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RISK CONCEPTS REVISITED: A MATHEMATICAL APPROACH

Michael D. Weiss

1. Introduction

An examination of the risk literature reveals a rather striking

schism between theory and application. On the one hand, a relatively

few highly theoretical works such as von Neumann & Morgenstern and

Herstein & Milnor have set forth a mathematically rigorous framework on

which to (at least attempt to) base risk analysis. On the other hand,

while such works are routinely cited as constituting the logical

foundation for applied studies, the requirements imposed by their axioms

and logical constructs have not really been given serious attention in

the less theoretical literature. As a result, some of the logical

consequences of these theories have gone unrecognized, while other

claimed consequences require additional assumptions. An example of a

misconstrued consequence can be found in the common claim that risk

aversion is equivalent to the concavity of the utility function of

income. This assertion is now known to be false, though it can be

rescued by an additional--if not entirely innocent--assumption of

continuous risk preferences (Weiss, Tech. Bull.). As another example,

it has only recently been recognized that the classical axioms for the

expected utility hypothesis do not require that an individual's

preferences between "certainties" determine his preferences between

risky prospects. When this requirement is removed, different farmer

production decisions become possible (Weiss, 1983).

In this paper, we shall present a way of looking at risk problems

that adheres more rigorously to "first principles" than is customary.

An advantage of this approach is that it forces us to confront questions

that otherwise might be missed, and it requires us to remain aware of

precisely what we are assuming when dealing with specific problems.

In Section 2, we begin by clarifying several fundamental risk

concepts. We introduce the notion of a "lottery" as the formalization

of the idea of a risky prospect. We describe "lottery spaces" as convex

sets of lotteries and draw the connection between convexity and compound

lotteries. We characterize "measurable utility functions" as utility

functions that represent risk preference orderings and, in addition,

have a linearity property that mimics the computation of the expected

utility of a risky prospect. Finally, we relate how a risk preference

ordering can give rise to what we call an "induced utility function"-

the type of utility function defined on the number line that is used in

virtually all applied studies.

Michael D. Weiss is an agricultural economist at the Economic

Research Service, U.S. Department of Agriculture, Washington, D.C.
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In Section 3, we show how the concepts previously defined may be

applied to the analysis of a specific problem. Taking as a point of

departure the reported sighting (Masson) of a dtsconttnuous utility

function of farmers' income, we address the question of how such a

function could be used to describe an individual's behavior under risk.

In the traditional case in which a utility function of income is

conttnuous, risk preferences are derived from it by comparing the

expected-utility integrals of alternative risky prospects. However,

when the utility function is dtsconttnuous, these integrals need not

exist. Thus, even the justification for permitting a discontinuous

function of income to be called a "utility function" is unclear. To

resolve this dilemma, we establish a new method, not requiring

integrals, for deriving risk preferences from any (bounded)

numerical-valued function defined on the number line.

2. Some Risk Concepts Revisited

Lotteries

The theory of behavior under risk is concerned with the choices

that individuals make when confronted with alternative risky prospects.

These risky objects of choice are customarily called "lotteries."

Intuitively, a lottery may be conceived of as a game of chance in which

various prizes occur with preassigned probabilities. The prizes may be

-money amounts or even other lotteries (i.e., the opportunity to play

other lotteries and receive thetr prizes). In the- latter case, one

speaks of a "compound" lottery.

The intuitive concept of lottery used in economics is governed by

an important convention: two lotteries are considered "equivalent" if

they have the same sets of ultimate prizes occurring under the same

probability laws, regardless of the processes by which these prizes are

achieved. In short, the internal compound structure of a lottery is

ignored. In effect, the objects of choice are not individual lotteries

as one intuitively conceives them, but rather equivaLence cLasses of

individual lotteries.

At first glance, it might appear that one could define a lottery

(or, more precisely, the corresponding equivalence class) mathematically

as simply a random variable whose possible values were the various

ultimate prizes, these occurring according to the desired probability .

law. However, the calculation of an "overall" random variable to

represent an empirical compound lottery in terms of its constituent

sublotteries would be unacceptably complicated. Thus, random variables

are not adequate as mathematical representations of lotteries. Rather,

it turns out that cumuLattve probabtLtty dtstrtbutton functtons

("c.d.f.'s") are more tractable representations. Since we shall be

concerned here only with lotteries that ultimately (i.e., whatever their

internal compound structure might be) yield income (i.e., numerical)

prizes, we define a Lottery to be a one-dimensional c.d.f.

•
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Bearing in mind the distinction between the empirical concept of
lottery and our mathematical representation of it, consider an empirical
compound lottery L that offers empirical lotteries Li and L2. as prizes

with probabilities p and 1 - p, respectively. Then, if the c.d.f.'s

Ci and C2 are taken to represent Li and L2, respectively, the c.d.f.

pC
1 
+ (1-p )C2 will represent L. (We stress that pC

1 
+ (1-p )C2 is an

algebraic combination not of numbers, but of functions. It is a
function whose value at t is pCi(t) + (1-p)C2(t).) This simple

relationship-Tthe fact that compound empirical lotteries can be
represented by convex combinations of c.d.ft's--is central to the

usefulness of c.d.f.'s as mathematicaL representations of empirical

Lotteries.

For each r, the lottery Fr defined by

[0 if t < r
F
r
(t) =

1 if t > r

is called degenerate. A lottery, L, that can be expressed as a convex

combination

L= E p.F
r.

i=1

of finitely many degenerate lotteries, Fr (where, of course, pi) 0 and

E p = 1), is called simple. A lottery, L, is called discrete if it
i=1

can be expressed as a convex combination

co

L= E piFr.
i=1

of a sequence of degenerate lotteries. Finally, a continuous lottery is
one that is continuous as a function in the usual sense. In the second
and third of these definitions, we do not require the F

r 
's to be

distinct, nor do we rule out the possibility that pi = 0 for some i's.

In particular, a degenerate lottery is necessarily simple, while a
simple lottery is also discrete. Note that a simple lottery represents
a risksituationinwhichtheassociatedr.'s are the possible outcomes

and occur with respective probabilities p. In particular, a degeneratei
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lottery, Fr, represents the occurrence of the outcome r with

probability 1.

Lottery Spaces

Since economic problems may involve diverse types of risk, economic

agents may be confronted with different "choice sets" of lotteries in

different circumstances. In risk theory, as in demand theory, an

essential requirement is that a choice set be convex (see, for example,

Herstein & Milnor). Recall that the set of all numerical—valued

functions defined on the number line is a vector space under the usual

operations of addition/subtraction of functions and multiplication of

functions by numbers. A choice set of lotteries is convex if it is

convex as a subset of this vector space. Recall also that a set is

convex if and only if it contains all finite convex combinations of its

elements. Thus, in view of the relationship--described earlier--between

convex combinations of c.d.f.'s and compound empirical lotteries, the

assumption of convexity for a choice set of lotteries amounts,

intuitively, to the requirement that any compound lottery formed from

lotteries in the choice set itself lie in the choice set. We see here

the significance of the fact that empirical compound lotteries can be

represented by convex combinations of c.d.f. 's. Henceforth, we shall

call a convex set of lotteries a Lottery space.

Tie following are examples of lottery spaces: • the sets of all (1)

lotteries; (2) simple lotteries; (3) discrete lotteries; (4) continuous

lotteries; (5) lotteries that are c.d.f.'s of bounded random variables;

and (6) lotteries with finite mean. We point out that (6) provides a

natural setting within which to consider risk aversion.

In view of the importance of normal distributions to the subject of

risk, it is interesting to note that the set of all normal lotteries

(i.e., normal c.d.f.'s) is not a lottery space. This fact is certainly

known in other contexts (cf. Everitt & Hand) but does not seem to have

been expressed clearly in the risk literature of economics. To

establish it by means of a counterexample, let F be the N(0,1) c.d.f.

and f the N(0,1) probability density function. Then, there is an x0

such that E(x0) < 1/2(2n)
1/2

. Let G be the N(2x
0 
,1) c.d.f. and g the

N(2x
0'
1) probability density function. Now, if the c.d.f.

(1/2)F + (1/2)G were normal, then its derivative, h = (1/2)f + (1/2)g,

would be a normal probability density function. However, this is

impossible, since the inequalities

h(0) = (1/2)f(0) + (1/2)g(0)

> (1/2)f(0)
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= 1/2(21r)
1/2

,

h(x
0 
) = (1/2)f(x

0 
) + (1/2)g(x

0 
)

< (1/4(2n)
1/2 

+ (1/4(2n)
1/2
)

= 1/2(2n)
1/2

,

h(2x0) = (1/2)f(2x0) + (1/2)g(2x0)

(1/2)g(2x
o
)

=.1/2(2n)
1/2

show that h(x0) is smller than both h(0) and h(2x0), although xo lies

between 0 and 2x 
o
. This establishes that the set of all normal c.d.f.'s

is not convex. Note that the "smallest" lottery space that contains all

normal c.d.f.'s--by definition, the convex huLL.of the set of all normal

c.d.f.'s--is the set of all convex combinations of finitely many normal

c.d.f.'s,

Preferences and Measurable Utility

In risk theory, as in demand theory, the starting point is the

economic agent's preference ordering over his choice set. By a

preference ordering, ,, on a lottery space L we mean a complete,

transitive, binary relation on L. If L is a lottery space and a

preference ordering on Lo we call the pair (Lo ).t) a preference Lottery

space. A uttLtty functton, U, for (L, ?.;) is a numerical-valued function

defined on L such that, for any L
1, 

L
2 
in L, U(L

1
) U(L

2
) if and only

if L > L
1 •-1 2 •

If L is a lottery space and V a numerical-valued function on L, we

call V Linear if

VttL
1 
+ (1-t )L

2
) = tV(L

1 
) + (1-t)V(L

2
)

whenever 0 t 1 and L
1, 

L
2 
are any lotteries in L. A linear utility

function for a preference lottery space (L, L.) is called measurabLe.

The whole thrust of von Neumann & Morgenstern (in that work's discussion

of utility) and Herstein & Milnor was to prove that, given plausible
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assumptions concerning (L,1;), a measurable utility function would

exist. The relation of measurable utility functions to "expected

utility" will be explained once we have introduced the concept of

"induced utility function."

The notion of "linearity" defined above can be sharpened to cover

"infinite" convex combinations as follows (Grandmont): A set L of

co

latteriesiscalleda-convexiiPP-L-isinl-whenevereach.› 0,
11 1.

i=1

co

each L. is in L, and E p. = 1. A numerical-valued function V defined

i=1
i

on a a-convex set L is called a-Linear if

00 00

E p.L.) = E p.V(L.)
i=1 

1 1
i=1 

1 1

CD

whenever each 13. 0, each L
i 
is in L, and E p. = 1. Clearly, a

1
i=1 1

a--convex set is convex, while a a-linear function is linear. In our

discussion of farmers' discontinuous utility functions of income, we

shall need to consider a-linear functions defined on the set of all

discrete lotteries. Thus, we shall need:

Proposition: The set of aLL discrete Lotteries ts a-convex.

Proof: Suppose L
1 

L
2 

L3, . . is a sequence of discrete lotteries and

00

P1 P2. P3 
... a sequence of nonnegative numbers such that E pi = 1.

i=1

CD

We wish to prove that the lottery E piLi is discrete. Now, for each i,

i=1

since L. is discrete, there exist a sequence t t t .. of
1 iol' io 2' io3 •

numbers and a sequence q. 
1' 

q. 
2'
 qi,3, . of nonnegative numbers such

that

and

co
E qi =
j=1

1

co

L. = E q .F
1 

j=1 
i,j t

i,j
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co 00 CO

* ) E p.L. = E E
1 1,3 t. .

1=1 1=1 j=1 1,3

The right-hand side of (*) is written as a sum over all pairs (i,j) of

positive integers. In order to express it as a convex combination of a

sequence of degenerate lotteries, we use the fact from set theory that

there exists a one-to-one correspondence, 4), between the set of all

positive integers, and the set of all ordered pairs of positive

integers. Intuitively, as n runs through all positive integers, 0(n)

will run through all ordered pairs of positive integers. Thus, the

right-hand side of (*) can be rewritten as

co
E p

4)( n ) 
q

ct)( n )
F
t

n=1 1 4)( n )

where co(n)
1 
is the first coordinate of 4( n). Since each

 q0(n) 
is

1

nonnegative and

co co co
E p

0(n) 
q
0(n) 

= 
.
E 1p

i
n=1 1 1= 3=1

co
= E D .

i=1
‘1

= 1,

00
we conclude that E pi  Li is discrete.

i=1

1

Q.E.D.

It is important to understand that a linear function is really a

measurable utility function in disguise. That is, although linear

functions are defined in terms of lottery spaces and not preference

lottery spaces, it is always possible, given a linear function U defined

on a lottery space L, to construct a preference ordering-henceforth

denoted 
**U 
)' --on L such that U is a (measurable) utility function for

(L, ). In fact, >. may be defined by the condition

L L if and only if U(L
1
) U(L

2
)

U 2



48

for each pair LI, L2 of lotteries in L. We shall make use of this

observation when we discuss farmers' discontinuous utility functions in

Section 3.

Induced Utility Functions

Utility functions defined on lottery spaces are the conceptually

"fundamental" utility functions of risk theory. However, in most of the

literature, these are ignored in favor of another type of "utility

function:" a "utility function of [say) income." The latter type of

function assigns numerical values not to lotteries, but to numbers

(e.g., income levels). What, then, is its relationship to the more

fundamental notion of utility?

Let U. be a function defined on a lottery space L that contains all

degenerate lotteries. If u is a numerical-valued function defined at

each r by

u(r) =

we say u is tnduced (on the number Ltne) by U. If, in particular,

.(L,?.:) is a preference lottery space for which U is a utility function,

we call u the'uttLtty functton tnduced by U and may interpret it as, for

example, a "utility function of income." In this way, a utility

function defined on a preference lottery space can give rise to a

"utility function," u, defined on the number line. We may view u as

akin to "U restricted to degenerate lotteries"--that is, by a slight

abuse of language, "U restricted to certainties." Accordingly, u

reflects only preferences over "certainties" (as embodied by U). It

does not, in general, contain the "complete information" on preferences

that U contains.

Conversely, given any conttnuous numerical-valued function, u,

defined on the number line, we can define a preference lottery space and

a utility function for it that induces u and thereby allows u to be

interpreted as an induced utility function. To show this, define Lu to

co

be the set of all lotteries L for which f u(t)dL(t) is finite.

-co

Clearly, Lu is convex, hence a lottery space. Furthermore, L
u 
contains

every degenerate lottery. Define a function, U, on L
u 
by

co

U(L) = u(t)dL(t)

--CO
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for each L in L. Then, U is a utility function for the preference

lottery space (L, ), where )• was defined earlier. (In fact, U is
u .+U

measurable, since it is obviously linear.) Moreover, u is induced by U,

since, for each degenerate lottery Fr,

co

,U(F
r
) = I u(t)dF

r
(t)

--co

= u( r ) .

Having defined the notion of "induced utility function," we are now

able to clarify the connection--alluded to earlier--between measurable

utility functions and "expected utility." Suppose that a measurable

utility function U for a preference lottery space (L, ) induces a

utility function u on the number line. Since L, by assumption, contains

all degenerate lotteries, it must contain all simple lotteries. Let

L= E piFr
i=1

be a simple lottery and X a random variable with L as its c.d.f. Then,

by the linearity of U and the definition of u, we have

U(L) = E piU(Fr )
i=1

= E piu(ri)
i=1

=

so that U(L) is the "expected utility" of L. Nevertheless, U(L) need

not be--and was not claimed in von Neumann & Morgenstern and Herstein &

Milnor to be--the expected utility of L (in the sense described) if L is

not simple--if, say, L is continuous. In fact, although measurable

utility functions can be used to rationalize expected utility

maximization (that is, maximization of expected tnduced utility) over

lottery spaces of stmpLe lotteries, they are aLso capable of generating

other decision criteria when the lotteries involved are not necessarily

simple. For examples, see Weiss (1973, Tech. Bull.).
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3. An Application: The Use of Discontinuous Utility

to Model Farmers' Risk Preferences

We now illustrate how the preceding risk concepts can be applied to

expose and resolve a potential methodological problem in agricultural

risk modeling: We shall consider the use of discontinuous utility

functions of income to model farmers' behavior under risk.

Roy, in the context of his "safety—first" theory (1952), suggested

that the minimization of the chance of disaster could in some cases be

interpreted as the maximization of the expected utility of a

discontinuous utility function. While he referred only to a two—valued

utility function and expressed doubt as to the practical significance of

this conception, he apparently had no methodoLogicaL objection to

discontinuous utility, writing that there "would appear to be no valid

objection to the discontinuity in the preference scale that the

existence of a single disaster value implies." Later, Masson. (1974)

reported that data in O'Mara's study (1971) of peasant farming in Mexico

provided actual evidence of utility functions. with jump discontinuities.

• In the same spirit as Roy, Massbn suggested that the jumps in utility

might be associated with critical income levels.

Our purpose here is not to investigate the appropriateness of using

discontinuous utility to model disaster avoidance; this subject might

require .n extensive .discussion of its own. Rather, having adopted from

the start the viewpoint that, within the classical paradigm, risk

questions are basically concerned with--and should be reducible to--the

study of preference orderings over lottery spaces, we wish to pose the

following question, or set of questions, addressed by neither Masson nor

Roy:

Given a discontinuous function defined on the number Line and

cLatmed to be a "utiLity function," as in Masson, how can

one derive risk preferences from it? Need there even be any

risk preference ordering corresponding to it? (If not, what

can such a function have to do with behavior under risk?) Is

there necessartLy any utiLity function of Lotteries that

induces it? (If not, then by what right is it cLaimed to be a

"utiLity function?") Could two utiLity functions representing

incompatible preference orderings both induce it? (If so,

then of what use wouLd it be in appLied research?)

The problem I raise is one of "measurement without theory." I submit

that we cannot justify interpreting a discontinuous numerical function

as a "utility function" or ascribe any usefulness to it in representing

behavior under risk--whatever its empirical origin--until the preceding

questions have been satisfactorily answered.

• For continuous functions, satisfactory answers to these questions

are virtually immediate. For, as we noted earlier, the integral formula
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co

U(L) = u(t)dL(t)

-co

provides us with a rule for determining--for each numerical-valued

continuous function u defined on the number line--a unique measurable

utility function U that, in turn, induces u. Furthermore, this integral

formula associates distinct u's with distinct U's, since u
1 
* u

2 
implies

u
1
(t
0
) * u

2
(t
0
) for some to, whence

co

U1(Ft ) = f u
1 
(t)dF

t
o

-co

= u
1 
(t
0 
)

* u
2
(t
0
)

u
2
(t)dF

to

= U
2 
(F
t
0 
)

and (thus) U
1 
* U

2' 
In short, for continuous u's, the integral formula

provides us with a one-to-one correspondence between the u's and their

associated measurable utility functions. Since each of the latter

determines a unique preference lottery space, a linkage between the u's

and preference orderings on lottery spaces is established. (For

completeness, we mention that the final link in this chain--the

correspondence between measurable utility functions and preference

lottery spaces--is not one-to-one. Rather, measurable utility functions

U and V defined on the same lottery space will represent the same

preference ordering if (and only if) U = aV + b for some constants a and

b with a > 0 (see Weiss (Tech. Bull.)). As a result, continuous

functions u and v for which u = av + b (a > 0) will correspond to the

same preference lottery space. Nevertheless, each u still corresponds

to a unique preference lottery space.)

For dtsconttnuous u's, however, the relationship to risk preference

orderings is less apparent, for, in this case, the integral formula

cannot, in general, be used. Consider, for example, an empirical

study--such as O'Mara's--in which the subjects are asked to choose

between various putative simple lotteries. These are necessarily
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discontinuous. (Discontinuous lotteries also arise when, for example,

commodity price risk is mediated through the introduction of a support

price, or the risk of some disaster is mediated through an insurance

policy with a deductible.) Suppose that the estimated utility function,

u, is discontinuous at an income level to, while the simple lottery L is

also discontinuous at t
0. 

Then, the Stieltjes integral

co

u(t)dL(t)

-co

does not even exist, for its integrand and weighting function are

discontinuous at the same point. (See Rudin for a careful review of the

definition of the.Stieltjes integral.) Yet, we would certainly require

that our lottery space contain L. Thus, we need to find an alternative

method of associating discontinuous functions with risk preference

orderings.

It turns out that, if we restrict our attention to bounded

functions (as should be appropriate for most empirical work), we can

characterize the associated measurable utility functions more strongly.

(For an alternative result without this restriction, see Weiss (1985).)

We now present a result showing how any bounded function-whether

continuous or discontinuous-can be uniquely associated with a

preference lottery space. By way of preparation, recall that any

a-linear function determines a unique preference lottery space for which

it is a measurable utility function. Recall also that L
d 
is the space

of all discrete lotteries and (by our Proposition) is a-convex, so that

a-linear functions may be defined on it. Then:

Theorem: The reLation "U induces u" is a one-to-one correspondence

between the set of aLL a-Linear functions defined on L and the set of

aLL bounded numericaL-vaLued functions defined on the number Line.

Proof: It was implicitly shown in Grandmont that any a-linear function

is bounded. Thus, the a-linear functions of concern here must induce

utility functions that are bounded. To establish the one-to-one

correspondence asserted by the Theorem, it remains to show that (1)

different a-linear functions on L
d 

must induce different numerical

functions and (2) every bounded numerical function is induced by some

a-linear function on Ld. (1) amounts to the assertion that the relation

"U induces u" associates

one a-linear function on

this relation associates

one a-linear function on

each bounded numerical function with at most

L
d
, while (2) amounts to the assertion that

each bounded numerical function with at Least

L
d
. (2) implies that every bounded numerical
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function is associated with some risk preference ordering on Ld; (1)

implies that that risk preference ordering is unique.

To prove (1), suppose a-linear functions U
1 

and U
2 
on L

d 
induce the

same bounded function, u, on the number line. Then, for any discrete

lottery

we have

co

r. p.F
r.

i=1 1

co

U
1 

U
1 

(L) = E p. (F 
r
)

i=1 
.
1

co
= E piu(ri)
i=1

co
= E p.0 (F )

1=1

=

so that U-
1 
= U

2
. This proves (1).

To prove (2), let u be an arbitrary bounded numerical function. We

shall construct a a-linear function, denoted u*, on L
d 
that induces u.

In fact, for any discrete lottery

* *

put

co

L= E piFs ,

i=1

co

u*(L) = E p.u(s.).
1=11 1

Note that, for u*(L) to be well-defined, it is required that u* assign

the same value to L no matter how L may be represented as a convex

combination of degenerate lotteries. That is, suppose L can also be

represented as
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L=

Co

1=1 3

CD

where each c1. 0 and E q. — 1. Then, it is required that
3 •3=1 3

co co
E p.u(s.) = E q.u(t.).
i=1 

1 1 
j=1 3 3

However, this condition is satisfied. To prove this, suppose that (**)

and (***) both hold. Without loss of generality, we may assume that

each pi and q. is positive. Let S be the set of distinct terms
3

appearing among 2
1' 

s
2' 

s
3' 

... and T the set of distinct terms

appearing among t
1' 

t
2' 

t
3

For each s in S, let S
s 
be the set of

subscripts, i, for which si = s. Similarly, for each t in T, let Tt be

the set of subscripts, j, for which tj = t. Then, it follows from (**)

and (***) (by rearranging terms) that

E I E p.1F = E [ E ci.1Fs 3 t
. 2GS .iGS tGT jGTt

(where, for example, the notation "sGS" indicates that the sum is to be

taken over all elements s of the set S. Note that these "sums" really

are infinite series, in general.). Our next step is to prove that

S = T. We shall accomplish this by showing that S and T are precisely

the sets of points of discontinuity of the left and right sides,

respectively. It will be enough to prove this for S.

Toward this end, for each s in S, put

P
s 
= E pi

iGSs

Note that each P
s 
is positive. Put

F= r, P F ,
s s

sGS

and consider any number r. For any numbers r
1
, r

2 
satisfying

< r < r2, we have



Thus

F(r
2
) - F(r ) = E Ps(Fs(r2) - F

s
(r
1
)).

sGS

F(r+) - F(r-) = E Ps(Fs(r+) - Fs(r-))
sGS

(where the "+" and "-" denote right- and left-hand limits). However,

for each s in So F
s

 (r+) - F(r-) is either 1 or 0, according to whether

r is, or is not, equal to s. Thus, F(r+) - F(r-) is positive if and

only if r is in S. However, F is discontinuous at r if and only if

F(r+) - F(r-) is positive. It follows that S must be the set of points

of discontinuity of F. Arguing similarly for To we conclude that S = T.

Thus, putting

for each t in To we have

Qt = E qj
iGirt

E (P - Q )F = 0.
s 

sGS 
s

Consider any number s Reasoning as before, we obtain
O s

which reduces to

E (P
s 
- Q

s
)(F

s
(s
0
+j - F (s -)) = 0,

"s 0
sGS

(11 - Q
s

)(F
s
(s
0
+) - F

s
(s

o
-)) = 0,

so o o o

whence P
s 

= Q
s 
. Since, by rearrangement of terms,

0 0

co

1 1
E p.u(s.) = E [E p.lu(s)

i=1 sGS iGS
s 

.

= E Psu(s)
sGS

and
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E q.u(t ) = E [ E qdu(t)
3 7

j=1 tGT jGT
t

= E Qsu(s),
sGS

it follows that

Co Co

E p.u(s.) = E
3

i=1 
1 1

3=1 3

as was to be proved.

Thus, the function u* is well-defined. Furthermore, it is

a-linear. To see this, let L
1' 

L
2' 

L
3' •• 

be a sequence of discrete

lotteries and p
1' 

p
2' p3' 

... a sequence of nonnegative numbers such

Co

that E pi = 1. We wish to show that '

i=1

Co co
• u*( E piLi) = E

i=1i=1

However, in order to use the definition of u* to calculate the left-hand

Co

side, we need to rewrite E p.L. as a convex combination of a sequence
3.

i=1

of degenerate lotteries. For this, we follow the notation and reasoning

used in the proof of the Proposttton (Sec. 2), writing

CO

L. = E q .F
i,3 t

ij=1 ,j

for each i and employing the one-to-one correspondence, 0, between the

set of all positive integers and the set of all ordered pairs of

positive integers. We obtain

co co
tvt( E p.L.) = u*( E p

0(n) 
q
0(n)

F
t

i=1 
1 1

n=1 1 0(n)

co
= E D

n=1
' 0( n 4)(

u(t
n) cb(n)

)
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co co
= E p. E q. .u(t.

i=1 1=1 1,3 1,3

00

=E.1.1*(1,.),
i=1

as desired. Thus, u* is a-linear. Finally, u* induces u, since

u*(F
t
) = u(t) for each t by the very definition of u*. This proves (2)

and completes the proof of the Theorem.
Q .E. D.

In establishing a one-to-one correspondence between bounded

numerical functions and measurable utility functions, the Theorem

assumed that preference comparisons were to be made only between

discrete lotteries. It is natural to ask whether a similar

correspondence based on the relation "U induces u" holds when conttnuous

lotteries- (in conjunction with discrete lotteries) are allowed in the

lottery space. It is shown in Weiss (Tech. Bull.) that such a

correspondence does not hold. In fact, in the situation described,

measurable utility functions representing incompattbLe risk preference

orderings can induce the some bounded numerical function. It is

plausible, however, that a dtfferent type of correspondence--based on

the canonical decomposition of a lottery into its discrete and

continuous parts (Weiss, Tech. Bull.)--could be effective for an

expanded lottery space. We leave that investigation for another time.
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