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Abstract. In this article, I discuss the methods for generating nonnegatively
correlated binary random variates. I provide a new command, rbinary, with
examples showing how the command can be used.

Keywords: st0382, rbinary, correlated binary random data, Monte Carlo simula-
tion, drawnorm, multivariate normal distribution

1 Introduction

Correlated binary data are frequently encountered in clinical trials (for example, with or
without certain disease symptoms) with repeated measures, system reliability analysis
(for example, a machine fails or not), or the segmentation of marketing data (in which
only two values, yes and no or 1 and 0, are used by customers to respond to question-
naires). Simulating these types of data has many important applications. For example,
as suggested by Park, Park, and Shin (1996), simulated binary random variates with
specified mean structures and correlation structures can be used to evaluate the small-
or finite-sample properties of estimators in the generalized estimating equation; they
can also be used in the analysis of system reliability in which the system comprises
dependent components. When analytical evaluation of system performance is difficult,
one needs to generate correlated binary variables for a Monte Carlo study. Correlated
binary data are also found in the segmentation of marketing data, in which customer
responses to questionnaires are usually binary (such as yes or no). Artificial data with
known mean and correlation structure can be constructed to mimic situations from
the real world (Dolnicar et al. 1998) and thus provide a valuable tool for the analysis of
segmentation data (Leisch, Weingessel, and Hornik 1998). Finally, simulated correlated
binary distribution is also useful for power analysis, such as calculating the power to
detect the difference between pretreatment and posttreatment or treatment versus the
control group in binary clinical data.

Unfortunately, there is not a standard procedure in the popular statistical software,
including Stata, that can be used to directly simulate these types of data. In this
article, I will present a straightforward and computationally fast method to achieve
this goal. In section 2, after discussing different approaches for generating correlated
binary variables, I focus on an appealing algorithm proposed by Emrich and Piedmonte
(1991) and demonstrate how to generate desired correlated binary data step by step.
In section 3, I provide detailed syntax for the new command rbinary and provide some
examples of its use.

c© 2015 StataCorp LP st0382



302 Generating nonnegatively correlated binary random variates

2 Multivariate binary distribution

Stata has a built-in command, drawnorm, that can easily be used to draw a sample
from a multivariate normal distribution with desired means and covariance matrix.
Unfortunately, to my knowledge, no such built-in command or user-written command
is available to do the same for binary distribution.

Several approaches of using an algorithm to generate binary random variates with
desired marginal probabilities and correlation have been discussed in earlier literature.
For example, the Bahadur model (Bahadur 1961) uses marginal probabilities, pair-
wise correlations, and higher-order moments to parameterize the multinomial distri-
bution. For this model, we let the binary variable Yij indicate outcome j for subject

i. We let Zij = Yij − µij/
√
µij(1− µij) and zij = yij − µij/

√
µij(1− µij), where

yij is the observed value of Yij . Further, we let parameters rijk denote Pearson cor-
relation coefficients, where rjk = cor(Yj , Yk) = E(ZjZk), and rjkl = cor(Yj , Yk, Yl) =
E(ZjZkZl), . . . , r(1,...,n) = E(Z1Z2 . . . Zn). Then the probability mass function, Pr(Y =
y), is the product of the marginal probability f1(y) and the correction term f2(y), where
f1(y) =

∑n
j=1 p

yj
j (1 − pj)

(1−yj) and f2(y) = 1 +
∑
j<k rjk × zj × zk +

∑
j<k<l rjkl ×

zj × zk × zl + · · · + r1,...,n × z1 × z2 . . . zn. However, this approach has drawbacks; for
example, the correlations are constrained by the marginal probabilities, and it is compu-
tationally difficult to handle for higher-dimensional correlated binary random variates
(Park, Park, and Shin 1996).

A more appealing algorithm proposed by Park, Park, and Shin (1996) is the ap-
proach that any Poisson random variable can be expressed as the sum of several other
independent Poisson random variables, and if two Poisson random variables share a
Poisson distribution component, they are nonnegatively correlated. For example, let
X(a) denote a Poisson random variable with nonnegative mean a and assume Xs are
mutually independent if they have different subscripts. Now, consider k = 2, and let
Y1 = X1(a11−a12) +X3(a12) and Y2 = X2(a22−a12) +X3(a12). Y1 and Y2 will then follow
Poisson distribution with means a11 and a22 and are also correlated because they share
a common component, X3(a12). Further, if we set zi = I0(Yi), where IA(y) = 1 if y ∈ A
and IA(y) = 0 if y /∈ A, then z1 and z2 will be binary random variates converted from
the Poisson variables, which are also correlated. This approach is most suitable for
generating two-dimensional binary random variates, but it is difficult to generate any
correlated binary data with more than two dimensions.

In this article, I adopt an algorithm proposed by Emrich and Piedmonte (1991) that
is both computationally convenient and easy to understand. This approach first gener-
ates a random multivariate normal distribution with the mean vector µ and variance–
covariance structure Σ, which can be transformed into binary values by setting

Zi =

{
= 1, if xi > 0
= 0, if xi ≤ 0

This transformed multivariate binary distribution will have the mean vector p and
correlation structure Σb that we need.
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For example, we could use this algorithm to generate random multivariate binary
data with mean vector p and correlation matrix Σb defined as

p =




0.05
0.10
0.15
0.20


 , Σb =




1 0.3 0.2 0.1
0.3 1 0.3 0.2
0.2 0.3 1 0.3
0.1 0.2 0.3 1




I demonstrate how to perform this in the following steps.

2.1 Step 1: Determine mean vector µ for multivariate normal dis-
tribution

The mean vector µ is simply the inverse cumulative standard normal distribution of p.
For example, with the above binary distribution mean vector, the normal distribution
mean vector µ would be

µ =




invnormal(0.05) = −1.645
invnormal(0.10) = −1.282
invnormal(0.15) = −1.036
invnormal(0.20) = −0.842




2.2 Step 2: Determine correlation matrix Σ for normal distribution

It is important that we obtain the variance–covariance Σ of the normal distribution.
With the Stata built-in command drawnorm, we can easily generate a random multivari-
ate normal distribution with a specified mean vector and covariance matrix. However,
we still need to find the connection between the covariance matrix Σb of the binary
distribution and the covariance matrix Σ of the normal distribution.

By definition, the correlation coefficient rAB of any two binary random variables A
and B can be written as rAB = (pAB − pApB)/

√
pAqApBqB , where pAB is the joint

probability P (A = 1, B = 1); pA, pB is the marginal probability of binary variable A
and B; and qA is equal to (1 − pA) and qB equal to (1 − pB). The equation can be
written as pAB = rAB

√
pAqApBqB + pApB .

If A and B are converted from two normal random variables X and Y , as described
above, pAB can then be related to the normal distribution by

pAB = IP (X > 0, Y > 0) = IP
(
X > −µX , Y > −µY

)
= L(−µX ,−µY , ρ) −→

L(h, k, ρ) = IP
(
X > h, Y > k

)
=

∫ ∫ ∞

hk

φ(x, y, ρ)dydx

where ρ is the correlation coefficient between X and Y , and

φ(x, y, ρ) =
1

2π(1− ρ2)
exp

{
−x

2 − 2ρxy + y2

2(1− ρ2)

}
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With the desired correlation coefficient rAB and the marginal probability of variable A
and B, we can now obtain the joint probability pij for any pair of binary variables. With
known pij and the equation L(h, k, ρ) = IP (X > h, Y > k) =

∫ ∫∞

hk
φ(x, y, ρ)dydx, we

can use numerical integration or Monte Carlo simulation to obtain the covariance matrix
Σ of the normal distribution needed for Σb. This results in

Σ =




1 ρ12 ρ13 ρ14
ρ21 1 ρ23 ρ24
ρ31 ρ32 1 ρ34
ρ41 ρ42 ρ43 1


 =




1 0.6104 0.4599 0.2589
0.6104 1 0.5598 0.4014
0.4599 0.5598 1 0.5246
0.2589 0.4014 0.5246 1




To save time, the command rbinary uses presimulated joint binary probabilities that
were previously produced by Friedrich Leisch (Leisch, Weingessel, and Hornik 1998) (for
program R) via Monte Carlo simulation (within R function simul.commonprob).

2.3 Step 3: Draw a sample from the multivariate normal distribution

With the mean vector µ and correlation matrix Σ that we determined in step 1 and
step 2, we can use the Stata built-in command drawnorm to draw a sample, X, from
the multivariate normal distribution.

2.4 Step 4: Transform normal distribution to binary distribution

We can easily transform the multivariate normally distributed sample drawn in step 3
to binary values by setting

Zi =

{
= 1, if xi > 0
= 0, if xi ≤ 0

This transformed multivariate binary Z should have the approximate mean vector p
and the correlation structure Σb needed.

3 The rbinary command

3.1 Syntax

rbinary newvarlist, means(vector) corr(matrix | vector) n(#)
[
seed(#)

]

3.2 Options

means(vector) specifies the mean of each variable, up to six variables. means() is
required.

corr(matrix | vector) specifies the correlation matrix. corr() is required.
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n(#) specifies the number of observations to be generated. n() is required.

seed(#) specifies the initial value of the random-number seed used by the command
drawnorm.

3.3 Stored results

rbinary stores the following in r():

Matrices
r(mean) means vector that was used in drawnorm
r(sigma) correlation matrix that was used in drawnorm

3.4 Examples

Here we generate a sample of 2,000 observations from a bivariate binary distribution
with desired marginal probabilities at 0.05 and 0.10 and correlation coefficient at 0.3.

. rbinary x y, means(0.05,0.10) corr(1,0.3\0.3,1) n(2000) seed(12345)

. correlate
(obs=2000)

x y

x 1.0000
y 0.3227 1.0000

. summarize

Variable Obs Mean Std. Dev. Min Max

x 2000 .049 .215922 0 1
y 2000 .105 .3066301 0 1

Here we generate 4-dimensional binary data with 2,000 observations, with the fol-
lowing desired mean vector and correlation structure:

p =




0.05
0.10
0.15
0.20


 , Σb =




1 0.3 0.2 0.1
0.3 1 0.3 0.2
0.2 0.3 1 0.3
0.1 0.2 0.3 1
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. rbinary x1 x2 x3 x4, means(.05,.10,.15,.20)
> corr(1,.3,.2,.1\.3,1,.3,.2\.2,.3,1,.3\.1,.2,.3,1) n(2000) seed(12345)

. correlate
(obs=2000)

x1 x2 x3 x4

x1 1.0000
x2 0.3227 1.0000
x3 0.1918 0.2980 1.0000
x4 0.1104 0.2349 0.3361 1.0000

. summarize

Variable Obs Mean Std. Dev. Min Max

x1 2000 .049 .215922 0 1
x2 2000 .105 .3066301 0 1
x3 2000 .143 .3501604 0 1
x4 2000 .195 .3962998 0 1

In the second example, we get empirical probabilities and correlation of

p̂ =




0.049
0.105
0.143
0.195


 , Σ̂b =




1 0.3227 0.1918 0.1104
0.3227 1 0.2980 0.2349
0.1918 0.2980 1 0.3361
0.1104 0.2349 0.3361 1




3.5 Application

Suppose the smoking abstinence rate difference between two treatment groups is con-
stant at each time point, with an increase in abstinence of 5% across adjacent time
points moving from the 6- to 12- to 18-month follow-ups. Researchers want to calculate
the power to detect a 10% difference on abstinence rate with a specified within-subject
correlation structure. To achieve this goal, researchers should do the following: 1) use
rbinary to simulate random correlated binary data for each group with specified sample
size, mean, and correlation structure; 2) combine the groups’ data; 3) run the command
xtgee on the randomly generated combined data; 4) obtain the p-value for the overall
contrast of groups; 5) perform steps 1–4 N times and save the p-values in a file with
N observations. The estimated power for an alpha 0.05 test is simply the proportion of
observations (out of N) for which the p-value is less than 0.05.



M. Chen 307

quietly {
tempname pow
tempfile result data
postfile `pow´ sample p using `result´, replace

*try different sample size per group below until desired level power reached
local nsize=90

*specify alpha level here, e.g. 0.05
local alpha=0.05

*specify # bootstrap replications
local reps=500

*set seed to replicate result
local seed=10000
local N=1
while `N´<=`reps´ {

clear
*specify mean vector in means(), and within-subject correlation matrix ///

in corr()
rbinary t1 t2 t3, means(0.05,0.10,0.15) corr(1,.2,.1\.2,1,.2\.1,.2,1) ///

n(`nsize´) seed(`seed´)
generate group=1
save `data´, replace

rbinary t1 t2 t3, means(0.15,0.20,0.25) corr(1,.2,.1\.2,1,.2\.1,.2,1) ///
n(`nsize´) seed(`seed´)

generate group=2
append using `data´
generate id=_n

reshape long t, i(id) j(time)
xtgee t i.time i.group, i(id) t(time) family(binomial) link(logit) ///

corr(unstructured) vce(robust) nolog
contrast group, overall
matrix p=r(p)
scalar p=p[1,1]

post `pow´ (`N´) (scalar(p))
local N=`N´+1
local seed=`seed´+1

}
postclose `pow´
use `result´, clear
count if p<`alpha´
local num=r(N)
noisily display "Power=" round(`num´/`reps´, 0.001)

}

To determine the sample size needed to achieve a desired level of power, we can
adjust the values of n() until we have the desired power. For example, with the above
mean and correlation structure and with a sample size of 90 per group, the above syntax
yields power = 0.96. This indicates that we should be able to reject the null hypothesis
(H0 : there is no smoking abstinence rate difference between the groups) 96% of the
time when it is false. Further, through trial and error, we can determine that a sample
size of 65 yields power = 0.804, which may be adequate for the researchers’ purposes
and provide a more efficient use of limited resources.
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