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external validation: Prediction of
population-averaged survival curves based on
risk groups

Patrick Royston
MRC Clinical Trials Unit at University College London
London, UK
j.royston@ucl.ac.uk

Abstract. Royston (2014, Stata Journal 14: 738-755) explained how a popular
application of the Cox proportional hazards model “is to develop a multivariable
prediction model, often a prognostic model to predict the future clinical outcome
of patients with a particular disorder from ‘baseline’ factors measured at some
initial time point. For such a model to be useful in practice, it must be ‘vali-
dated’; that is, it must perform satisfactorily in an external sample of patients
independent of the one on which the model was originally developed. One key
aspect of performance is calibration, which is the accuracy of prediction, particu-
larly of survival (or equivalently, failure or event) probabilities at any time after
the time origin”. In this article, I suggest an approach to assess calibration by
comparing observed (Kaplan—Meier) and predicted survival probabilities in sev-
eral prognostic groups derived by placing cutpoints on the prognostic index. I
distinguish between full validation, where all relevant quantities are estimated on
the derivation dataset and predicted on the validation dataset, and partial valida-
tion, where the prognostic index and prognostic groups are derived from published
information and the baseline distribution function is estimated in the validation
dataset. Partial validation is more feasible in practice because it is uncommon to
have access to individual patient values in both datasets. I exemplify the method
by detailed analysis of two datasets in the disease primary biliary cirrhosis; the
datasets comprise a derivation and a validation dataset. I describe a new ado-file,
stcoxgrp, that performs the necessary calculations. Results for stcoxgrp are dis-
played graphically, which makes it easier for users to picture calibration (or lack
thereof ) according to follow-up time.

Keywords: st0380, stcoxgrp, Cox proportional hazards model, multivariable model,
prognostic factors, prognostic groups, external validation, calibration, survival
probabilities

1 Introduction

The Cox proportional hazards model has long been a standard tool in developing mul-
tivariable models for time-to-event data. However, the ability to check the fit of a Cox
model by comparing predicted survival functions with observed (Kaplan—Meier) curves

© 2015 StataCorp LP st0380
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able commands do not comprehensively provide. Such predictions are often known as
population-averaged survival curves. I describe a new command, stcoxgrp, that cal-
culates population-averaged survival curves. Prognostic subgroups are often defined on
the data. For example, risk groups may be derived by categorizing a prognostic index
(P1) (linear predictor from the Cox model) or may be expressed as the levels of an impor-
tant categorical variable (such as disease severity). Predicted curves in such subgroups
are easier to interpret than those calculated at specific covariate values, for example,
by using the Stata postestimation command stcurve. If one categorical variable has
been fit, stcoxgrp gives the same results for the subgroups as stcoxkm. However, if
the model includes finer structure—for example, if it includes several covariates, some
of which may be continuous—stcoxgrp averages predicted survival curves across the
structure within a given subgroup as defined by the covariate patterns in the data. I
provide further details of these calculations in section 4.

An important extension to assessing model fit on a given dataset is external val-
idation. This entails evaluating the performance (discrimination and calibration or
predictive accuracy) of a model in a sample independent of that used to develop the
model. Little has been published on techniques for external validation of Cox models.
In the context of medical prognosis, successful validation means that a model discrim-
inates between good and bad outcomes in patients whose data were not involved in
the development of the model. Calibration refers to the predictive accuracy of survival
probabilities.

Assessing discrimination of a model in the development (“derivation”) or indepen-
dent (“validation”) datasets is rather straightforward. Tools such as Harrell et al.’s
(1982) c-index of concordance or Royston and Sauerbrei’s (2004) D measure of discrim-
ination are applied to the PI (linear predictor, x,@) from the Cox model. Assessing
calibration of Cox models is trickier, mainly because the Cox model estimates event
probabilities indirectly and only relative to an unspecified baseline survival function.
The challenges in validating a Cox model are further discussed by Royston and Altman
(2013).

In this article, I describe stcoxgrp and how it may help the analyst to assess the
calibration of a Cox model developed on one dataset and, if relevant, one externally
validated on others. As indicated above, the approach to external validation is based
on the prediction of survival (or event) probabilities for groups of individuals in the
validation dataset. I make a graphical comparison between the predicted population-
averaged survival probabilities in risk groups and the nonparametric (Kaplan—Meier)
estimates in the same groups.

As an example, I apply the methods to a pair of datasets in primary cirrhosis of
the liver. I treat the larger of the pair as the derivation sample and the smaller as the
validation sample.
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Derivation dataset Primary biliary cirrhosis (PBC) is a serious liver disease that usually
results in liver failure and death. Here I use a dataset originally in Fleming and Har-
rington (1991) to illustrate certain aspects of survival analysis. Observations on the first
312 patients (125 deaths) in the dataset were obtained from a randomized controlled
trial of 2 treatments for PBC performed at the Mayo Clinic between 1974 and 1984.
An additional 106 patients (36 deaths) did not take part in the trial but consented to
have 6 variables measured and to be followed up with for survival (the “cohort study”).
Randomized treatment and 16 prognostic factors were recorded in the trial, including
the subset of 6 recorded in the cohort study. For our purposes, we use only the three
prognostic variables that are common to the cohort study, the trial, and our chosen
validation dataset (see below): x1 (age), x2 (log bilirubin), and x3 (albumin). The
derivation dataset comprises the cohort and trial datasets (418 patients). The outcome
is time to death from any cause.

Validation dataset The effect of the drug azathioprine on the survival of patients
with PBC was compared with that of a placebo in a multinational, double-blind, ran-
domized clinical trial (Christensen et al. 1985). Between 1971 and 1977, 248 patients
were randomized to receive either azathioprine or a placebo, with follow-up until 1983.
After 41 (17%) cases with missing values or no patient follow-up were removed, data on
207 patients (105 deaths) were available for analysis. As with the derivation dataset, we
used only the prognostic factors age, log bilirubin, and albumin in studying validation.

Please note that because different drugs were used in the two studies, the possible
effect of the drug has not been included in the prognostic model. However, analysis
of the drug effect in each dataset separately shows only a weak, nonsignificant effect.
By contrast, the influence of the three prognostic variables is far stronger and will
overwhelm small drug effects.

The combined dataset (pbc.dta) is supplied with the software described in this
article. It includes a variable called val, which is O for the derivation dataset and 1 for
the validation dataset.

3 Assessing calibration of survival probabilities

Suppose we have a vector of explanatory variables, x = (x1,...,2%). A Cox model with
parameter vector B incorporates multiplicative effects of x on the hazard function and
is usually written as

h(t;x) = ho (t) exp (x0)
where h (t;x) is the hazard function, hg (t) = h(t;0) is the baseline hazard function,
and ¢ is the follow-up time. The corresponding survival function S (¢;x) is given by
S (t:x) = S (£)7PF) (1)

where the baseline survival function is Sy (¢) = exp{—Hy (¢)}, and Hy (t) = fot ho (u) du
is the baseline cumulative hazard function. In Stata 11 and later, estimates of Sy (¢)
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basechazard options of predict, respectively.

To check the calibration of a model, we need to compare the observed event prob-
abilities with the event probabilities predicted by the model. For the Cox model, the
most relevant outputs are cumulative hazards and survival (or event) probabilities. Be-
cause these are functions of each other (see above), we need to check only one of them.
We focus on survival probabilities. Although the Cox model does not directly estimate
baseline survival probabilities, we can use postestimation features implemented in the
basesurv and basechazard options of predict following model fitting by stcox. From
these, we can use (1) to estimate entire survival curves for individuals. We can deter-
mine nonparametric estimates of survival probabilities in groups of patients by using
the Kaplan—Meier method. The appropriate Stata command for this is sts generate
newvar = s, by(groupvar).

It is commonplace to create only a few (say, three or four) “risk groups” by impos-
ing cutpoints on the PI, XB. A plot of Kaplan—Meier curves by group indicates the
discrimination available with the model and the appearance of the survival curves. An
example from the derivation PBC dataset is shown in figure 1.

Kaplan-Meier survival estimates
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Figure 1. Kaplan—Meier survival curves for three prognostic groups in the derivation
dataset

We adopt a similar approach here, but to assess calibration, we must go further. We
need to compute survival probabilities predicted from a Cox model to compare them
with the nonparametric Kaplan—Meier estimates. We can do this in both the derivation
dataset and the validation dataset.
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Suppose that the baseline survival function (estimated at PI = 0) in the derivation
dataset is Sy (t). If the Cox model is correctly specified in both datasets, the datasets
should have similar baseline survival functions. If the model is flawed, the baseline sur-
vival functions will differ. Let’s assume that Sy (¢) in the derivation dataset is available
in some convenient form, for example, as an approximating mathematical function. (We
will return to the question of finding such an estimate of Sy (¢) later.) A procedure for
checking calibration in the derivation and validation datasets is as follows:

1. Let xi,@ denote the PI of the ith individual. According to the Cox model on
the derivation dataset, the individual predicted survival function is S (¢;z;) =

Sy (1) 7P (#B)

2. For a given risk group with patient indices belonging to a set G, we average the
individual survival functions, {S (¢;2;)}icq, at the observed event or censoring
times to obtain the survival curves predicted by the model; that is, we determine
the population-average predictions for G within the risk group according to the
fitted Cox model.

3. For a graphical comparison, we plot the predicted and observed (Kaplan—Meier)
survival curves against follow-up time within each risk group.

We also could present the expected and observed survival probabilities in tabular
form at specific time points. Using 95% confidence intervals for the Kaplan—Meier
estimates helps us to gauge informally how well the predictions agree with the observed
probabilities.

5 Worked example

I now give an example to show how the above procedure can be performed with real
data in Stata. As a preliminary, we assume the following:

1. The data file comprises the derivation and validation datasets, and it includes a
variable (say, val) that equals 0 for the derivation dataset and 1 for the validation
dataset.

2. Each dataset has the same outcome variable and the same covariates defined in the
same way (for example, same units of measurement, same categories for categorical
variables).

3. A Cox model has been fit to the derivation dataset, and a PI (xb) has been
predicted on both datasets by using the command predict xb, xb. To ensure
numerical stability, we center the PI by subtracting its mean over the derivation
dataset.
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1. Fit the model on the derivation data, and predict the PI on both datasets.

use pbc
stcox x1 x2 x3 if val==0
predict xb, xb

2. Center the PI on the derivation dataset mean.

summarize xb if val==0
replace xb = xb - r(mean)

3. Define 3 prognostic groups from the 25th and 75th centiles of xb in the derivation
dataset. (This is done on events because the number of events gets very small in
the “Good” prognostic group.)

centile xb if val==0 & _d==1, centile(25 75)

generate byte group = cond(xb <= r(c_1), 1, cond(xb >= r(c_2), 3, 2))

4. Get the baseline log cumulative hazard, 1nHO, in the derivation data.

stcox xb if val==0
predict HO, basechazard
generate 1nHO = 1n(HO)
5. Compute the smoothed baseline log cumulative-hazard function on _t.
fracpoly: regress 1nHO _t if val==0

6. Compute mean survival probabilities in each dataset at t = 0(1)10 years.

range t 0 10 11

fraceval var t

generate SO = cond(t==0, 1, exp(-exp(_fp)))
stcoxgrp xb SO t, mean(s) km(km) by(val group)

7. For the derivation data, compare observed with predicted survival.

twoway (scatter kml km2 km3 t, mcolor(gs5 gs8 gs10)) ///
(rcap km_1bl km_ubl t, lcolor(gs5 ..)) ///
(rcap km_1b2 km_ub2 t, lcolor(gs8 ..)) ///
(rcap km_1b3 km_ub3 t, lcolor(gsi0 ..)) /17
(line s1 s2 s3 t, sort lwid(medthick ..) lcolor(gs5 gs8 gs10)), ///
legend(off) title("Derivation data") /17
x1abel(0(2)10) ylabel(0(.25)1, angle(h) format(%4.2f)) ytitle("") ///

xtitle("") name(gl, replace)
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twoway (scatter km4 kmb km6 t, mcolor(gsb gs8 gs10)) ///
(rcap km_1b4 km_ub4 t, lcolor(gs5 ..)) ///
(rcap km_1b5 km_ub5 t, lcolor(gs8 ..)) ///
(rcap km_1b6 km_ub6 t, lcolor(gsiO ..)) ///
(line s4 sb s6 t, sort lwid(medthick ..) lcolor(gsb gs8 gs10)), ///
legend(off) title("Validation data") ///
xlabel(0(2)10) ylabel(0(.25)1, angle(h) format(%4.2f)) ytitle("") ///

xtitle("") name(g2, replace)

The following explanations of these steps may be helpful:
Step 1. We fit a Cox model to the derivation data.

Step 2. Centering the PI is helpful for two reasons: numerical stability and inter-
pretation of the ensuing baseline function. According to the Stata reference manual
(StataCorp 2013),

[wlhen predicting with basesurv or basechazard, for numerical accuracy
reasons, the baseline functions must correspond to something reasonable in
your data. Remember, the baseline functions correspond to all covariates
equal to 0 in your Cox model.

And further:

For these reasons [...], covariate values of 0 must be meaningful if you
are going to specify the basechazard or basesurv option. As the baseline
values move to absurdity, the first problem you will encounter is a baseline
survivor function that is too hard to interpret, even though the baseline
hazard contributions are estimated accurately. Further out, the procedure
Stata uses to estimate the baseline hazard contributions will break down—it
will produce results that are exactly 1.

We chose to center the PI on its mean, but any reasonable value within the range of
the PT would be acceptable.

Step 3. Deciding the number and location of cutpoints for creating prognostic (risk)
groups is more an art than a science. As Royston and Altman (2013) state,

[S]tatistical common sense dictates that a modest number of risk groups
(say, 5 or fewer) is preferable to a large number. Two groups is probably too
few to satisfy the needs of clinical practice and research applications. With
a large number, the survival curves may be unstable and the discrimination
between neighboring groups is likely to be poor. Unequal group sizes seem
preferable to equal groups, because they enable identification of patients with
more extreme prognoses and group together patients with largely similar
prognoses.
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counting censored observations. We restricted centiles to the failure times because the
number of events in the Good prognosis group would otherwise be too small to compute
Kaplan—Meier curves with reasonable precision. The corresponding centiles of all the
observed times were the 56th and 88th, so the Good prognostic group contains more
than half of the patients but only a quarter of the events.

Step 4. We estimated the baseline log cumulative-hazard function (1nHO) in the deriva-
tion dataset following Cox regression on the centered PI. We did this by using predict
HO, basechazard followed by generate 1nHO = 1n(HO). We used In Hy (¢) because its
functional form tends to be easier to smooth on ¢ than Hy (¢) or Sp ().

Step 5. We approximated the log cumulative hazard, 1nHO, as a function of ¢ using a
second-degree fractional polynomial (FP2). The fracpoly command determined that
the best-fitting powers were (—0.5,0.5), so the approximating model was In Hy (t) =
ag + a1t7 %% + a5t%5. The coefficients (ap, a1, as2) were estimated by least squares. The
statement predict 1nHOf predicted the log baseline cumulative-hazard function across
both datasets. Note that as of Stata 13, we could use fp instead of fracpoly (although
the latter command is still available). We further discuss this step in the next section.

Step 6. Note that fraceval and stcoxgrp, both programs provided with this article,
must be installed before performing this step. (See help net for further information on
installing packages.) We decided to display the observed and fitted survival probabilities,
with pointwise 95% confidence intervals for the latter, at times 0,1,...,10 years after
diagnosis. First, we used the range command to create a new variable, t, taking these
values. This occupied only the first 11 rows of the dataset. Second, we then used
the user-written command fraceval to predict the fitted values, here the baseline log
cumulative-hazard function, from the FP2 function at t. Here we used out-of-sample
prediction. We computed the corresponding baseline survival function in S0. Third,
we applied stcoxgrp (see description below) to the PI (xb) and to SO and t to obtain
the survival probabilities based on the Cox model at ¢ for each group (group = 1,
2, 3) and dataset (val = 0, 1). The command stcoxgrp used the information from
stset to compute the corresponding probabilities and confidence intervals based on the
Kaplan—Meier estimator.

Steps 7 and 8. Finally, we plotted the results for the derivation and validation datasets
separately. We could also have tabulated the results. The resulting plots are shown in
figure 2.
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Figure 2. Calibration of a Cox model in the derivation and validation datasets. Smooth
dashed lines represent predicted survival probabilities, and vertical capped lines denote
Kaplan—Meier estimates with 95% confidence intervals. Three prognosis groups are
plotted: the “Good” group (darkest lines), the “Intermediate” group (medium-dark
lines), and the “Poor” group (paler lines).

The calibration of the model is imperfect in each dataset. In the derivation data, the
actual survival is slightly better than predicted in the Good prognosis group and slightly
worse than predicted in the Intermediate group. The predictions in the validation
dataset are somewhat too high; that is, survival tends to be worse than predicted.
Because there are fewer events in the validation data, the confidence intervals tend to
be wider than in the derivation data.

6 Approximating the baseline survival function

Let’s assume that steps 1, 2, and 3 of the previous section have been done. We wish
to approximate the baseline survival function in the derivation dataset. We approach
this via the log cumulative-hazard function. We refit the Cox model to the centered
PI, predict the baseline cumulative hazard, transform it to logs, and then predict the
baseline survival function.



stcox xb 11 val==0
predict HO, basechazard
generate 1nHO = 1n(HO)
predict SO, basesurv

Figure 3 illustrates the results and shows plots of the baseline log cumulative-hazard
function, 1nHO, and baseline survival function, SO, for the derivation dataset against

time.

Log cumulative-hazard function
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Figure 3. Baseline log cumulative-hazard function and baseline survival function in the
derivation dataset. Jagged line, Kaplan—Meier-like, given by predict, basechazard
and predict, basesurv ; smooth lines, FP, or spline approximations.

The observed log cumulative-hazard values typically form a simple curve, which frac-
tional polynomials (FP) often do a good job of approximating as a function of ¢t. My
experience suggests that the crude approach of applying ordinary least-squares regres-
sion to FP functions of time is quite satisfactory, despite the high autocorrelation among
the values of the dependent variable. It is possible to estimate the same FP function
“properly” by using maximum likelihood, but the extra effort and complexity makes

this a less attractive proposition.
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Full maximum-likelihood estimation of such models has been implemented by Royston
(2001) (the stpm command) and Lambert and Royston (2009) (the stpm2 command).
The postestimation predict command for stpm2 allows out-of-sample prediction of fit-
ted values, which is also available with stcoxgrp (see step 6 of the previous section). The
following commands illustrate how to approximate Sy (¢) using stpm2 and stcoxgrp:

stpm2 xb if val==0, scale(hazard) df(3)

range t 0 10 11

predict S0, zeros survival timevar(t)

stcoxgrp xb SO t, mean(s) km(km) by(val group)

We need only to select the required complexity of the spline function, as determined
by the df () option of stpm2. Here we used df (3), which, in my experience, is a
good general choice. See Royston and Lambert (2011, 121-133) for how to choose the
spline degrees of freedom. The predict command handles the change of scale from log
cumulative hazard to survival.

Figure 3 shows that in this case, the resulting smooth curves from the two methods
(an FP2 curve estimated by ordinary least squares and a spline curve estimated by
maximum likelihood) are almost indistinguishable.

7 Partial validation

In reality, it is unusual for a researcher to have access to individual patient values
for both the derivation and the validation datasets. More commonly, the regression
coefficients (or hazard ratios) for the terms of the Cox model of interest are published.
This allows one to reconstruct the PI in an independent dataset.

The methods described above are applicable to what may be called a “partial val-
idation” approach. The PI and prognostic groups are calculated from the published
information, and the tools described here are applied within the validation dataset.
The resulting graph of observed and predicted survival probabilities, akin to the right-
hand panel of figure 2, shows how well the “external” PI combined with the “internal”
smooth baseline cumulative survival function is calibrated on the validation dataset.

The steps of the procedure are very similar to those for “proper” external validation.
The steps are as follows:

1. Fit the model on the derivation data, and predict the PI on both datasets. Keep
only the validation data together with the predicted PI.

use pbc, clear
stcox x1 x2 x3 if val==0
predict xb, xb



«. DCIINEe o prognostic groups 1rom tne Zotll andad (otll Centles Ol Xp 111 tNe derivatlon
dataset. (This is done on events because the number of events gets very small in
the Good prognostic group.)

centile xb if val==0 & _d==1, centile(25 75)
generate byte group = cond(xb <= r(c_1), 1, cond(xb >= r(c_2), 3, 2))

3. Retain the validation data, and center the PI on the validation dataset mean.

keep if val==
summarize xb
replace xb = xb - r(mean)

4. Get the baseline log cumulative hazard in the validation data.

stcox xb
predict HO, basechazard
generate 1nHO = 1n(HO)
5. Compute the smoothed baseline cumulative-hazard function.
fracpoly: regress 1nHO _t

6. Compute mean survival probabilities in the validation dataset at t = 0(1)10 years.

range t 0 10 11
fraceval var t
generate SO = cond(t==0, 1, exp(-exp(_fp)))
stcoxgrp xb SO t, mean(s) km(km) by(group)

7. For the validation data, compare observed with predicted survival.

twoway (scatter kml km2 km3 t, mcolor(gs5 gs8 gs10)) ///
(rcap km_1bl km_ubl t, lcolor(gs5 ..)) ///
(rcap km_1b2 km_ub2 t, lcolor(gs8 ..)) ///
(rcap km_1b3 km_ub3 t, lcolor(gsi0 ..)) /17
(line s1 s2 s3 t, sort lwid(medthick ..) lcolor(gs5 gs8 gs10)), ///
legend(off) title("Validation data with reestimated baseline") ///
x1abel(0(2)10) ylabel(0(.25)1, angle(h) format(%4.2f)) ytitle("") ///
xtitle("Years since diagnosis") ytitle("Survival probability") ///

name(gl, replace)

In steps 1 and 2, we estimate the PI (xb) on the derivation data and compute the
predicted PI and the prognostic groups in all the data. Steps 1 and 2 could also be
done with published regression coefficients and cutpoints on the PI without using the
individual derivation data. All subsequent steps are performed using the validation
data, mimicking application of the published information to a validation dataset.

Steps 3 through 7 are similar to the ones before, except that the baseline cumula-
tive-hazard function is estimated on the validation data. The call to stcoxgrp produces
estimated survival curves for the three original prognostic groups. The result is one
graph (see figure 4) showing the calibration of the model’s original PI on the validation
data with the baseline reestimated.
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Figure 4. Partial calibration of a Cox model with the PI estimated from the deriva-
tion dataset and evaluated on the validation dataset with reestimation of the baseline
cumulative-hazard function. Smooth dashed lines represent predicted survival probabil-
ities, and vertical capped lines represent Kaplan—Meier estimates with 95% confidence
intervals. Three prognosis groups are plotted: the “Good” group (darkest lines), the
“Intermediate” group (medium-dark lines), and the “Poor” group (paler lines).

Because of reestimation of the baseline, the predicted curves match the Kaplan—Meier
estimates even better than as seen in figure 2.

8 The stcoxgrp command
8.1 Syntax

The syntax of stcoxgrp is as follows:

stcoxgrp zxbetavar sOvar [timevar] [zf] [m] , mean(mean_stub) [by(by,varlist)
km (km_stub) ]

8.2 Description

stcoxgrp calculates population-averaged survival curves. A predicted survival curve
is obtained for each subject in the dataset. The survival curves are averaged within
subsamples defined by by_varlist or across the entire dataset if by () is not specified.
Survival curves are estimated using the user-supplied baseline survival probabilities in
sOvar and the PI from a proportional hazards model supplied in zbetavar.



11 the optional variable timevar 15 suppliled, tine results are cailculated 10or tie tline-
to-event values in timevar. It is assumed that the baseline survival probabilities in
s0var correspond (1:1) to the times in timevar. This feature conveniently provides an
out-of-sample prediction of population-averaged survival probabilities at user-specified
time points. Because the averaging process can be computationally intensive, it is
recommended that the timevar approach be used to reduce the number of survival
times at which the survival curves are averaged.

Note that the population-averaged survival curve differs from the survival curve
predicted at the mean of the covariates in the model.

8.3 Options

mean (mean_stub) stores Cox model-based estimates of population-averaged survival
probabilities in new variables called mean_stubl, mean_stub2, .... The number-
ing 1, 2, ... corresponds to the enumeration of subsets defined by by_varlist or is 1
if the by () option has not been used. mean() is required.

by (by_varlist) provides estimates in subsets representing all possible combinations of
values of variables in by_varlist.

km (km_stub) stores Kaplan—Meier estimates of survival probabilities in new variables
called km_stubl, km_stub2, .... It stores lower and upper bounds of 95% confidence
intervals in variables km_stub_1b1, km_stub_1b2, ... and km_stub_ubl, km_stub_ub2,
..., respectively. The numbering 1, 2, ... corresponds to the enumeration of subsets
defined by by_varlist or is 1 if the by () option has not been used.

8.4 Examples

For this example, we use and stset the German breast cancer dataset:

. webuse brcancer, clear
(German breast cancer data)

. stset rectime, failure(censrec) scale(365.24)

(output omitted )



ere we llave a SIHIPIE €Xalllple Ol a S1NZIE daltaset, 111 WIlICIl WE COINpare predicted
and Kaplan—Meier survival curves for a Cox model including only the variable x4 (tumor
grade). We plot the population-averaged and Kaplan—Meier survival curves against _t.

. stcox i.x4
(output omitted )
. predict xb, xb
. predict sO, basesurv

stcoxgrp xb s0, mean(m) km(k) by(x4)
Proc9351ng 3 distinct values of xb ... ... done.

. line m1 m2 m3 k1 k2 k3 _t, sort lpattern(l 1 1 - ..) connect(1 11 J ..)
(output omitted )

The pattern of survival curves suggests nonproportional hazards may be present for
x4.

In a second example on the same dataset, we examine predictions within subgroups
defined by a multivariable PI. Here the model is based on fractional polynomial trans-
formations of the covariates.

. fracpoly: stcox x1 -2 -0.5 x4a xbe x6 0.5 hormon
(output omitted )

. predict xb, xb
summarize xb
(output omitted )

replace xb = xb - r(mean)
(686 real changes made)

. stcox xb
(output omitted )
. predict sO, basesurv
. xtile group = xb, nquantiles(2)
. stcoxgrp xb s0, mean(s) by(group) km(km)

Processing 674 distinct values of xb ... 100 200 300 400 500 600 ... done.
. line s1 kml km_1bl km_ubl s2 km2 km_1b2 km_ub2 _t, sort connect(J ..)
> lpattern(l - - - 1 - - -) legend(off)

(output omitted )

We extend the same example and create a smooth baseline survival curve using
stpm2 and plot it with a user-defined time variable, t, in yearly intervals over the range
(0, 7) years.

. range t 07 8
(678 missing values generated)

. stpm2 xb, scale(hazard) df(3)
(output omitted )
. predict sOa, zeros survival timevar(t)

. stcoxgrp xb sOa t, mean(sa) by(group) km(kma)
Processing 674 distinct values of xb ... 100 200 300 400 500 600 ... done.



. twoway (scatter kmal kma2 t, mcolor(navy red)) (rcap kma_lbl kma_ubl t,
> lcolor(navy ..)) (rcap kma_1b2 kma_ub2 t, lcolor(red ..))

> (line sal sa2 t, sort lcolor(navy red)),

> legend(off) ylabel(0(.25)1, angle(h) format(%4.2f))

(output omitted )

9 Limitations

I believe that the comparison of observed (Kaplan—Meier) and predicted population-
averaged survival curves in the validation dataset is intuitive, natural, and simple to
understand and that it represents an advance on current practice. Against that, the
proposed calibration approach of Royston and Altman (2013), implemented here for
Stata, has two main limitations:

1. It relies on defining risk groups, and the results of the exercise may depend on
precisely which groups are chosen. Many equally valid selections are possible, and
a sensitivity analysis is advisable.

2. The method is purely graphical (see figure 2). For example, no statistical infer-
ence is available to determine whether calibration is “significantly” worse in the
validation dataset or whether it changes over time.

10 Comments

The methods outlined above can be used to check the calibration (fit) of categorical
covariates in a Cox model on a given dataset. This may be helpful when a covariate
exhibits statistically significant nonproportional hazards that may or may not be of
clinical importance. I wish to analyze the lack of fit in terms of predicted event or
survival probabilities at the levels of the covariate. As with the PI, continuous covariates
must first be categorized into a small number of subgroups.

Graphical and analytical methods together with corresponding Stata tools to assess
time-related calibration of a Cox model, not relying on grouping of continuous variables,
are described in Royston (2014).
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