

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

RISK CONCEPTS REVISITED: A MATHEMATICAL APPROACH

Michael D. Weiss

1. Introduction

An examination of the risk literature reveals a rather striking schism between theory and application. On the one hand, a relatively few highly theoretical works such as von Neumann \& Morgenstern and Herstein \& Milnor have set forth a mathematically rigorous framework on which to (at least attempt to) base risk analysis. On the other hand, while such works are routinely cited as constituting the logical foundation for applied studies, the requirements imposed by their axioms and logical constructs have not really been given serious attention in the less theoretical literature. As a result, some of the logical consequences of these theories have gone unrecognized, while other claimed consequences require additional assumptions. An example of a misconstrued consequence can be found in the common claim that risk aversion is equivalent to the concavity of the utility function of income. This assertion is now known to be false, though it can be rescued by an additional-if not entirely innocent-assumption of continuous risk preferences (Weiss, Tech. Bull.). As another example, it has only recently been recognized that the classical axioms for the expected utility hypothesis do not require that an individual's preferences between "certainties" determine his preferences between risky prospects. When this requirement is removed, different farmer production decisions become possible (Weiss, 1983).

In this paper, we shall present a way of looking at risk problems that adheres more rigorously to "first principles" than is customary. An advantage of this approach is that it forces us to confront questions that otherwise might be missed, and it requires us to remain aware of precisely what we are assuming when dealing with specific problems.

In Section 2, we begin by clarifying several fundamental risk concepts. We introduce the notion of a "lottery" as the formalization of the idea of a risky prospect. We describe "lottery spaces" as convex sets of lotteries and draw the connection between convexity and compound lotteries. We characterize "measurable utility functions" as utility functions that represent risk preference orderings and, in addition, have a linearity property that mimics the computation of the expected utility of a risky prospect. Finally, we relate how a risk preference ordering can give rise to what we call an "induced utility function"the type of utility function defined on the number line that is used in virtually all applied studies.

Michael D. Weiss is an agricultural economist at the Economic Research Service, U.S. Department of Agriculture, Washington, D.C.

In Section 3, we show how the concepts previously defined may be applied to the analysis of a specific problem. Taking as a point of departure the reported sighting (Masson) of a discontinuous utility function of farmers' income, we address the question of how such a function could be used to describe an individual's behavior under risk. In the traditional case in which a utility function of income is continuous, risk preferences are derived from it by comparing the expected-utility integrals of alternative risky prospects. However, when the utility function is discontinuous, these integrals need not exist. Thus, even the justification for permitting a discontinuous function of income to be called a "utility function" is unclear. To resolve this dilemma, we establish a new method, not requiring integrals, for deriving risk preferences from any (bounded) numerical-valued function defined on the number line.

2. Some Risk Concepts Revisited

Lotteries

The theory of behavior under risk is concerned with the choices that individuals make when confronted with alternative risky prospects. These risky objects of choice are customarily called "lotteries." Intuitively, a lottery may be conceived of as a game of chance in which various prizes occur with preassigned probabilities. The prizes may be money amounts or even other lotteries (i.e., the opportunity to play other lotteries and receive their prizes). In the latter case, one speaks of a "compound" lottery.

The intuitive concept of lottery used in economics is governed by an important convention: two lotteries are considered "equivalent" if they have the same sets of ultimate prizes occurring under the same probability laws, regardless of the processes by which these prizes are achieved. In short, the internal compound structure of a lottery is ignored. In effect, the objects of choice are not individual lotteries as one intuitively conceives them, but rather equivalence classes of individual lotteries.

At first glance, it might appear that one could define a lottery (or, more precisely, the corresponding equivalence class) mathematically as simply a random variable whose possible values were the various ultimate prizes, these occurring according to the desired probability law. However, the calculation of an "overall" random variable to represent an empirical compound lottery in terms of its constituent sublotteries would be unacceptably complicated. Thus, random variables are not adequate as mathematical representations of lotteries. Rather, it turns out that cumulattve probabiztty distribution functions ("c.d.f.'s") are more tractable representations. Since we shall be concerned here only with lotteries that ultimately (i.e., whatever their internal compound structure might be) yield income (i.e., numerical) prizes, we define a lottery to be a one-dimensional c.d.f.

Bearing in mind the distinction between the empirical concept of lottery and our mathematical representation of it, consider an empirical compound lottery L that offers empirical lotteries L_{1} and L_{2} as prizes with probabilities p and $1-p$, respectively. Then, if the c.d.f.'s C_{1} and C_{2} are taken to represent L_{1} and L_{2}, respectively, the c.d.f. $p C_{1}+(1-p) C_{2}$ will represent L. (We stress that $p C_{1}+(1-p) C_{2}$ is an algebraic combination not of numbers, but of functions. It is a function whose value at t is $p C_{1}(t)+(1-p) C_{2}(t)$.) This simple relationship-the fact that compound empirical lotteries can be represented by convex combinations of c.d.f.'s-is central to the usefulness of c.d.f.'s as mathematical representations of empirical lotteries.

For each r, the lottery F_{r} defined by

$$
F_{r}(t)=\left[\begin{array}{l}
0 \text { if } t<r \\
l \text { if } t \geqslant r
\end{array}\right.
$$

is called degenerate. A lottery, L, that can be expressed as a convex combination

$$
\dot{L}=\sum_{i=1}^{n} p_{i} F_{r_{i}}
$$

of finitely many degenerate lotteries, $F_{r_{i}}$ (where, of course, $p_{i} \geqslant 0$ and n
$\sum_{i=1} p_{i}=1$), is called simple. A lottery, L, is called discrete if it i=1
can be expressed as a convex combination

$$
L=\sum_{i=1}^{\infty} p_{i} F_{r_{i}}
$$

of a sequence of degenerate lotteries. Finally, a continuous lottery is one that is continuous as a function in the usual sense. In the second and third of these definitions, we do not require the $F_{r_{i}}$'s to be distinct, nor do we rule out the possibility that $p_{i}=0$ for some i's. In particular, a degenerate lottery is necessarily simple, while a simple lottery is also discrete. Note that a simple lottery represents a risk situation in which the associated r_{i} 's are the possible outcomes and occur with respective probabilities p_{i}. In particular, a degenerate
lottery, $F_{r^{\prime}}$ represents the occurrence of the outcome r with probability 1.

Lottery Spaces

Since economic problems may involve diverse types of risk, economic agents may be confronted with different "choice sets" of lotteries in different circumstances. In risk theory, as in demand theory, an essential requirement is that a choice set be convex (see, for example, Herstein \& Milnor). Recall that the set of all numerical-valued functions defined on the number line is a vector space under the usual operations of addition/subtraction of functions and multiplication of functions by numbers. A choice set of lotteries is convex if it is convex as a subset of this vector space. Recall also that a set is convex if and only if it contains all finite convex combinations of its elements. Thus, in view of the relationship-described earlier-between convex combinations of c.d.f.'s and compound empirical lotteries, the assumption of convexity for a choice set of lotteries amounts, intuitively, to the requirement that any compound lottery formed from lotteries in the choice set itself lie in the choice set. We see here the significance of the fact that empirical compound lotteries can be represented by convex combinations of c.d.f.'s. Henceforth, we shall call a convex set of lotteries a lottery space.

The following are examples of lottery spaces: the sets of all (1) lotteries; (2) simple lotteries; (3) discrete lotteries; (4) continuous lotteries; (5) lotteries that are c.d.f.'s of bounded random variables; and (6) lotteries with finite mean. We point out that (6) provides a natural setting within which to consider risk aversion.

In view of the importance of normal distributions to the subject of risk, it is interesting to note that the set of all normal lotteries (i.e.. normal c.d.f.'s) is not a lottery space. This fact is certainly known in other contexts (cf. Everitt \& Hand) but does not seem to have been expressed clearly in the risk literature of economics. To establish it by means of a counterexample, let F be the $N(0,1) c . d . f$. and f the $N(0,1)$ probability density function. Then, there is an x_{0} such that $f\left(x_{0}\right)<1 / 2(2 \pi)^{1 / 2}$. Let G be the $N\left(2 x_{0}, 1\right) c . d . f$. and g the $N\left(2 x_{0}, 1\right)$ probability density function. Now, if the c.d.f.
$(1 / 2) F+(1 / 2) G$ were normal, then its derivative, $h=(1 / 2) f+(1 / 2) g$, would be a normal probability density function. However, this is impossible, since the inequalities

$$
\begin{aligned}
h(0) & =(1 / 2) f(0)+(1 / 2) g(0) \\
& >(1 / 2) f(0)
\end{aligned}
$$

$$
\begin{aligned}
& =1 / 2(2 \pi)^{1 / 2} \\
h\left(x_{0}\right) & =(1 / 2) f\left(x_{0}\right)+(1 / 2) g\left(x_{0}\right) \\
& <\left[1 / 4(2 \pi)^{1 / 2}\right]+\left[1 / 4(2 \pi)^{1 / 2}\right] \\
& =1 / 2(2 \pi)^{1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
h\left(2 x_{0}\right) & =(1 / 2) f\left(2 x_{0}\right)+(1 / 2) g\left(2 x_{0}\right) \\
& >(1 / 2) g\left(2 x_{0}\right) \\
& =1 / 2(2 \pi)^{1 / 2}
\end{aligned}
$$

show that $h\left(x_{0}\right)$ is smailer than both $h(0)$ and $h\left(2 x_{0}\right)$, although x_{0} lies between 0 and $2 x_{0}$. This establishes that the set of all normal c.d.f.'s is not convex. Note that the "smallest" lottery space that contains all normal c.d.f.'s--by definition, the convex hull of the set of all normal c.d.f.'s-is the set of all convex combinations of finitely many normal c.d.f.'s.

Preferences and Measurable Utility

In risk theory, as in demand theory, the starting point is the economic agent's preference ordering over his choice set. By a preference ordering, $\underset{\sim}{\underset{\sim}{c}}$, on a lottery space L we mean a complete, transitive, binary relation on L. If L is a lottery space and $\grave{\sim} a$ preference ordering on L, we call the pair ($L, \underset{\sim}{\downarrow}$) a preference Zottery space. A utility function, U, for ($L, \underset{\sim}{c}$) is a numerical-valued function defined on L such that, for any L_{1}, L_{2} in $L, U\left(L_{1}\right) \geqslant U\left(I_{2}\right)$ if and only if $L_{1} \underset{\sim}{~} L_{2}$.

If L is a lottery space and V a numerical-valued function on L, we call V 乙inear if

$$
V\left(t L_{1}+(1-t) I_{2}\right)=t V\left(L_{1}\right)+(1-t) V\left(L_{2}\right)
$$

whenever $0 \leqslant t \leqslant 1$ and L_{1}, L_{2} are any lotteries in L. A linear utility function for a preference lottery space ($L, \underset{\sim}{~}$) is called measurable. The whole thrust of von Neumann \& Morgenstern (in that work's discussion of utility) and Herstein \& Milnor was to prove that, given plausible
assumptions concerning (L, \downarrow), a measurable utility function would exist. The relation of measurable utility functions to "expected utility" will be explained once we have introduced the concept of "induced utility function."

The notion of "linearity" defined above can be sharpened to cover "infinite" convex combinations as follows (Grandmont): A set L of ∞
lotteries is called σ-convex if $\sum_{i=1} p_{i} L_{i}$ is in L whenever each $p_{i} \geqslant 0$,
∞
each L_{i} is in L, and $\sum_{i=1} P_{i}=1$. A numerical-valued function V defined on a σ-convex set L is called σ-2inear if

$$
V\left(\sum_{i=1}^{\infty} p_{i} L_{i}\right)=\sum_{i=1}^{\infty} p_{i} V\left(L_{i}\right)
$$

∞
whenever each $p_{i} \geqslant 0$, each L_{i} is in L, and $\sum_{i=1} p_{i}=1$. clearly, a σ-convex set is convex, while a σ-linear function is linear. In our discussion of farmers' discontinuous utility functions of income, we shall need to consider σ-linear functions defined on the set of all discrete lotteries. Thus, we shall need:

Proposition: The set of all discrete lotteries is σ-convex.
Proof: Suppose $L_{1}, I_{2}, I_{3}, \ldots$ is a sequence of discrete lotteries and
∞
$p_{1}, p_{2}, p_{3}, \ldots$ a sequence of nonnegative numbers such that $\sum_{i=1} p_{i}=1$.
∞
We wish to prove that the lottery $\sum_{i=1} p_{i} L_{i}$ is discrete. Now, for each i, since L_{i} is discrete, there exist a sequence $t_{i, 1}, t_{i, 2}, t_{i, 3}, \ldots$ of numbers and a sequence $q_{i, 1}, q_{i, 2}, q_{i, 3}, \ldots$ of nonnegative numbers such that

$$
\sum_{j=1}^{\infty} q_{i, j}=1
$$

and

$$
L_{i}=\sum_{j=1}^{\infty} q_{i, j}{ }^{F} t_{i, j}
$$

Thus,
(*)

$$
\sum_{i=1}^{\infty} p_{i} L_{i}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{i} q_{i, j}{ }^{F} t_{i, j} .
$$

The right-hand side of (*) is written as a sum over all pairs (i,j) of positive integers. In order to express it as a convex combination of a sequence of degenerate lotteries, we use the fact from set theory that there exists a one-to-one correspondence, Φ, between the set of all positive integers, and the set of all ordered pairs of positive integers. Intuitively, as n runs through all positive integers, $\phi(n)$ will run through all ordered pairs of positive integers. Thus, the right-hand side of (*) can be rewritten as

$$
\sum_{n=1}^{\infty} p_{\Phi(n)} q_{\phi(n)} F_{t_{\phi(n)}}
$$

where $\phi(n)_{1}$ is the first coordinate of $\phi(n)$. Since each $p_{\phi(n)} q_{\phi(n)}$ is nonnegative and

$$
\begin{aligned}
\sum_{n=1}^{\infty} p_{\Phi(n)} q_{\Phi(n)} & =\sum_{i=1}^{\infty} p_{i} \sum_{j=1}^{\infty} q_{i, j} \\
& =\sum_{i=1}^{\infty} p_{i} \cdot 1 \\
& =1
\end{aligned}
$$

∞

we conclude that $\sum_{i=1} p_{i} L_{i}$ is discrete.
Q.E.D.

It is important to understand that a linear function is really a measurable utility function in disguise. That is, although linear functions are defined in terms of lottery spaces and not preference lottery spaces, it is always possible, given a linear function U defined on a lottery space L, to construct a preference ordering-henceforth denoted ${\underset{\sim}{U}}_{U}-$ on L such that U is a (measurable) uṭility function for
($L,{\underset{\sim}{\sim}}_{U}$). In fact, $\underset{\sim}{\underbrace{}_{U}}$ may be defined by the condition

$$
L_{1} \succsim_{U} L_{2} \text { if and only if } U\left(L_{1}\right) \geqslant U\left(L_{2}\right)
$$

for each pair L_{1}, L_{2} of lotteries in L. We shall make use of this observation when we discuss farmers' discontinuous utility functions in Section 3.

Induced Utility Functions

Utility functions defined on lottery spaces are the conceptually "fundamental" utility functions of risk theory. However, in most of the literature, these are ignored in favor of another type of "utility function:" a "utility function of [say] income." The latter type of function assigns numerical values not to lotteries, but to numbers (e.g., income levels). What, then, is its relationship to the more fundamental notion of utility?

Let U be a function defined on a lottery space L that contains all degenerate lotteries. If u is a numerical-valued function defined at each r by

$$
u(r)=U\left(F_{r}\right)
$$

we say u is induced (on the number line) by U. If, in particular, (L, \downarrow) is a preference lottery space for which U is a utility function, we call u the utiltty function induced by U and may interpret it as, for example, a "utility function of income." In this way, a utility function defined on a preference lottery space can give rise to a "utility function," u, defined on the number line. We may view u as akin to "U restricted to degenerate lotteries"--that is, by a slight abuse of language, "U restricted to certainties." Accordingly, u reflects only preferences over "certainties" (as embodied by U). It does not, in general, contain the "complete information" on preferences that U contains.

Conversely, given any continuous numerical-valued function, u, defined on the number line, we can define a preference lottery space and a utility function for it that induces u and thereby allows u to be interpreted as an induced utility function. To show this, define L_{u} to
∞
be the set of all lotteries L for which $\int_{-\infty}^{\infty} u(t) d L(t)$ is finite.
clearly, L_{u} is convex, hence a lottery space. Furthermore, L_{u} contains every degenerate lottery. Define a function, U, on L_{u} by

$$
U(L)=\int_{-\infty}^{\infty} u(t) d L(t)
$$

for each L in L_{u}. Then, U is a utility function for the preference lottery space ($L_{U^{\prime}}{\underset{U}{U}}$), where ${\underset{\sim}{U}}$ was defined earlier. (In fact, U is measurable, since it is obviously linear.) Moreover, u is induced by u, since, for each degenerate lottery $F_{r^{\prime}}$

$$
\begin{aligned}
U\left(F_{r}\right) & =\int_{-\infty}^{\infty} u(t) d F_{r}(t) \\
& =u(r)
\end{aligned}
$$

Having defined the notion of "induced utility function," we are now able to clarify the connection-alluded to earlier-between measurable utility functions and "expected utility." Suppose that a measurable utility function U for a preference lottery space (L, \succsim) induces a utility function u on the number line. Since L, by assumption, contains all degenerate lotteries, it must contain all simple lotteries. Let

$$
L=\sum_{i=1}^{m} p_{i} F_{r_{i}}
$$

be a simple lottery and X a random variable with L as its c.d.f. Then, by the linearity of U and the definition of u, we have

$$
\begin{aligned}
U(L) & =\sum_{i=1}^{m} p_{i} U\left(F_{r_{i}}\right) \\
& =\sum_{i=1}^{m} p_{i} u\left(r_{i}\right) \\
& =E(u(X))
\end{aligned}
$$

so that $U(L)$ is the "expected utility" of L. Nevertheless, $U(L)$ need not be-and was not claimed in von Neumann \& Morgenstern and Herstein \& Milnor to be-the expected utility of L (in the sense described) if L is not simple-if, say, I is continuous. In fact, although measurable utility functions can be used to rationalize expected utility maximization (that is, maximization of expected induced utility) over lottery spaces of simple lotteries, they are also capable of generating other decision criteria when the lotteries involved are not necessarily simple. For examples, see Weiss (1973, Tech. Bull.).

3. An Application: The Use of Discontinuous Utility to Model Farmers' Risk Preferences

We now illustrate how the preceding risk concepts can be applied to expose and resolve a potential methodological problem in agricultural risk modeling: We shall consider the use of discontinuous utility functions of income to model farmers' behavior under risk.

Roy, in the context of his "safety-first" theory (1952), suggested that the minimization of the chance of disaster could in some cases be interpreted as the maximization of the expected utility of a discontinuous utility function. While he referred only to a two-valued utility function and expressed doubt as to the practical significance of this conception, he apparently had no methodological objection to discontinuous utility, writing that there "would appear to be no valid objection to the discontinuity in the preference scale that the existence of a single disaster value implies." Later, Masson (1974) reported that data in O'Mara's study (1971) of peasant farming in Mexico provided actual evidence of utility functions with jump discontinuities. In the same spirit as Roy, Masson suggested that the jumps in utility might be associated with critical income levels.

Our purpose here is not to investigate the appropriateness of using discontinuous utility to model disaster avoidance; this subject might require an extensive discussion of its own. Rather, having adopted from the start the viewpoint that, within the classical paradigm, risk questions are basically concerned with-and should be reducible to-the study of preference orderings over lottery spaces, we wish to pose the following question, or set of questions, addressed by neither Masson nor Roy:

Given a discontinuous function defined on the number line and clatmed to be a "utility function," as in Masson, how can one derive risk preferences from it? Need there even be any risk preference ordering corresponding to it? (If not, what can such a function have to do with behavior under risk?) Is there necessarily any uttlity function of lottertes that induces it? (If not, then by what right is it claimed to be a "utiltty function?") Could two utility functions representing incompatible preference orderings both induce tt? (If so, then of what use would it be in applied research?)

The problem I raise is one of "measurement without theory." I submit that we cannot justify interpreting a discontinuous numerical function as a "utility function" or ascribe any usefulness to it in representing behavior under risk-whatever its empirical origin-until the preceding questions have been satisfactorily answered.

For continuous functions, satisfactory answers to these questions are virtually immediate. For, as we noted earlier, the integral formula

$$
U(L)=\int_{-\infty}^{\infty} u(t) d L(t)
$$

provides us with a rule for determining--for each numerical-valued continuous function u defined on the number line-a unique measurable utility function U that, in turn, induces u. Furthermore, this integral formula associates distinct u 's with distinct $U ' s$, since $u_{1} \neq u_{2}$ implies $u_{1}\left(t_{0}\right) \neq u_{2}\left(t_{0}\right)$ for some t_{0}, whence

$$
\begin{aligned}
U_{1}\left(F_{t_{0}}\right) & =\int_{-\infty}^{\infty} u_{1}(t) d F_{t_{0}} \\
& =u_{1}\left(t_{0}\right) \\
& \neq u_{2}\left(t_{0}\right) \\
& =\int_{-\infty}^{\infty} u_{2}(t) d F_{t_{0}} \\
& =U_{2}\left(F_{t_{0}}\right)
\end{aligned}
$$

and (thus) $U_{1} \neq U_{2}$. In short, for continuous u 's, the integral formula provides us with a one-to-one correspondence between the u's and their associated measurable utility functions. Since each of the latter determines a unique preference lottery space, a linkage between the u's and preference orderings on lottery spaces is established. (For completeness, we mention that the final link in this chain-the correspondence between measurable utility functions and preference lottery spaces-is not one-to-one. Rather, measurable utility functions U and V defined on the same lottery space will represent the same preference ordering if (and only if) $U=a V+b$ for some constants a and b with a > 0 (see Weiss (Tech. Bull.)). As a result, continuous functions u and v for which $u=a v+b(a>0)$ will correspond to the same preference lottery space. Nevertheless, each u still corresponds to a unique preference lottery space.)

For disconttnuous u's, however, the relationship to risk preference orderings is less apparent, for, in this case, the integral formula cannot, in general, be used. Consider, for example, an empirical study-such as O'Mara's-in which the subjects are asked to choose between various putative simple lotteries. These are necessarily
discontinuous. (Discontinuous lotteries also arise when, for example, commodity price risk is mediated through the introduction of a support price, or the risk of some disaster is mediated through an insurance policy with a deductible.) Suppose that the estimated utility function, u, is discontinuous at an income level t_{0}, while the simple lottery L is also discontinuous at t_{0}. Then, the stieltjes integral

$$
\int_{-\infty}^{\infty} u(t) d L(t)
$$

does not even exist, for its integrand and weighting function are discontinuous at the same point. (See Rudin for a careful review of the definition of the Stieltjes integral.) Yet, we would certainly require that our lottery space contain L. Thus, we need to find an alternative method of associating discontinuous functions with risk preference orderings.

It turns out that, if we restrict our attention to bounded functions (as should be appropriate for most empirical work), we can characterize the associated measurable utility functions more strongly. (For an alternative result without this restriction, see Weiss (1985).) We now present a result showing how any bounded function-whether continuous or discontinuous-can be uniquely associated with a preference lottery space. By way of preparation, recall that any σ-linear function determines a unique preference lottery space for which it is a measurable utility function. Recall also that L_{d} is the space
of all discrete lotteries and (by our Proposition) is σ-convex, so that σ-linear functions may be defined on it. Then:

Theorem: The relation "U induces u " is a one-to-one correspondence between the set of all σ-linear functions defined on L_{d} and the set of all bounded numerical-valued functions defined on the number line.

Proof: It was implicitly shown in Grandmont that any o-linear function is bounded. Thus, the σ-linear functions of concern here must induce utility functions that are bounded. To establish the one-to-one correspondence asserted by the Theorem, it remains to show that (1) different σ-linear functions on L_{d} must induce different numerical
functions and (2) every bounded numerical function is induced by some σ-linear function on L_{d}. (1) amounts to the assertion that the relation
"U induces u " associates each bounded numerical function with at most one σ-linear function on L_{d}, while (2) amounts to the assertion that this relation associates each bounded numerical function with at least one σ-linear function on L_{d}. (2) implies that every bounded numerical
function is associated with some risk preference ordering on L_{d};
implies that that risk preference ordering is unique.
To prove (1), suppose σ-linear functions U_{1} and U_{2} on L_{d} induce the same bounded function, u, on the number line. Then, for any discrete lottery

$$
L=\sum_{i=1}^{\infty} p_{i} F_{r_{i}} .
$$

we have

$$
\begin{aligned}
U_{1}(L) & =\sum_{i=1}^{\infty} p_{i} U_{1}\left(F_{r_{i}}\right) \\
& =\sum_{i=1}^{\infty} p_{i} u\left(r_{i}\right) \\
& =\sum_{i=1}^{\infty} p_{i} U_{2}\left(F_{r_{i}}\right) \\
& =U_{2}(L)
\end{aligned}
$$

so that $U_{1}=U_{2}$. This proves (1).
To prove (2), let u be an arbitrary bounded numerical function. We shall construct a σ-linear function, denoted $u *$, on L_{d} that induces u. In fact, for any discrete lottery
(**)

$$
L=\sum_{i=1}^{\infty} p_{i} F_{s_{i}} .
$$

put

$$
u \star(L)=\sum_{i=1}^{\infty} p_{i} u\left(s_{i}\right) .
$$

Note that, for $u *(L)$ to be well-defined, it is required that $u *$ assign the same value to L no matter how L may be represented as a convex combination of degenerate lotteries. That is, suppose L can also be represented as

$$
L=\sum_{j=1}^{\infty} q_{j} F_{t_{j}}
$$

∞
where each $q_{j} \geqslant 0$ and $\sum_{j=1} q_{j}=1$. Then, it is required that

$$
\sum_{i=1}^{\infty} p_{i} u\left(s_{i}\right)=\sum_{j=1}^{\infty} q_{j} u\left(t_{j}\right)
$$

However, this condition is satisfied. To prove this, suppose that (**) and (***) both hold. Without loss of generality, we may assume that each p_{i} and q_{j} is positive. Let s be the set of distinct terms appearing among $s_{1}, s_{2}, s_{3}, \ldots$ and T the set of distinct terms appearing among $t_{1}, t_{2}, t_{3}, \ldots$ For each s in s, let s_{s} be the set of subscripts, i, for which $s_{i}=s$. Similarly, for each t in T, let T be the set of subscripts, j, for which $t_{j}=t$. Then, it follows from ($* *$) and (***) (by rearranging terms) that

$$
\sum_{s \in S}\left[\sum_{i \in S_{S}} p_{i}\right]_{S}=\sum_{t \in T}\left[\sum_{j \in T_{t}} q_{j}\right] F_{t}
$$

(where, for example, the notation "sES" indicates that the sum is to be taken over all elements s of the set s. Note that these "sums" really are infinite series, in general.). Our next step is to prove that $S=T$. We shall accomplish this by showing that S and T are precisely the sets of points of discontinuity of the left and right sides, respectively. It will be enough to prove this for S.

Toward this end, for each s in S, put

$$
p_{S}=\sum_{i \in S_{S}} p_{i}
$$

Note that each P_{s} is positive. Put

$$
F=\sum_{S \in S} p_{S} F_{S^{\prime}}
$$

and consider any number r. For any numbers r_{1}, r_{2} satisfying $r_{1}<r<r_{2}$, we have

$$
F\left(r_{2}\right)-F\left(r_{1}\right)=\sum_{s \in S} p_{s}\left[F_{s}\left(r_{2}\right)-F_{s}\left(r_{1}\right)\right]
$$

Thus

$$
F(r+)-F(r-)=\sum_{s \in S} P_{s}\left[F_{s}(r+)-F_{g}(r-)\right]
$$

(where the " + " and "-" denote right- and left-hand limits). However, for each s in $S, F_{s}(r+)-F_{s}(r-)$ is either 1 or 0 , according to whether r is, or is not, equal to s. Thus, $F(r+)-F(r-)$ is positive if and only if r is in S. However, F is discontinuous at r if and only if $F(r+)-F(r-)$ is positive. It follows that S must be the set of points of discontinuity of F. Arguing similarly for T, we conclude that $S=T$.

Thus, putting

$$
Q_{t}=\sum_{j \in T_{t}} q_{j}
$$

for each t in T, we have

$$
\sum_{s \in S}\left(P_{s}-Q_{s}\right) F_{s}=0
$$

Consider any number s_{0}. Reasoning as before, we obtain

$$
\sum_{s \in S}\left(P_{s}-Q_{s}\right)\left[F_{s}\left(s_{0}+\right)-F_{s}\left(s_{0}-\right)\right]=0
$$

which reduces to

$$
\left(P_{s_{0}}-Q_{s_{0}}\right)\left[F_{s_{0}}\left(s_{0}+\right)-F_{s_{0}}\left(s_{0}-\right)\right]=0,
$$

whence $P_{S_{0}}=Q_{S_{0}}$. Since, by rearrangement of terms,

$$
\begin{aligned}
\sum_{i=1}^{\infty} p_{i} u\left(s_{i}\right) & =\sum_{s \in S}\left[\sum_{i \in S} p_{i}\right] u(s) \\
& =\sum_{s \in S} p_{s} u(s)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=1}^{\infty} q_{j} u\left(t_{j}\right) & =\sum_{t \in T}\left[\sum_{j \in T} q_{j}\right] u(t) \\
& =\sum_{s \in S} Q_{s} u(s)
\end{aligned}
$$

it follows that

$$
\sum_{i=1}^{\infty} p_{i} u\left(s_{i}\right)=\sum_{j=1}^{\infty} q_{j} u\left(t_{j}\right),
$$

as was to be proved.

Thus, the function u^{*} is well-defined. Furthermore, it is σ-linear. To see this, let $L_{1}, L_{2}, L_{3}, \ldots$ be a sequence of discrete lotteries and $p_{1}, p_{2}, p_{3}, \ldots$ a sequence of nonnegative numbers such ∞ that $\sum_{i=1}^{\infty} p_{i}=1$. We wish to show that

$$
u *\left(\sum_{i=1}^{\infty} p_{i} L_{i}\right)=\sum_{i=1}^{\infty} p_{i} u *\left(L_{i}\right) .
$$

However, in order to use the definition of $u *$ to calculate the left-hand ∞
side, we need to rewrite $\sum_{i=1} p_{i} L_{i}$ as a convex combination of a sequence of degenerate lotteries. For this, we follow the notation and reasoning used in the proof of the Proposition (Sec.2), writing

$$
L_{i}=\sum_{j=1}^{\infty} q_{i, j}{ }^{F} t_{i, j}
$$

for each i and employing the one-to-one correspondence, Φ, between the set of all positive integers and the set of all ordered pairs of positive integers. We obtain

$$
\begin{aligned}
u *\left(\sum_{i=1}^{\infty} p_{i} L_{i}\right) & =u *\left(\sum_{n=1}^{\infty} p_{\Phi(n)} q_{\Phi(n)} F_{t_{\Phi(n)}}\right) \\
& =\sum_{n=1}^{\infty} p_{\Phi(n)_{1}} q_{\Phi(n)} u\left(t_{\Phi(n)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} p_{i} \sum_{j=1}^{\infty} q_{i, j} u\left(t_{i, j}\right) \\
& =\sum_{i=1}^{\infty} p_{i} u *\left(L_{i}\right) .
\end{aligned}
$$

as desired. Thus, u^{\star} is σ-linear. Finally, $u *$ induces u, since $u *\left(F_{t}\right)=u(t)$ for each t by the very definition of $u *$. This proves (2) and completes the proof of the Theorem.
Q.E.D.

In establishing a one-to-one correspondence between bounded numerical functions and measurable utility functions, the Theorem assumed that preference comparisons were to be made only between discrete lotteries. It is natural to ask whether a similar correspondence based on the relation " U induces u " holds when continuous lotteries (in conjunction with discrete lotteries) are allowed in the lottery space. It is shown in Weiss (Tech. Bull.) that such a correspondence does not hold. In fact, in the situation described, measurable utility functions representing incompatible risk preference orderings can induce the same bounded numerical function. It is plausible, however, that a different type of correspondence-based on the canonical decomposition of a lottery into its discrete and continuous parts (Weiss, Tech. Bull.)--could be effective for an expanded lottery space. We leave that investigation for another time.

REFERENCES

1. Everitt, B. S., and D. J. Hand. Finite Mixture Distributions. Chapman and Hall, London, 1981.
2. Grandmont, Jean-Michel. "Continuity Properties of a von Neumann-Morgenstern Utility." Journal of Economic Theory 4 (1972): 45-57.
3. Herstein, I. N., and John Milnor. "An Axiomatic Approach to Measurable Utility." Econometrica 21 (1953): 291-297.
4. Masson, Robert T. "Utility Functions With Jump Discontinuities: Some Evidence and Implications from Peasant Agriculture." Economic Inautry 12 (1974): 559-566.
5. O'Mara, Gerald. "A Decision-Theoretic View of the Microeconomics of Technique Diffusion in a Developing Country." Doctoral dissertation, Stanford University, 1971.
6. Roy, A. D. "Safety First and the Holding of Assets." Econometrica 20 (1952): 431-449.
7. Rudin, Walter. Principles of Mathematical Analysis (second edition). McGraw Hill, New York, 1964.
8. Von Neumann, John, and Oskar Morgenstern. Theory of Games and Economic Behavior (second edition). Princeton University Press, Princeton, 1947.
9. Weiss, Michael D. "Decomposition of Measurable Utility Functions." Paper presented at Winter 1983 Econometric Society North American Meetings, San Francisco (December 1983).
10. . . "Discontinuous Utility in Agricultural Risk Modeling." Unpublished manuscript (1985).
11. \qquad . Conceptual Foundations of Risk Theory. Technical Bulletin, U.S. Department of Agriculture (forthcoming).
