

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

The Stata Journal

Editors

H. Joseph Newton

Department of Statistics
Texas A\&M University
College Station, Texas
editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College
Nathaniel Beck, New York University
Rino Bellocco, Karolinska Institutet, Sweden, and University of Milano-Bicocca, Italy
Maarten L. Buis, University of Konstanz, Germany
A. Colin Cameron, University of California-Davis

Mario A. Cleves, University of Arkansas for
Medical Sciences
William D. Dupont, Vanderbilt University
Philip Ender, University of California-Los Angeles
David Epstein, Columbia University
Allan Gregory, Queen's University
James Hardin, University of South Carolina
Ben Jann, University of Bern, Switzerland
Stephen Jenkins, London School of Economics and Political Science
Ulrich Kohler, University of Potsdam, Germany

Stata Press Editorial Manager

Lisa Gilmore

Nicholas J. Cox
Department of Geography
Durham University
Durham, UK
editors@stata-journal.com

Frauke Kreuter, Univ. of Maryland-College Park Peter A. Lachenbruch, Oregon State University Jens Lauritsen, Odense University Hospital Stanley Lemeshow, Ohio State University
J. Scott Long, Indiana University

Roger Newson, Imperial College, London
Austin Nichols, Urban Institute, Washington DC Marcello Pagano, Harvard School of Public Health Sophia Rabe-Hesketh, Univ. of California-Berkeley J. Patrick Royston, MRC Clinical Trials Unit, London
Philip Ryan, University of Adelaide
Mark E. Schaffer, Heriot-Watt Univ., Edinburgh Jeroen Weesie, Utrecht University
Ian White, MRC Biostatistics Unit, Cambridge
Nicholas J. G. Winter, University of Virginia
Jeffrey Wooldridge, Michigan State University

Stata Press Copy Editors

David Culwell, Shelbi Seiner, and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository papers that link the use of Stata commands or programs to associated principles, such as those that will serve as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go "beyond the Stata manual" in explaining key features or uses of Stata that are of interest to intermediate or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users (e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could be of interest or usefulness to researchers, especially in fields that are of practical importance but are not often included in texts or other journals, such as the use of Stata in managing datasets, especially large datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata with topics such as extended examples of techniques and interpretation of results, simulations of statistical concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behavioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch), Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone 979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at
http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.
U.S. and Canada Elsewhere
\(\left.$$
\begin{array}{llll}\hline \text { Printed \& electronic } & & \text { Printed \& electronic } \\
\text { 1-year subscription } & \$ 115 & \begin{array}{l}\text { 1-year subscription } \\
\text { 2-year subscription } \\
\text { 3-year subscription }\end{array}
$$ \& \$ 210

2-year subscription

3-year subscription\end{array}\right]\)| |
| :--- |
| 1-year student subscription |

Back issues of the Stata Journal may be ordered online at

> http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may be ordered online.
http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.
Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX 77845 , USA, or emailed to sj@stata.com.

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and help files) are copyright (C) by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.
Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting files understand that such use is made without warranty of any kind, by either the Stata Journal, the author, or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, STコTQ, Stata Press, Mata, mata, and NetCourse are registered trademarks of StataCorp LP.

Generating nonnegatively correlated binary random variates

Minxing Chen
MD Anderson Cancer Center
Houston, TX
mchen3@mdanderson.org

Abstract

In this article, I discuss the methods for generating nonnegatively correlated binary random variates. I provide a new command, rbinary, with examples showing how the command can be used.

Keywords: st0382, rbinary, correlated binary random data, Monte Carlo simulation, drawnorm, multivariate normal distribution

1 Introduction

Correlated binary data are frequently encountered in clinical trials (for example, with or without certain disease symptoms) with repeated measures, system reliability analysis (for example, a machine fails or not), or the segmentation of marketing data (in which only two values, yes and no or 1 and 0 , are used by customers to respond to questionnaires). Simulating these types of data has many important applications. For example, as suggested by Park, Park, and Shin (1996), simulated binary random variates with specified mean structures and correlation structures can be used to evaluate the smallor finite-sample properties of estimators in the generalized estimating equation; they can also be used in the analysis of system reliability in which the system comprises dependent components. When analytical evaluation of system performance is difficult, one needs to generate correlated binary variables for a Monte Carlo study. Correlated binary data are also found in the segmentation of marketing data, in which customer responses to questionnaires are usually binary (such as yes or no). Artificial data with known mean and correlation structure can be constructed to mimic situations from the real world (Dolnicar et al. 1998) and thus provide a valuable tool for the analysis of segmentation data (Leisch, Weingessel, and Hornik 1998). Finally, simulated correlated binary distribution is also useful for power analysis, such as calculating the power to detect the difference between pretreatment and posttreatment or treatment versus the control group in binary clinical data.

Unfortunately, there is not a standard procedure in the popular statistical software, including Stata, that can be used to directly simulate these types of data. In this article, I will present a straightforward and computationally fast method to achieve this goal. In section 2 , after discussing different approaches for generating correlated binary variables, I focus on an appealing algorithm proposed by Emrich and Piedmonte (1991) and demonstrate how to generate desired correlated binary data step by step. In section 3, I provide detailed syntax for the new command rbinary and provide some examples of its use.

2 Multivariate binary distribution

Stata has a built-in command, drawnorm, that can easily be used to draw a sample from a multivariate normal distribution with desired means and covariance matrix. Unfortunately, to my knowledge, no such built-in command or user-written command is available to do the same for binary distribution.

Several approaches of using an algorithm to generate binary random variates with desired marginal probabilities and correlation have been discussed in earlier literature. For example, the Bahadur model (Bahadur 1961) uses marginal probabilities, pairwise correlations, and higher-order moments to parameterize the multinomial distribution. For this model, we let the binary variable $Y_{i j}$ indicate outcome j for subject i. We let $Z_{i j}=Y_{i j}-\mu_{i j} / \sqrt{\mu_{i j}\left(1-\mu_{i j}\right)}$ and $z_{i j}=y_{i j}-\mu_{i j} / \sqrt{\mu_{i j}\left(1-\mu_{i j}\right)}$, where $y_{i j}$ is the observed value of $Y_{i j}$. Further, we let parameters $r_{i j k}$ denote Pearson correlation coefficients, where $r_{j k}=\operatorname{cor}\left(Y_{j}, Y_{k}\right)=E\left(Z_{j} Z_{k}\right)$, and $r_{j k l}=\operatorname{cor}\left(Y_{j}, Y_{k}, Y_{l}\right)=$ $E\left(Z_{j} Z_{k} Z_{l}\right), \ldots, r_{(1, \ldots, n)}=E\left(Z_{1} Z_{2} \ldots Z_{n}\right)$. Then the probability mass function, $\operatorname{Pr}(Y=$ y), is the product of the marginal probability $f_{1}(y)$ and the correction term $f_{2}(y)$, where $f_{1}(y)=\sum_{j=1}^{n} p_{j}^{y_{j}}\left(1-p_{j}\right)^{\left(1-y_{j}\right)}$ and $f_{2}(y)=1+\sum_{j<k} r_{j k} \times z_{j} \times z_{k}+\sum_{j<k<l} r_{j k l} \times$ $z_{j} \times z_{k} \times z_{l}+\cdots+r_{1, \ldots, n} \times z_{1} \times z_{2} \ldots z_{n}$. However, this approach has drawbacks; for example, the correlations are constrained by the marginal probabilities, and it is computationally difficult to handle for higher-dimensional correlated binary random variates (Park, Park, and Shin 1996).

A more appealing algorithm proposed by Park, Park, and Shin (1996) is the approach that any Poisson random variable can be expressed as the sum of several other independent Poisson random variables, and if two Poisson random variables share a Poisson distribution component, they are nonnegatively correlated. For example, let $X_{(a)}$ denote a Poisson random variable with nonnegative mean a and assume X s are mutually independent if they have different subscripts. Now, consider $k=2$, and let $Y_{1}=X_{1\left(a_{11}-a_{12}\right)}+X_{3\left(a_{12}\right)}$ and $Y_{2}=X_{2\left(a_{22}-a_{12}\right)}+X_{3\left(a_{12}\right)} . Y_{1}$ and Y_{2} will then follow Poisson distribution with means a_{11} and a_{22} and are also correlated because they share a common component, $X_{3\left(a_{12}\right)}$. Further, if we set $z_{i}=I_{0}\left(Y_{i}\right)$, where $I_{A}(y)=1$ if $y \in A$ and $I_{A}(y)=0$ if $y \notin A$, then z_{1} and z_{2} will be binary random variates converted from the Poisson variables, which are also correlated. This approach is most suitable for generating two-dimensional binary random variates, but it is difficult to generate any correlated binary data with more than two dimensions.

In this article, I adopt an algorithm proposed by Emrich and Piedmonte (1991) that is both computationally convenient and easy to understand. This approach first generates a random multivariate normal distribution with the mean vector $\boldsymbol{\mu}$ and variancecovariance structure $\boldsymbol{\Sigma}$, which can be transformed into binary values by setting

$$
Z_{i}=\left\{\begin{array}{lll}
=1, & \text { if } & x_{i}>0 \\
=0, & \text { if } & x_{i} \leq 0
\end{array}\right.
$$

This transformed multivariate binary distribution will have the mean vector \mathbf{p} and correlation structure $\boldsymbol{\Sigma}_{\mathbf{b}}$ that we need.

For example, we could use this algorithm to generate random multivariate binary data with mean vector \mathbf{p} and correlation matrix $\boldsymbol{\Sigma}_{\mathbf{b}}$ defined as

$$
\mathbf{p}=\left(\begin{array}{l}
0.05 \\
0.10 \\
0.15 \\
0.20
\end{array}\right), \quad \boldsymbol{\Sigma}_{\mathbf{b}}=\left(\begin{array}{llll}
1 & 0.3 & 0.2 & 0.1 \\
0.3 & 1 & 0.3 & 0.2 \\
0.2 & 0.3 & 1 & 0.3 \\
0.1 & 0.2 & 0.3 & 1
\end{array}\right)
$$

I demonstrate how to perform this in the following steps.

2.1 Step 1: Determine mean vector μ for multivariate normal distribution

The mean vector $\boldsymbol{\mu}$ is simply the inverse cumulative standard normal distribution of \mathbf{p}. For example, with the above binary distribution mean vector, the normal distribution mean vector $\boldsymbol{\mu}$ would be

$$
\boldsymbol{\mu}=\left(\begin{array}{l}
\operatorname{invnormal}(0.05)=-1.645 \\
\operatorname{invnormal}(0.10)=-1.282 \\
\operatorname{invnormal}(0.15)=-1.036 \\
\operatorname{invnormal}(0.20)=-0.842
\end{array}\right)
$$

2.2 Step 2: Determine correlation matrix Σ for normal distribution

It is important that we obtain the variance-covariance $\boldsymbol{\Sigma}$ of the normal distribution. With the Stata built-in command drawnorm, we can easily generate a random multivariate normal distribution with a specified mean vector and covariance matrix. However, we still need to find the connection between the covariance matrix $\boldsymbol{\Sigma}_{\mathbf{b}}$ of the binary distribution and the covariance matrix $\boldsymbol{\Sigma}$ of the normal distribution.

By definition, the correlation coefficient $r_{A B}$ of any two binary random variables A and B can be written as $r_{A B}=\left(p_{A B}-p_{A} p_{B}\right) / \sqrt{p_{A} q_{A} p_{B} q_{B}}$, where $p_{A B}$ is the joint probability $P(A=1, B=1) ; p_{A}, p_{B}$ is the marginal probability of binary variable A and B; and q_{A} is equal to $\left(1-p_{A}\right)$ and q_{B} equal to $\left(1-p_{B}\right)$. The equation can be written as $p_{A B}=r_{A B} \sqrt{p_{A} q_{A} p_{B} q_{B}}+p_{A} p_{B}$.

If A and B are converted from two normal random variables X and Y, as described above, $p_{A B}$ can then be related to the normal distribution by

$$
\begin{aligned}
p_{A B} & =I P(X>0, Y>0)=I P\left(\bar{X}>-\mu_{X}, \bar{Y}>-\mu_{Y}\right)=L\left(-\mu_{X},-\mu_{Y}, \rho\right) \longrightarrow \\
L(h, k, \rho) & =I P(\bar{X}>h, \bar{Y}>k)=\iint_{h k}^{\infty} \phi(x, y, \rho) d y d x
\end{aligned}
$$

where ρ is the correlation coefficient between X and Y, and

$$
\phi(x, y, \rho)=\frac{1}{2 \pi\left(1-\rho^{2}\right)} \exp \left\{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right\}
$$

With the desired correlation coefficient $r_{A B}$ and the marginal probability of variable A and B, we can now obtain the joint probability $p_{i j}$ for any pair of binary variables. With known $p_{i j}$ and the equation $L(h, k, \rho)=I P(\bar{X}>h, \bar{Y}>k)=\iint_{h k}^{\infty} \phi(x, y, \rho) d y d x$, we can use numerical integration or Monte Carlo simulation to obtain the covariance matrix $\boldsymbol{\Sigma}$ of the normal distribution needed for $\boldsymbol{\Sigma}_{\boldsymbol{b}}$. This results in

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
1 & \rho_{12} & \rho_{13} & \rho_{14} \\
\rho_{21} & 1 & \rho_{23} & \rho_{24} \\
\rho_{31} & \rho_{32} & 1 & \rho_{34} \\
\rho_{41} & \rho_{42} & \rho_{43} & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0.6104 & 0.4599 & 0.2589 \\
0.6104 & 1 & 0.5598 & 0.4014 \\
0.4599 & 0.5598 & 1 & 0.5246 \\
0.2589 & 0.4014 & 0.5246 & 1
\end{array}\right)
$$

To save time, the command rbinary uses presimulated joint binary probabilities that were previously produced by Friedrich Leisch (Leisch, Weingessel, and Hornik 1998) (for program R) via Monte Carlo simulation (within R function simul.commonprob).

2.3 Step 3: Draw a sample from the multivariate normal distribution

With the mean vector $\boldsymbol{\mu}$ and correlation matrix $\boldsymbol{\Sigma}$ that we determined in step 1 and step 2, we can use the Stata built-in command drawnorm to draw a sample, X, from the multivariate normal distribution.

2.4 Step 4: Transform normal distribution to binary distribution

We can easily transform the multivariate normally distributed sample drawn in step 3 to binary values by setting

$$
Z_{i}=\left\{\begin{array}{lll}
=1, & \text { if } & x_{i}>0 \\
=0, & \text { if } & x_{i} \leq 0
\end{array}\right.
$$

This transformed multivariate binary Z should have the approximate mean vector \boldsymbol{p} and the correlation structure $\boldsymbol{\Sigma}_{\boldsymbol{b}}$ needed.

3 The rbinary command

3.1 Syntax

rbinary newvarlist, means(vector) corr(matrix|vector) $\mathrm{n}(\#)[\operatorname{seed}(\#)]$

3.2 Options

means (vector) specifies the mean of each variable, up to six variables. means() is required.
corr (matrix \mid vector) specifies the correlation matrix. corr () is required.
n (\#) specifies the number of observations to be generated. n() is required.
seed (\#) specifies the initial value of the random-number seed used by the command drawnorm.

3.3 Stored results

rbinary stores the following in $r()$:
Matrices
$\begin{array}{ll}r \text { (mean) } & \text { means vector that was used in drawnorm } \\ r \text { (sigma) } & \text { correlation matrix that was used in drawnorm }\end{array}$

3.4 Examples

Here we generate a sample of 2,000 observations from a bivariate binary distribution with desired marginal probabilities at 0.05 and 0.10 and correlation coefficient at 0.3 .

```
. rbinary x y, means(0.05,0.10) corr(1,0.3\0.3,1) n(2000) seed(12345)
. correlate
(obs=2000)
\begin{tabular}{r|rr} 
& x & y \\
\hline x & 1.0000 & \\
y & 0.3227 & 1.0000
\end{tabular}
. summarize
\begin{tabular}{r|rrrrr} 
Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline x & 2000 & .049 & .215922 & 0 & 1 \\
y & 2000 & .105 & .3066301 & 0 & 1
\end{tabular}
```

Here we generate 4 -dimensional binary data with 2,000 observations, with the following desired mean vector and correlation structure:

$$
\boldsymbol{p}=\left(\begin{array}{l}
0.05 \\
0.10 \\
0.15 \\
0.20
\end{array}\right), \quad \boldsymbol{\Sigma}_{\boldsymbol{b}}=\left(\begin{array}{llll}
1 & 0.3 & 0.2 & 0.1 \\
0.3 & 1 & 0.3 & 0.2 \\
0.2 & 0.3 & 1 & 0.3 \\
0.1 & 0.2 & 0.3 & 1
\end{array}\right)
$$

```
. rbinary x1 x2 x3 x4, means(.05,.10,.15,.20)
>corr(1,.3,.2,.1\.3,1,.3,.2\.2,.3,1,.3\.1,.2,.3,1) n(2000) seed(12345)
. correlate
(obs=2000)
\begin{tabular}{r|rrrr} 
& x 1 & x 2 & x 3 & x 4 \\
\hline x 1 & 1.0000 & & & \\
x 2 & 0.3227 & 1.0000 & & \\
x3 & 0.1918 & 0.2980 & 1.0000 & \\
x4 & 0.1104 & 0.2349 & 0.3361 & 1.0000
\end{tabular}
. summarize
\begin{tabular}{r|rrrrr} 
Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline x1 & 2000 & .049 & .215922 & 0 & 1 \\
x2 & 2000 & .105 & .3066301 & 0 & 1 \\
x3 & 2000 & .143 & .3501604 & 0 & 1 \\
x4 & 2000 & .195 & .3962998 & 0 & 1
\end{tabular}
```

In the second example, we get empirical probabilities and correlation of

$$
\widehat{\boldsymbol{p}}=\left(\begin{array}{l}
0.049 \\
0.105 \\
0.143 \\
0.195
\end{array}\right), \quad \widehat{\boldsymbol{\Sigma}_{\boldsymbol{b}}}=\left(\begin{array}{llll}
1 & 0.3227 & 0.1918 & 0.1104 \\
0.3227 & 1 & 0.2980 & 0.2349 \\
0.1918 & 0.2980 & 1 & 0.3361 \\
0.1104 & 0.2349 & 0.3361 & 1
\end{array}\right)
$$

3.5 Application

Suppose the smoking abstinence rate difference between two treatment groups is constant at each time point, with an increase in abstinence of 5% across adjacent time points moving from the 6 - to 12 - to 18 -month follow-ups. Researchers want to calculate the power to detect a 10% difference on abstinence rate with a specified within-subject correlation structure. To achieve this goal, researchers should do the following: 1) use rbinary to simulate random correlated binary data for each group with specified sample size, mean, and correlation structure; 2) combine the groups' data; 3) run the command xtgee on the randomly generated combined data; 4) obtain the p-value for the overall contrast of groups; 5) perform steps $1-4 N$ times and save the p-values in a file with N observations. The estimated power for an alpha 0.05 test is simply the proportion of observations (out of N) for which the p-value is less than 0.05 .

```
quietly {
    tempname pow
    tempfile result data
    postfile 'pow` sample p using `result`, replace
        *try different sample size per group below until desired level power reached
    local nsize=90
        *specify alpha level here, e.g. 0.05
    local alpha=0.05
        *specify # bootstrap replications
    local reps=500
        *set seed to replicate result
    local seed=10000
    local N=1
    while 'N'<=`reps' {
        clear
        *specify mean vector in means(), and within-subject correlation matrix ///
                in corr()
        rbinary t1 t2 t3, means(0.05,0.10,0.15) corr(1,.2,.1\.2,1,.2\.1,.2,1) ///
                n(`nsize`) seed(`seed`)
        generate group=1
        save 'data`, replace
        rbinary t1 t2 t3, means(0.15,0.20,0.25) corr(1,.2,.1\.2,1,.2\.1,.2,1) ///
                n(`nsize`) seed(`seed`)
            generate group=2
            append using 'data`
            generate id=_n
        reshape long t, i(id) j(time)
        xtgee t i.time i.group, i(id) t(time) family(binomial) link(logit) ///
                corr(unstructured) vce(robust) nolog
        contrast group, overall
        matrix p=r(p)
        scalar p=p[1,1]
        post 'pow' (`N`) (scalar(p))
        local N=`N}\mp@subsup{}{}{-}+
        local seed=`seed`+1
    }
    postclose 'pow'
    use 'result', clear
    count if p<`alpha`
    local num=r(N)
    noisily display "Power=" round(`num`/`reps`, 0.001)
}
```

To determine the sample size needed to achieve a desired level of power, we can adjust the values of $n()$ until we have the desired power. For example, with the above mean and correlation structure and with a sample size of 90 per group, the above syntax yields power $=0.96$. This indicates that we should be able to reject the null hypothesis (H_{0} : there is no smoking abstinence rate difference between the groups) 96% of the time when it is false. Further, through trial and error, we can determine that a sample size of 65 yields power $=0.804$, which may be adequate for the researchers' purposes and provide a more efficient use of limited resources.

4 Acknowledgments

I gratefully acknowledge Bryan Fellman for his help with preparing the $\mathrm{AA}_{\mathrm{E}} \mathrm{X}$ file. I also thank Beibei Guo and Israel Christie for their help with the R program.

5 References

Bahadur, R. R. 1961. A representation of the joint distribution of responses to n dichotomus items. In Studies in Item Analysis and Prediction, ed. H. Solomon, 158168. Stanford, CA: Stanford University Press.

Dolnicar, S., F. Leisch, A. Weingessel, C. Buchta, and E. Dimitriadou. 1998. A comparison of several cluster algorithms on artificial binary data scenarios from travel market segementation. Working Paper No. 7, SFB Adaptive Information Systems and Modelling in Economics and Management Science, Vienna University of Economics and Business Administration.

Emrich, L. J., and M. R. Piedmonte. 1991. A method for generating high-dimensional multivariate binary variables. American Statistician 45: 302-304.

Leisch, F., A. Weingessel, and K. Hornik. 1998. On the generation of correlated artificial binary data. Working Paper Series No. 13, SFB Adaptive Information Systems and Modeling in Economics and Management Science, Vienna University of Economics and Business Administration.

Park, C. G., T. Park, and D. W. Shin. 1996. A simple method for generating correlated binary variates. American Statistician 50: 306-310.

About the author

Minxing Chen is a senior statistical analyst in the Department of Biostatistics at the University of Texas MD Anderson Cancer Center.

