisfy the marginal constraints. But if we adjust y_{ij}^i such that these constraints are satisfied, it stands to reason that the result \hat{y}_{ij}^3 will not differ very much from \hat{y}_{ij}^4 . Therefore, the RAS method can be regarded as being approximately equivalent to the information criterion when the y_{ij}^i do not violate the marginal constraints too seriously.

5. THE INFORMATION INACCURACY OF FORECASTS OF IMPORT AND EXPORT DISTRIBUTIONS FOR INDIVIDUAL REGIONS

Until now we considered the problem of the prediction of all n^2 shares y_{ij} in world trade. We may also be interested in the prediction of the destination distribution of all exports from a given region i to all regions, $y_{ij}/y_{i.}$, $j=1,\ldots,n$, or in the origin distribution of all imports to a given region j, $y_{ij}/y_{.j}$, $i=1,\ldots,n$. The corresponding inaccuracy values are

(5.1)
$$I_{i.} = \sum_{j=1}^{n} \frac{y_{i,j}}{y_{i.}} \log \frac{y_{i,j}/y_{i.}}{\hat{y}_{i,j}/\hat{y}_{i.}}$$

$$= \frac{1}{y_{i.}} \sum_{j=1}^{n} y_{i,j} \log \frac{y_{i,j}}{\hat{y}_{i,j}} - \log \frac{y_{i.}}{\hat{y}_{i.}}$$

in the case of exports, and in that of imports:

(5.2)
$$I_{\bullet j} = \sum_{i=1}^{n} \frac{y_{ij}}{y_{\bullet j}} \log \frac{y_{ij}/y_{\bullet j}}{\hat{y}_{ij}/\hat{y}_{\bullet j}}$$
$$= \frac{1}{y_{\bullet j}} \sum_{i=1}^{n} y_{ij} \log \frac{y_{ij}}{\hat{y}_{ij}} - \log \frac{y_{\bullet j}}{\hat{y}_{\bullet j}}$$

 $^{^4}$ Actually, the iterative procedure which leads to the RAS forecasts starts in the first round with precisely these ${
m r_i}$ and ${
m s_j}$ values.

When the forecasts satisfy the marginal constraints (the case of \hat{y}_{ij}^3 and \hat{y}_{ij}^4) the second term on the second line of both (5.1) and (5.2) will vanish.

The results are presented in Table 3 for all forecasts (not for the backcasts). By and large, they show the same pattern as that of the "total" inaccuracy. Each cell of the table contains four numbers. The first corresponds to the independence prediction (2.2), the second to \hat{y}_{ij}^2 as defined in (2.5). This second value is in almost all cases considerably less than the first. The third value of each cell corresponds to \hat{y}_{ij}^3 , the fourth to RAS. They are both better than \hat{y}_{ij}^2 in a majority of all cases, but the majority is not overwhelming (less than 60 per cent). When comparing the various cells, we find that the largest figures are those of the Communist countries. This is the effect of a particular trade policy as will be explained in some detail in the next section.

6. TRACING THE E.E.C. AND THE COMMUNIST POLICY EFFECTS

In concluding we want to pay some attention to the possibility of using information analysis to the problem of tracing certain special developments. For this purpose we return to the mutual information concept (2.3),

$$\log \frac{x_{ij}}{x_{i},x_{i}}$$

As stated above, this logarithm is positive when the flow from i to j is above the independence level, negative when it is below that level, and it takes algebraically larger values when the flow from i to j increases relative to the total exports of i and the total imports of j. It seems clear that the development of this logarithmic ratio should enable us, at least in principle, to draw interesting conclusions about the changes in the trade pattern. In the present case we have only four observations on each mutual information, but it is nevertheless instructive to consider a few cases.

One such case is that of the Communist countries (region 7). For the trade between these countries we consider (6.) with i = j = 7, which takes the following values:

1938	.619
1948	2.663
1 951 - 52	2.973
1959-60	22108

These figures clearly indicate that the countries involved concentrated their trade among each other after the War. Of course, this feature is

TABLE 3. INFORMATION INACCURACIES FOR EXPORT SHARE AND IMPORT SHARE PREDICTIONS

Year predicted	Base year of prediction	North America	Latin America	Germany	Other E.E.C. countries	United K i ngdom	Other E.F.T.A. countries	Communist	Rest of the world
				Export	share inform	ation ina	ccuracies		
19 48	1938	1567 954 931 928	2538 442 294 293	10533 7208 6754 6803	1550 459 263 262	4550 727 595 599	1757 962 960 957	8000 5165 4576 4580	1571 7 4 4 681 682
1951-52	1938	2527 1180 1243 1241	4478 429 442 446	5006 2095 2241 2219	1571 283 240 239	4549 860 752 760	2250 876 996 1004	14575 10388 9575 9559	1123 567 627 630
	1948	2527 1054 972 976	4478 416 279 280	5006 6330 5714 5599	1571 271 238 239	4549 317 444 436	2250 720 565 560	14575 1076 1295 1291	1123 673 653 652
1959 – 60	1938	2814 1117 1125 1126	4153 153 140 140	3880 2234 2365 2352	1751 241 297 301	3462 432 483 478	224 8 1485 1501 1502	11916 8462 7986 7991	994 404 499 503
	1948	2814 1776 1818 1799	4153 462 215 212	3880 6809 5539 5233	1751 740 897 905	3462 548 772 757	2248 1371 863 843	11916 1071 1185 1160	994 1326 957 940
	1951–52	2814 378 397 400	4153 402 449 449	3880 482 342 339	1751 640 738 743	3462 360 296 297	2248 160 132 128	11916 483 331 345	994 1 7 4 92 90

					Import s	share infor	rmation ina	accuracies		
19	948	1938	2 403 297 210 220	4604 690 691 696	4486 9350 10126 10094	1058 768 719 709	3172 1156 926 938	2551 533 480 471	8121 4343 4237 4223	1086 271 . 306 308
19	951-52	1938	3494 525 492 492	4543 782 817 815	2597 1729 1738 1739	1492 1168 1204 1205	3214 1135 970 980	3425 1009 1088 1094	17378 11657 11267 11228	834 322 372 375
		1948	3494 291 306 308	4543 1803 1661 1633	2597 6469 6079 6044	1492 335 466 461	3214 319 358 363	3425 290 249 244	17378 2221 2235 2241	834 492 474 467
19	59-1960	1938	3464 818 831 830	3707 968 882 887	3775 1543 1402 1407	1805 1126 1179 1177	3251 827 767 769	3892 1611 1568 1567	11919 82 6 1 8171 8169	684 275 301 302
		1948	3464 828 736 705	3707 2786 2497 2386	377 5 6993 6371 6276	1805 503 886 837	3251 532 782 809	3892 587 495 497	11919 822 942 928	684 1457 1338 1286
	-	1951 – 52	3464 165 122 117	3707 318 401 405	3775 314 366 370	1805 165 149 151	3251 154 135 135	3892 248 249 245	11919 1421 1146 1160	68[] 249 276 278

Note: All values are in 10-4 bits

wellknown, but it is interesting to see that it can be measured quantitatively. There are no other diagonal values (6.1) which are larger than 2. This explains the fact that the Communist figures of Table 3 are mostly so much larger than the figures of the other regions.

Another interesting case is that of Germany (region 3) and Other E.E.C. countries (region 4). Here there are three nonzero flows involved: x_{34} , x_{43} , and x_{44} . The development of the corresponding logarithms (6.1) is as follows:

	(3, 4)	(4, 3)	(4, 4)
1938	. 885	.654	.431
1948	1.811	.316	.417
195 1- 52	1.160	.802	.461
1959 - 60	1.119	1.079	•634

The transition from 1938 to 1948 is mainly dominated by the war effect. During the fifties regions 3 and 4 became increasingly more important customers of region 4. In the last few years of the period considered here this may have been caused by the establishment of the European Economic Community. A further analysis, based on more extensive data, must decide on the question to what extent this indeed is the case.

REFERENCES

- [1] W.E. Deming, <u>Statistical Adjustment of Data</u>. New York, 1944 (Second Printing).
- [2] L.S. Schwartz, <u>Principles of Coding</u>, <u>Filtering</u>, <u>and Information</u>
 <u>Theory</u>. Baltimore-London 1963.
- [3] R. Stone and A. Brown, <u>A Computable Model of Economic Growth</u>, Volume 1 of the series <u>A Programme for Growth</u>. London 1962.
- [4] C.B. Tilanus and H. Theil, "The Information Approach to the Evaluation of Input-Output Forecasts." Report 6409 of the Econometric Institute of the Netherlands School of Economics (1964). To be published in Econometrica.
- [5] J. Waelbroeck, "Une nouvelle méthode d'analyse des matrices d'échanges internationaux." <u>Cahiers économiques de Bruxelles</u>, No. 21 (1964), pp. 93-114.

APPENDIX

As an example of the observed and predicted fractions y_{ij} , \hat{y}_{ij} we present in Table 4 the 1959-60 values, below these the \hat{y}_{ij}^3 forecasts derived from the 1951-52 table, and at the bottom the \hat{y}_{ij}^3 forecasts derived from the 1938 table. All figures are to be divided by 10^{-4} .

TABLE 4. OBSERVED AND PREDICTED TRANSACTION SHARES, 1959-60

TUDID CT.				CIED II				1959-	
Region of destination									mo+o7
origin	1	2	3	4	5	6	7	8	Total
			Obse	rved t	ransac	tion s	hares		
1 2	569 312	301 58	87 69	184 55	167 60	74 21	15 17	616 104	2012 696
3	85 130	60 67	<u>-</u> 226	250 284	37	167	40	237	877
2345678	129	38	34 116	79	95 -	195 84	91 23	306 4 1 0	1394 797
7	61 8	34 15	35	107 48	91 35	91 40	38 763	107 262	645 1205
8 Total	373 1667	62 635	202 768	306 1314	406	71	206	748	2374
IOGAL	1007	055	•		891	743	1193	2789	
	1	Poreca	4	j <u>deri</u>	ved fro	om the	1951-	52 <u>tab</u>	le
1 2	586 359	319 45	139 54	159 62	138 47	70 25	0 4	601 101	2012 696
3 4	71 110	75 66	196	260 239	46 119	211 155	21 40	191 469	877 1394
56	98 55	40	25 125	74 110		87	9	463	797
2345678	17	40 39 3 48	24 205	38	94 34	74 48	53 832	95 209	645 1205
Total	371 1667	40 635	768	371 1314	413 891	72 743	234 1193	661 2789	2374
		Forec	•	ス					1
1	53 1	269	77	ij <u>der.</u> 166	<u>ived f</u> 233	86	<u>e</u> 1938 174	table	2012
2	304 36	44 84	92 -	48 187	63	24 132	19 203	105	696 877
2345678	152 145	70 33	1690 26	256 59	27 116 -	162	76 66	393	1394
6	49	51	77	176	82	69 68	85	398 57	797 645
, 8	93 361	51 33	133 193	178 243	75 294	155 45	228 342	290 862	1205 2374
Total	1667	635	768	1314	891	743	1193	2789	

 $\langle \Phi_{\alpha}^{(i)} \rangle = \langle \phi_{\alpha}^{($