%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Editors

H. Josepn NEWTON
Department of Statistics
Texas A&M University
College Station, Texas
editors@stata-journal.com

Associate Editors

CHRISTOPHER F. BAUM, Boston College

NATHANIEL BECK, New York University

RiNO BELLOCCO, Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

MAARTEN L. Buis, University of Konstanz, Germany

A. CoLIN CAMERON, University of California—Davis

MARIO A. CLEVES, University of Arkansas for
Medical Sciences

‘WIiLLIAM D. DUPONT, Vanderbilt University

PHILIP ENDER, University of California—Los Angeles

Davib EPSTEIN, Columbia University

ALLAN GREGORY, Queen’s University

JAMES HARDIN, University of South Carolina

BEN JANN, University of Bern, Switzerland

STEPHEN JENKINS, London School of Economics and
Political Science

ULRICH KOHLER, University of Potsdam, Germany

Stata Press Editorial Manager
Lisa GILMORE

Nicnoras J. Cox
Department of Geography
Durham University
Durham, UK
editors@stata-journal.com

FRAUKE KREUTER, Univ. of Maryland—College Park

PETER A. LACHENBRUCH, Oregon State University

JENS LAURITSEN, Odense University Hospital

STANLEY LEMESHOW, Ohio State University

J. ScorT LONG, Indiana University

ROGER NEWSON, Imperial College, London

AusTIN NicHoLs, Urban Institute, Washington DC

MARCELLO PAGANO, Harvard School of Public Health

SopHIA RABE-HESKETH, Univ. of California—Berkeley

J. PATRICK ROYSTON, MRC Clinical Trials Unit,
London

PuiLP RYAN, University of Adelaide

MARK E. SCHAFFER, Heriot-Watt Univ., Edinburgh

JEROEN WEESIE, Utrecht University

IaN WHITE, MRC Biostatistics Unit, Cambridge

NicHOLAS J. G. WINTER, University of Virginia

JEFFREY WOOLDRIDGE, Michigan State University

Stata Press Copy Editors
DaviD CULWELL, SHELBI SEINER, and DEIRDRE SKAGGS

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book
reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository
papers that link the use of Stata commands or programs to associated principles, such as those that will serve
as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate
or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to
a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users
(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers
analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could
be of interest or usefulness to researchers, especially in fields that are of practical importance but are not
often included in texts or other journals, such as the use of Stata in managing datasets, especially large
datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata
with topics such as extended examples of techniques and interpretation of results, simulations of statistical
concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-
ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),
Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

B A A S e

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145
2-year subscription $210 2-year subscription $270
3-year subscription $285 3-year subscription $375
1-year student subscription $ 85 1-year student subscription $115
1-year institutional subscription $345 1-year institutional subscription $375
2-year institutional subscription $625 2-year institutional subscription $685
3-year institutional subscription $875 3-year institutional subscription $965
Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85
2-year subscription $155 2-year subscription $155
3-year subscription $215 3-year subscription $215
1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may
be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX
77845, USA, or emailed to sj@stata.com.

e~ | aTa
%?ﬁ& —/gfr';]SrS- Copyright © 2015 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,
fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, STATQ, Stata Press, Mata, Mara,
and NetCourse are registered trademarks of StataCorp LP.

SJidid LIy 14J. JpPTil Jyuudinidarico

Nicholas J. Cox
Department of Geography
Durham University
Durham, UK
n.j.cox@durham.ac.uk

1 Introduction

Identifying spells or runs of observations is a common problem in data management and
data summary. A detailed tutorial was given in a “Speaking Stata” column (Cox 2007).
That column identified some simple techniques for working with spells in Stata:

1. Mark the start of each spell with an indicator variable. The key is that observa-
tions at the start of spells will differ from their predecessors. Care may be needed
in handling the very first observation, either in a dataset or in a panel.

2. Use cumulative sums to map start indicators to spell identifiers that are 1 up. It
is also useful to identify gaps between spells by 0. Given identifiers, summarizing
spell characteristics is then usually straightforward. egen functions are particu-
larly useful.

3. Panel datasets are no more difficult than individual series, so long as you use by:.
Using features allowed after tsset or xtset is perfectly sensible but not essential.

4. Some spell criteria do require two passes through the data. Typically, spells are
reclassified on the second pass, say, to restrict spells to certain lengths or to allow
short gaps within spells.

If you are nodding in agreement with these points, do read on. If they seem cryptic,
please read (or skim) the 2007 column first.

Here I add further detail on two common problems. The first is when a spell is
defined by its end condition. With just a twist, this can be recast easily as a condition
for defining its start.

The second problem need not be considered as a question of defining spells but can
be seen in that framework. This problem pertains to calculating the time or number of
observations since some event, which can be approached directly.

2 The ends define the spells

Many spells are defined just as naturally by when they end as by when they start.
Sometimes, the exact time of ending may be known, but the starting time may be

© 2015 StataCorp LP dm0079

unciear or delinable OI1ly arbltrarlly. Iror €Xalllple, all €leCllOoll INarks tie €na ol a
political campaign. A birth marks the end of a pregnancy. A sale may mark the end of
a period of contact between a seller and a potential buyer.

Let’s assume that we have, or can create, an indicator variable for the end of a spell,
say, end. Let’s also assume that data are sorted in order of a time or other sequencing
variable, possibly within panels in the case of panel or longitudinal data. The criterion
for the start of a spell can then be something like

. generate begin = end[_n-1] | _n == 1
for a single series. For panel data, it may be
. bysort id (time): generate begin = end[_n-1] | _n == 1
Here the code is short for
. generate begin = (end[_n-1] == 1) | (Ln == 1)

and similarly for the panel case. If the indicator variable is only ever 1 or 0, then
end[n-1] == 1 yields 1 (true) precisely when end [n-1] is 1 (true).

In general, two possibilities define the start of a spell. Either the previous observation
was the end of a spell, or this is the first observation. Here _n defines observation
number; under the aegis of by:, observation numbers are defined within groups; and |
is the logical operator “or”.

Given that indicator variable for the beginning of a spell, a spell identifier is just
. generate spellid = sum(begin)

Let’s see how this works with a small example. There are 7 observations, and the
indicator end is 1 in observation 4.

. list, sep(0)

time end Dbegin spellid

N OO WN e
N OO WN e
OO Or OO0OO
OO r OO0
NNNR P ==

Some complications of this basic idea are predictable. With this approach, a spell
will always be identified with identifier 1, regardless of whether the event took place.
For example, the potential buyer may never have proceeded to purchase. A spell was
identified as such because it started with the first observation. In that case, it may be
sensible to reclassify the spell because it was incomplete. That is easy. For a single

SCIries, wWe Call Sulmarize €nd alld replace spellid II 15 Inaximuin 1s only u. Alter
summarize, the maximum is accessible as r (max).

. summarize end, meanonly
. if r(max) == 0 replace spellid = 0

Here we reclassified an incomplete spell to have 0 as an identifier. Another possibility
that might appeal is to reclassify to a missing value.

For panel data, we need to examine each panel separately. We can calculate the
maximum of end for each panel with

. bysort id: egen max = max(end)
. replace spellid = 0 if max ==

and thus reclassify the incomplete spell in each panel.

A similar problem arises if the last spell—whether for all the data or for a single
panel—is incomplete. Again, “incomplete” means that the last observation has a value
of 0 for end. For a single series, we reclassify with

. replace spellid = 0 if end[_N] == 0 & spellid == spellid[_N]
and for panel data, we merely apply that under by:,
. bysort id (time): replace spellid = O if end[_N] == 0 & spellid == spellid[_N]

However, notice now that this technique will take care of the first problem too. If the
data define a single incomplete spell, then it will also be true that the last observation
has value 0 for the end indicator, and the condition that the spell identifier equals the
last spell identifier will catch all the relevant data. So you can forget the first technique,
or feel good about having two ways of solving the problem.

3 Time since an event

Researchers often want to keep track of the time since some event. Events can be
anything deemed to happen at a single time or point in a sequence. A common example
on Statalist is an initial public offering or a stock market launch.

In a sense, this problem is a twist on the problem of identifying the previous value
of some variable that was different (Cox 2011), but the “Tip” just cited did not spell
that out, and the problem fits in here quite well.

It is also a twist on the problem of identifying a counter variable indicating sequence
within spells, which is a problem also discussed in Cox (2007). But we can approach it
without even identifying spells explicitly, and will do so now.

We again assume an indicator variable for an event and order by time or sequence
variable, possibly within panels, as in the previous section. We need not be precise
about whether the event marks the start or end of a spell. Hence, we phrase matters

using a neutral variable Ilalne sucil as event. event will be 1 wiell all evelll occulrred
and 0 otherwise. The times at which events occur can be copied into a new variable
with

. generate when = time if event

which is a valid command for either a single series or panel data. Note that the condition
if event implies that values will be missing for times other than those when an event
took place. But we can copy values downward in a cascade. For a single series, we use

. replace when = when[_n-1] if missing(when)
and for panel data, we use
. bysort id (time): replace when = when[_n-1] if missing(when)

If you are not familiar with this trick, it works like this: to begin, generate and
replace use the current order of observations (Newson 2004). So a missing value
immediately after a nonmissing value of when can be replaced with that nonmissing
value; a missing value immediately after that can be replaced with the same nonmissing
value, which is now the previous value. We then continue in a cascade until we reach
the next nonmissing value or the end of the panel or the end of the data, whichever
comes first.

Now the times since the last event are immediately available by subtraction, as
follows:

. generate time_since = time - when

Sometimes, researchers like to restrict attention or calculation to times within some
specified interval of an event, say, within the next 30 days or 2 years. The variable just
created will then naturally appear in a condition specified with if, such as time_since
<= 30.

An inevitable side effect of this calculation is that the variables when and time_since
will be returned with missing values for observations before the first event. Typically,
that should be considered logical and desirable.

An attraction of this device is that few assumptions are being made. There is no
assumption that times are evenly spaced. There is no assumption that a time variable
or a panel identifier variable has been declared with tsset or xtset.

A variant on the problem is that researchers sometimes want to count observations
after an event rather than measure the time elapsed. The two are not equivalent when-
ever times are not evenly spaced or the difference between times is not 1 in whatever
time units are being used. An example might be counting patient visits to a clinic after
some event, say, an initial consultation.

A technique for this preference is to initialize a counter, as follows:

. generate counter = 0 if event

vve then count upward (as 11 eleimnentary aritiimetic) by addlng L repeatedly. ror singie
series, use

. replace counter = counter[_n-1] + 1 if missing(counter)

For panel data, do that within panels. If it makes more sense to regard the event itself
as a count of 1, the modification is clear.

References
Cox, N. J. 2007. Speaking Stata: Identifying spells. Stata Journal 7: 249-265.

. 2011. Stata tip 101: Previous but different. Stata Journal 11: 472-473.

Newson, R. B. 2004. Stata tip 13: generate and replace use the current sort order. Stata
Journal 4: 484-485.

