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Abstract. We present new commands for analyzing count-data regression models
for truncated distributions. The trncregress command allows specification of a
regression model for the mean of the truncated distribution through options. In
addition to support for truncated Poisson and negative binomial, trncregress fits
models based on truncated versions of distributions including generalized Pois-
son, Poisson-inverse Gaussian, three-parameter negative binomial power, three-
parameter Waring negative binomial, and three-parameter Famoye negative bino-
mial.

Keywords: st0378, trncregress, truncation, generalized Poisson, negative binomial,
Poisson-inverse Gaussian, Famoye, Waring, PIG, NB-P, NB-F

1 Introduction

Regression modeling of truncated count outcomes is supported by Stata’s tpoisson

and tnbreg commands. These commands allow users to fit models for left-truncated
{y ∈ (L + 1, L + 2, . . .)} distributions. Users may specify either a common truncation
value, L, or a variable so that each observation has its own truncation value and thus
a uniquely truncated distribution. Though left-truncation is more commonly used in
regression models, the commands we introduce here will consider right-truncation {y ∈
(0, 1, . . . , R−1)} or even truncation on both sides {y ∈ (L+1, L+2, . . . , R−2, R−1)}.

Before Stata offered tpoisson and tnbreg, support for estimation of truncated re-
gression models was given only for the specific zero-truncated models through commands
that are now deprecated. However, Stata still lacks commands that support additional
distributions (aside from Poisson and negative binomial) or that support distributions
that are right-truncated or truncated on both sides.

c© 2015 StataCorp LP st0378
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In section 2, we present new estimation commands to evaluate count-data regres-
sion models for truncated distributions such as Poisson, negative binomial, generalized
Poisson, Poisson-inverse Gaussian, negative binomial(P ) (NB-P), and negative binomial
(Famoye) (NB-F). Hilbe (2011), Hardin and Hilbe (2014), and Harris, Hilbe, and Hardin
(2014) discuss the last two distributions and include software for nontruncated regres-
sion models.

In section 3, we provide syntax for the new commands, followed by examples in
section 4.

2 Extensions of Poisson and negative binomial regression

The Poisson probability mass function is given by

f(y;µ) =
exp(−µ)µy

y!

with mean E(y) = µ and variance V (y) = µ. Wang and Famoye (1997) introduce a
two-parameter distribution that generalizes the distribution. Regression models using
the Poisson distribution assume equidispersion; that is, they assume that the mean
and variance of the outcome are equal for a given covariate pattern. Most data are
characterized as having variance that is larger than the mean. The negative binomial
distribution and its generalizations assume different forms of overdispersion. The gener-
alized Poisson can accommodate overdispersion, but its parameterization of the variance
also allows underdispersion (a variance less than the mean).

The negative binomial probability mass function is given by

f(y;α, δ) =
Γ(y + 1/α)

Γ(1/α)Γ(y + 1)

(
1

1 + δα

)1/α(
1− 1

1 + δα

)y

with mean E(y) = δ and variance V (y) = δ(1+δα). Users have access to two parameter-
izations of the negative binomial distribution. The two results of the parameterizations
are referred to as the NB-1 (constant dispersion) and NB-2 (mean dispersion) models.
The numerals used in naming these two models correspond to the nature of the variance
(as a function of the power of the mean). The NB-1 model results from introducing co-
efficients via α = θ exp(Xβ) = θµ. The NB-2 model results from introducing regressors
X via α = θ and δ = exp(Xβ) = µ so that the mean is µ, the variance is µ(1+µθ), and
the dispersion is 1 + µθ.

Hilbe and Greene (2008) discuss a generalization to the underlying negative binomial
probability distribution for which the variance is a function of a parameter power of
the mean (also see Greene [2008], Cameron and Trivedi [2013], and Hilbe [2011]). In
this NB-P model, regressors X are introduced via α = θ exp(Xβ)P−2 = θµP−2 and
δ = exp(Xβ) = µ so that the mean is µ, the variance is µ(1+µP−1θ), and the dispersion
is (1 + µP−1θ). Here we see that the distribution is equal to NB-1 when P = 1 and is
equal to NB-2 when P = 2.
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Harris, Hilbe, and Hardin (2014) present two other generalizations to the negative
binomial. The authors refer to these generalizations as NB-W for the generalization
based on the Waring distribution and as NB-F for the generalization based on the work
of Famoye; see also Rodŕıguez-Avi et al. (2009), Irwin (1968), and Wang and Famoye
(1997).

3 Syntax

Software accompanying this article includes the command files as well as supporting files
for prediction and help. In the following syntax diagrams, unspecified options include
the usual collection of maximization and display options available to all estimation
commands.

Equivalent in syntax to the basic count-data commands, the basic syntax for the
truncated regression command is

trncregress depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, ltrunc(# | varname)

rtrunc(# | varname) dist(distname) offset(varname o) display options

maximization options
]

In the commands above, the allowable distribution names are given by poisson,
negbin, gpoisson, pig, nbp, nbf, or nbw. Help files are included for the estimation and
postestimation specifications of these models. The help files include example specifica-
tions.

In the output header, we include the summary information for the model. We also
include a short description of the support for the outcome by the designated truncated
distribution. This description is of the form {#1, . . . ,#2}, where #1 is the minimum
and #2 is the maximum. Thus, for a zero-truncated model, the support is given by
#1 = 1 and #2 = . (positive infinity).

Model predictions are available through Stata’s predict command. Specifically,
there is support for linear predictions, predictions of the mean, and standard errors of
the linear prediction.

4 Examples

Truncated regression models are most commonly used to model zero-truncated count
data. Given that the supported count distributions assume the possibility of zero counts,
biased results are obtained when zero-truncated count data are modeled using regres-
sion methods based on nontruncated distributions. The closer the mean of the response
is to zero, the more biased the results. To ameliorate influence on inference from bi-
ased results, many analysts prefer standard errors from a sandwich or robust variance
adjustment when using nontruncated regression models to model zero-truncated data.
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However, zero-truncated data are better modeled using one of the truncated dis-
tributions for which we have developed the software accompanying this article. To
demonstrate this, we use data from the 1991 Arizona MedPar database, which con-
sist of the inpatient records for Medicare patients. In this study, all patients are over
65 years of age. The diagnostic related group classification is confidential for privacy
concerns.

The response variable is the patient length of stay (los), which commences with a
count of 1. There are no length of stay records of 0, which could indicate that a patient
was not admitted to the hospital.

. use medpar

. generate byte type = type1 + 2*type2 + 3*type3

. generate offset = uniform()

. generate exposure = ln(offset)

. tabulate los

Length of
Stay Freq. Percent Cum.

1 126 8.43 8.43
2 71 4.75 13.18
3 75 5.02 18.19
4 104 6.96 25.15
5 123 8.23 33.38
6 97 6.49 39.87

(output omitted )

70 1 0.07 99.80
74 1 0.07 99.87
91 1 0.07 99.93

116 1 0.07 100.00

Total 1,495 100.00

The mean of los is 9.85. Using a zero-truncated model will make little difference in
the estimates. However, if the mean of the response is low (say, under three or four),
then there will be a substantial difference in coefficient values. The closer the mean is to
zero, the greater the difference in coefficient values. Despite the closeness of coefficients
for this example, it is important that we use the appropriate count model for the given
data. The explanatory predictors for our example model include an indicator of white
race (white), an indicator of HMO (hmo), an indicator of elective admittance (type1,
used as the reference group for admittance types), an indicator of urgent admittance
(type2), and an indicator of emergency admittance (type3); all indicators are generated
from the classification variable type.

We first model the data using a zero-truncated Poisson (ZTP) model. Note that
the new truncated regression command included herein supports the nolog option to
suppress the display of the iteration log, the eform option to display model coefficients
in exponentiated form, and automatic generation of indicator variables from categorical
variable names through the i. prefix.
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. trncregress los white hmo i.type, dist(poisson) ltrunc(0) nolog eform

Truncated Poisson regression Number of obs = 1495
Dist. support on {1, ..., .} LR chi2(4) = 758.68
Log likelihood = -6928.723 Prob > chi2 = 0.0000

los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

white .8573203 .0235048 -5.61 0.000 .8124676 .9046491
hmo .930858 .0223067 -2.99 0.003 .8881484 .9756214

type
2 1.248297 .0262846 10.53 0.000 1.197829 1.300892
3 2.033211 .053145 27.15 0.000 1.931672 2.140087

_cons 10.30738 .2804854 85.73 0.000 9.772044 10.87205

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 1495 -7308.063 -6928.723 5 13867.45 13894

Note: N=Obs used in calculating BIC; see [R] BIC note

We also model the data using standard Poisson regression to determine the dispersion
statistic, which indicates the amount of extradispersion in the model. The resulting
dispersion value of 6.26 shows that the data are rather markedly overdispersed, which
biases the values of the model standard errors. All predictors appear to be significant at
the α = 0.05 level when, in fact, they may not be. A zero-truncated negative binomial
(ZTNB) may account for some of the excess variation.

. trncregress los white hmo i.type, dist(negbin) ltrunc(0) nolog eform

Truncated neg. binomial regression Number of obs = 1495
Dist. support on {1, ..., .} LR chi2(4) = 106.23
Log likelihood = -4751.396 Prob > chi2 = 0.0000

los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

white .8741019 .0662078 -1.78 0.076 .7535097 1.013994
hmo .929911 .0547995 -1.23 0.218 .8284767 1.043764

type
2 1.264196 .0706704 4.19 0.000 1.133003 1.41058
3 2.086729 .1754021 8.75 0.000 1.769773 2.460451

_cons 9.703802 .7299226 30.21 0.000 8.37364 11.24526

/lnalpha -.6007156 .0549884 -.708491 -.4929402

alpha .548419 .0301567 .4923867 .6108278
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. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 1495 -4804.512 -4751.396 6 9514.792 9546.651

Note: N=Obs used in calculating BIC; see [R] BIC note

The Akaike information criterion (AIC) and Bayesian information criterion (BIC)
statistics of the ZTNB model are substantially lower than those of the ZTP model, indi-
cating a better fit. Being an HMO member is no longer a significant predictor of length
of hospital stay, and white is marginal. By comparing the previous and subsequent
outputs, we see that basing standard errors on the robust sandwich variance is not
necessary in this case. However, Hilbe (2011) and Cameron and Trivedi (2013) prefer
standard errors based on the robust variance estimator, favoring robustness of inference
over efficiency.

. trncregress los white hmo i.type, dist(negbin) ltrunc(0) nolog eform
> vce(robust)

Truncated neg. binomial regression Number of obs = 1495
Dist. support on {1, ..., .} LR chi2(4) = 106.23
Log pseudolikelihood = -4751.396 Prob > chi2 = 0.0000

Robust
los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

white .8741019 .0648392 -1.81 0.070 .7558256 1.010887
hmo .929911 .0512158 -1.32 0.187 .834758 1.03591

type
2 1.264196 .0707132 4.19 0.000 1.132928 1.410674
3 2.086729 .248301 6.18 0.000 1.652651 2.63482

_cons 9.703802 .7018808 31.42 0.000 8.421202 11.18175

/lnalpha -.6007156 .0624481 -.7231116 -.4783196

alpha .548419 .0342477 .48524 .619824

We then use the trncregress command to model the data using a zero-truncated
Poisson-inverse Gaussian (PIG), a generalized Poisson, a three-parameter generalized
NB-F, and a three-parameter NB-P. The ZINB-P proved to fit the data better than the
other zero-truncated models, including the ZTNB.
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. trncregress los white hmo i.type, dist(nbp) ltrunc(0) nolog eform

Truncated neg. bin(P) regression Number of obs = 1495
Dist. support on {1, ..., .} LR chi2(4) = 128.25
Log likelihood = -4740.387 Prob > chi2 = 0.0000

los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

white .9392964 .061651 -0.95 0.340 .8259121 1.068247
hmo .9373804 .0452815 -1.34 0.181 .8527022 1.030468

type
2 1.225673 .062171 4.01 0.000 1.109681 1.353789
3 2.01843 .2183897 6.49 0.000 1.632735 2.495238

_cons 9.177259 .596997 34.08 0.000 8.078688 10.42522

/P 3.177911 .3525741 9.01 0.000 2.486878 3.868943
/lnalpha -3.279836 .7890462 -4.826338 -1.733334

alpha .0376344 .0296953 .0080158 .1766943

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 1495 -4804.512 -4740.387 7 9494.774 9531.944

Note: N=Obs used in calculating BIC; see [R] BIC note

The AIC statistic is lower by 20 points, and the BIC is lower by 14. Following Hilbe
(2009), this classifies as significantly different. Basing standard errors on a robust or
sandwich variance estimator produces the following result:

. trncregress los white hmo i.type, dist(nbp) ltrunc(0) nolog eform vce(robust)

Truncated neg. bin(P) regression Number of obs = 1495
Dist. support on {1, ..., .} LR chi2(4) = 128.25
Log pseudolikelihood = -4740.387 Prob > chi2 = 0.0000

Robust
los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

white .9392964 .0568864 -1.03 0.301 .8341642 1.057679
hmo .9373804 .0440311 -1.38 0.169 .8549344 1.027777

type
2 1.225673 .0629182 3.96 0.000 1.108356 1.355407
3 2.01843 .2276542 6.23 0.000 1.618112 2.517786

_cons 9.177259 .5383163 37.79 0.000 8.180569 10.29538

/P 3.177911 .3517989 9.03 0.000 2.488398 3.867424
/lnalpha -3.279836 .7941904 -4.836421 -1.723252

alpha .0376344 .0298889 .0079354 .1784848
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Neither white nor hmo is significant at the 0.05 level. The NB-P scale parameter is
3.18. The dispersion parameter is 0.038. The dispersion is parameterized such that it
has a direct relationship with the mean, µ. The equation for the variance of the model
is given by

µ+ αµp = µ+ 0.0376µ3.178

Given the high mean value of los (9.85), we expect that the estimates and the
adjusted standard errors will be close in values. Though we do not include the output
here, we used the command by Hardin and Hilbe (2012) for the PIG model to investigate
the similarity of output between the nonzero-truncated and the zero-truncated PIG

distributions. However, note that the AIC and BIC statistics are substantially lower in
the zero-truncated model, which may be the result of the absence of zero counts in the
data. The trncregress command adjusts for their absence; nbregp does not.

. nbregp los white hmo i.type, nolog eform vce(robust)

Negative binomial-P regression Number of obs = 1495
Wald chi2(4) = 57.30

Log pseudolikelihood = -4782.519 Prob > chi2 = 0.0000

Robust
los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

white .9320299 .0563996 -1.16 0.245 .8277923 1.049393
hmo .9353262 .0451328 -1.39 0.166 .8509218 1.028103

type
2 1.236604 .0630604 4.16 0.000 1.118984 1.366588
3 2.070074 .231388 6.51 0.000 1.662802 2.577099

_cons 9.552943 .5622072 38.35 0.000 8.512214 10.72092

/P 3.047995 .2006046 15.19 0.000 2.654817 3.441173
/lntheta -3.228758 .4663185 -4.142725 -2.31479

theta .0396067 .0184693 .0158795 .0987869

Likelihood-ratio test of P=1: chi2 = 98.47 Prob > chi2 = 0.0000
Likelihood-ratio test of P=2: chi2 = 29.92 Prob > chi2 = 0.0000

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 1495 . -4782.519 7 9579.037 9616.206

Note: N=Obs used in calculating BIC; see [R] BIC note

The likelihood-ratio test statistics indicate that the data are better modeled by
NB-P than by either NB-1 or NB-2. However, not adjusting for the missing-zero counts
causes a standard PIG model to not fit as well as any of the trncregress options for
zero-truncated data except the Poisson.
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For another example, we use the German health reform data to model the number
of visits to the physician made by patients during the calendar year 1984; these data
are used in Hardin and Hilbe (2012). Predictors include age, employment status, and
sex. Specifically, docvis records the number of physician visits, age is the patient’s
age in years, outwork is an indicator that the person is out of work, and female is an
indicator that the person is female.

. use rwm1984, clear
(German health data for 1984; Hardin & Hilbe, GLM and Extensions, 3rd ed)

. summarize age

Variable Obs Mean Std. Dev. Min Max

age 3874 43.99587 11.2401 25 64

. generate cage = (age-r(mean))

. tabulate docvis

MD
visits/year Freq. Percent Cum.

0 1,611 41.58 41.58
1 448 11.56 53.15
2 440 11.36 64.51
3 353 9.11 73.62
4 213 5.50 79.12

(output omitted )

70 1 0.03 99.90
71 1 0.03 99.92
72 1 0.03 99.95
80 1 0.03 99.97

121 1 0.03 100.00

Total 3,874 100.00

The mean of the response, docvis, is 3.16. Because 41.5% of the patients did not
visit a physician, we also calculate the mean of the visits without zero count. Here
we want to model the number of visits made to physicians, excluding those patients
who never entered that pool. The mean of the zero-excluded response is 5.41. There
will likely be a noticeable difference in the zero-truncated model results and standard
results. However, we want to find the best-fitting zero-truncated count model for the
given data.

We first model the data using a Poisson regression by simply excluding the zero
counts. Given the values of the predictor age, we center it on its mean value (mean-
centered ages are in the cage variable).
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. glm docvis outwork female cage if docvis>0, family(poisson) nolog eform

Generalized linear models No. of obs = 2263
Optimization : ML Residual df = 2259

Scale parameter = 1
Deviance = 12162.17413 (1/df) Deviance = 5.383875
Pearson = 21997.94599 (1/df) Pearson = 9.737913

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 8.507555
Log likelihood = -9622.298504 BIC = -5287.351

OIM
docvis IRR Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.178181 .0248475 7.77 0.000 1.130473 1.227901
female 1.101225 .022611 4.70 0.000 1.057788 1.146445

cage 1.011738 .0008477 13.93 0.000 1.010078 1.013401
_cons 4.612541 .0689904 102.21 0.000 4.479285 4.749762

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 2263 . -9622.299 4 19252.6 19275.49

Note: N=Obs used in calculating BIC; see [R] BIC note

The dispersion statistic is high (9.74), and the AIC value is 19,252. Modeling using
a truncated Poisson distribution adjusts the underlying probability density function for
the missing zeros.

. trncregress docvis outwork female cage if docvis>0, dist(poisson) ltrunc(0)
> nolog eform

Truncated Poisson regression Number of obs = 2263
Dist. support on {1, ..., .} LR chi2(3) = 466.47
Log likelihood = -9605.928 Prob > chi2 = 0.0000

docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.182679 .0253025 7.84 0.000 1.134112 1.233325
female 1.105015 .0230725 4.78 0.000 1.060706 1.151174

cage 1.012106 .0008641 14.09 0.000 1.010414 1.013801
_cons 4.559868 .0698738 99.02 0.000 4.424954 4.698895

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 2263 -9839.164 -9605.928 4 19219.86 19242.75

Note: N=Obs used in calculating BIC; see [R] BIC note
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Note that the AIC and BIC statistics are significantly lower when excluding zero
visits. Because of the high dispersion statistic (9.74) and relatively low response mean,
we use sandwich or robust standard-error adjustments to model the standard errors.

. trncregress docvis outwork female cage if docvis>0, dist(poisson) ltrunc(0)
> nolog eform vce(robust)

Truncated Poisson regression Number of obs = 2263
Dist. support on {1, ..., .} LR chi2(3) = 466.47
Log pseudolikelihood = -9605.928 Prob > chi2 = 0.0000

Robust
docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.182679 .1005398 1.97 0.048 1.001166 1.397101
female 1.105015 .0882721 1.25 0.211 .9448683 1.292304

cage 1.012106 .002791 4.36 0.000 1.00665 1.017591
_cons 4.559868 .2141993 32.30 0.000 4.158792 4.999624

The adjustment causes females to be shown as not contributing to the model and
outwork to be shown as only marginally contributing. The centered age (cage) is still
a significant predictor. However, given the variability in the data, we model the data
using a ZTNB model.

. trncregress docvis outwork female cage if docvis>0, dist(negbin) ltrunc(0)
> nolog eform vce(robust)

Truncated neg. binomial regression Number of obs = 2263
Dist. support on {1, ..., .} LR chi2(3) = 75.93
Log pseudolikelihood = -5757.054 Prob > chi2 = 0.0000

Robust
docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.262669 .1250538 2.35 0.019 1.03989 1.533176
female 1.153206 .105388 1.56 0.119 .9640913 1.379417

cage 1.016271 .0033972 4.83 0.000 1.009634 1.022951
_cons 2.703222 .171369 15.69 0.000 2.387374 3.060858

/lnalpha .744524 .1218212 .5057587 .9832892

alpha 2.105439 .2564872 1.658243 2.673235

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 2263 -5795.017 -5757.054 5 11524.11 11552.73

Note: N=Obs used in calculating BIC; see [R] BIC note
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The AIC statistic drops from 19,220 to 11,524. A standard NB-2 model has an AIC

value of 12,371, indicating that the ZTNB is the preferred model. The BIC is similarly
reduced.

We then fit zero-truncated generalized Poisson (ZTGP), NB-P, and PIG models. All
three fit the data better than the ZTNB, with the ZTGP having the best fit.

. trncregress docvis outwork female cage if docvis>0, dist(gpoisson) ltrunc(0)
> nolog eform vce(robust)

Truncated gen. Poisson regression Number of obs = 2263
Dist. support on {1, ..., .} LR chi2(3) = 67.76
Log pseudolikelihood = -5723.069 Prob > chi2 = 0.0000

Robust
docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.23783 .0949403 2.78 0.005 1.065062 1.438624
female 1.200285 .0897923 2.44 0.015 1.036589 1.389831

cage 1.014942 .0028927 5.20 0.000 1.009288 1.020627
_cons 3.215915 .1696478 22.14 0.000 2.900024 3.566216

/atanhdelta .7716666 .0234126 .7257786 .8175545

delta .6478975 .0135847 .620476 .6737367

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 2263 -5756.951 -5723.069 5 11456.14 11484.76

Note: N=Obs used in calculating BIC; see [R] BIC note

Note that all 3 predictors now significantly contribute to the model, and the AIC

statistic is 11,456 compared with 11,524, a 68-point drop in value; the BIC similarly
reduced from 11,553 to 11,485.

. trncregress docvis outwork female cage if docvis>0, dist(pig) ltrunc(0) nolog
> eform vce(robust)

Truncated Poisson IG regression Number of obs = 2263
Dist. support on {1, ..., .} LR chi2(3) = 80.15
Log pseudolikelihood = -5694.797 Prob > chi2 = 0.0000

Robust
docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.253586 .0960068 2.95 0.003 1.078858 1.456612
female 1.173082 .0841799 2.22 0.026 1.01917 1.350237

cage 1.015232 .0027737 5.53 0.000 1.00981 1.020683
_cons 3.597949 .1730368 26.62 0.000 3.274297 3.953594

/lnalpha .4397922 .0757686 .2912885 .5882959

alpha 1.552385 .117622 1.338151 1.800917



238 Truncated regression models

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 2263 -5734.872 -5694.797 5 11399.59 11428.22

Note: N=Obs used in calculating BIC; see [R] BIC note

Because there are very few observations for which people visited their physician more
than 18 times, here we model data only within 1 and 18 visits by using a generalized
Poisson distribution truncated on each side. This is referred to as interval truncation.

. trncregress docvis outwork female cage if docvis>0 & docvis<19, dist(gpoisson)
> ltrunc(0) rtrunc(19) nolog eform vce(robust)

Truncated gen. Poisson regression Number of obs = 2172
Dist. support on {1, ..., 18} LR chi2(3) = 63.29
Log pseudolikelihood = -4982.805 Prob > chi2 = 0.0000

Robust
docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.21593 .0778329 3.05 0.002 1.072562 1.378462
female 1.166139 .0738958 2.43 0.015 1.029939 1.320351

cage 1.009884 .0025166 3.95 0.000 1.004964 1.014829
_cons 3.001998 .1370437 24.08 0.000 2.745063 3.282982

/atanhdelta .5804847 .0187828 .543671 .6172984

delta .5230177 .0136448 .4957618 .5492442

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 2172 -5014.451 -4982.805 5 9975.609 10004.03

Note: N=Obs used in calculating BIC; see [R] BIC note

A ZTGP model with a right-truncation point of 19 has an AIC of 9,976, whereas the
ZTGP model had an AIC above 11,456. This is a 1,480-point drop in AIC, which is mostly
due to fitting the model on a subset of the data.

Finally, we can combine these truncated models with other models to construct
hurdle models. For example, we can combine a logistic regression model of the likelihood
of a zero outcome with a zero-truncated model. In this example, we also create an
interaction term (femage) associating centered age (cage) and sex (female).

. generate zerovis = docvis==0

. replace zerovis = . if docvis==.
(0 real changes made)

. generate femcage = female*cage
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. logistic zerovis outwork female cage femcage, nolog vce(robust)

Logistic regression Number of obs = 3874
Wald chi2(4) = 202.46
Prob > chi2 = 0.0000

Log pseudolikelihood = -2523.1663 Pseudo R2 = 0.0407

Robust
zerovis Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

outwork .7653926 .0623506 -3.28 0.001 .6524444 .8978939
female .5967247 .0450747 -6.84 0.000 .5146084 .6919443

cage .9696342 .0040672 -7.35 0.000 .9616954 .9776387
femcage 1.008207 .0061143 1.35 0.178 .9962943 1.020263

_cons .9821952 .0461209 -0.38 0.702 .8958348 1.076881

. trncregress docvis outwork female cage if docvis>0, dist(gpoisson) ltrunc(0)
> nolog eform vce(robust)

Truncated gen. Poisson regression Number of obs = 2263
Dist. support on {1, ..., .} LR chi2(3) = 67.76
Log pseudolikelihood = -5723.069 Prob > chi2 = 0.0000

Robust
docvis exp(b) Std. Err. z P>|z| [95% Conf. Interval]

outwork 1.23783 .0949403 2.78 0.005 1.065062 1.438624
female 1.200285 .0897923 2.44 0.015 1.036589 1.389831

cage 1.014942 .0028927 5.20 0.000 1.009288 1.020627
_cons 3.215915 .1696478 22.14 0.000 2.900024 3.566216

/atanhdelta .7716666 .0234126 .7257786 .8175545

delta .6478975 .0135847 .620476 .6737367

Aging and being female and out of work are all associated with being less likely to
never visit the doctor. Similarly, these three characteristics are associated with higher
rates of doctor visits.

As a final example, we investigate surgical data from the 1999 Arizona Medicare
database. Medicare is a federal health insurance program for U.S. citizens age 65 and
over or for those with disability. The exact procedures are withheld from the data for
privacy reasons.

The data are not unusual for many types of nonmajor surgical procedures for which
the majority of patients are released soon after surgery. However, for some patients,
complications occur that necessitate longer recovery periods. We model length of
stay (los) given explanatory predictors of age in years (age), for which we have re-
moved the mean; sex (gender indicates male in these data); the type of admission
(1 = emergency/urgent; 0 = elective); and procedure type (1 = open; 0 = laparoscopic).
Our primary interest is how much longer patients stay in the hospital after open surgery
compared with laparoscopic surgery, adjusted for gender and emergency status of ad-
mission. The following table shows the length of stay, as well as the mean of los, which
is 3.3 days. Because the nontruncated distributions used to model the data assume the
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possibility of zero counts, and given the low mean value of the response term, we expect
that a zero-truncated model will be preferred.

. use azsurgical, clear
(1999 Arizona Medicare surgical data: J. Hilbe)

. summarize age

(output omitted )

. generate cage = (age-r(mean))

. tabulate los

LOS Freq. Percent Cum.

1 1,929 58.23 58.23
2 471 14.22 72.44
3 125 3.77 76.21
4 61 1.84 78.06
5 68 2.05 80.11
6 83 2.51 82.61
7 78 2.35 84.97
8 79 2.38 87.35
9 73 2.20 89.56
10 66 1.99 91.55
11 60 1.81 93.36
12 43 1.30 94.66
13 32 0.97 95.62
14 29 0.88 96.50
15 23 0.69 97.19
16 21 0.63 97.83
17 18 0.54 98.37
18 14 0.42 98.79
19 11 0.33 99.12
20 9 0.27 99.40
21 2 0.06 99.46
22 3 0.09 99.55
23 4 0.12 99.67
24 4 0.12 99.79
25 4 0.12 99.91
26 2 0.06 99.97
27 1 0.03 100.00

Total 3,313 100.00

. summarize los

Variable Obs Mean Std. Dev. Min Max

los 3313 3.297314 4.24606 1 27

We model the data using a standard Poisson regression to determine whether the
data are extradispersed. Given the shape of the data, we suspect overdispersion, and
we use a robust or sandwich adjustment on the standard errors. This does not alter the
reported dispersion statistic; it adjusts the reported standard errors for the extradis-
persion.
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. glm los cage gender type procedure, nolog family(poisson) vce(robust)

Generalized linear models No. of obs = 3313
Optimization : ML Residual df = 3308

Scale parameter = 1
Deviance = 6545.205905 (1/df) Deviance = 1.978599
Pearson = 7356.890182 (1/df) Pearson = 2.223969

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 4.587385
Log pseudolikelihood = -7594.003885 BIC = -20268.15

Robust
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

cage .067838 .0030246 22.43 0.000 .0619098 .0737662
gender -.1706062 .0354332 -4.81 0.000 -.2400541 -.1011584

type .5090647 .0361028 14.10 0.000 .4383045 .5798249
procedure 1.295007 .029725 43.57 0.000 1.236747 1.353267

_cons .1166878 .0404083 2.89 0.004 .037489 .1958866

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 3313 . -7594.004 5 15198.01 15228.54

Note: N=Obs used in calculating BIC; see [R] BIC note

The data are indeed overdispersed given a dispersion statistic of 2.22. Next, we
model the data using a ZTP, noting that the AIC reduces from 15,198 to 13,524. The BIC

statistic reduces similarly in value, indicating that a zero-truncated model is preferred.

. trncregress los cage gender type procedure, dist(poisson) nolog ltrunc(0)
> vce(robust)

Truncated Poisson regression Number of obs = 3313
Dist. support on {1, ..., .} LR chi2(4) = 7408.73
Log pseudolikelihood = -6757.134 Prob > chi2 = 0.0000

Robust
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

cage .0822975 .0040432 20.35 0.000 .074373 .0902221
gender -.2075121 .0446871 -4.64 0.000 -.2950972 -.1199269

type .6496304 .0481891 13.48 0.000 .5551815 .7440793
procedure 1.791857 .051333 34.91 0.000 1.691246 1.892468

_cons -.5070931 .0662515 -7.65 0.000 -.6369437 -.3772425

. predict countpoi
(option n assumed; predicted number of events)
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. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 3313 -10461.5 -6757.134 5 13524.27 13554.8

Note: N=Obs used in calculating BIC; see [R] BIC note

We next attempted a ZTNB, but the model would not converge. A negative binomial
model without adjustment was used in its place.

. glm los cage gender type procedure, nolog family(nb ml) vce(robust)

Generalized linear models No. of obs = 3313
Optimization : ML Residual df = 3308

Scale parameter = 1
Deviance = 2566.187186 (1/df) Deviance = .7757519
Pearson = 2991.058004 (1/df) Pearson = .9041892

Variance function: V(u) = u+(.3359)u^2 [Neg. Binomial]
Link function : g(u) = ln(u) [Log]

AIC = 4.008383
Log pseudolikelihood = -6634.886058 BIC = -24247.17

Robust
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

cage .0697254 .002795 24.95 0.000 .0642473 .0752036
gender -.250894 .0306625 -8.18 0.000 -.3109915 -.1907966

type .5077546 .0312664 16.24 0.000 .4464735 .5690357
procedure 1.291291 .0277281 46.57 0.000 1.236945 1.345637

_cons .1669493 .0342711 4.87 0.000 .0997791 .2341194

Note: Negative binomial parameter estimated via ML and treated as fixed once
estimated.

. predict countnbr
(option mu assumed; predicted mean los)

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 3313 . -6634.886 5 13279.77 13310.3

Note: N=Obs used in calculating BIC; see [R] BIC note

Even without adjustment for the absence of zero counts, the AIC and BIC statistics
of the negative binomial model are 250 points below that of the ZTP. We attempted to
run ZTGP, NB-P, and negative binomial family models, but they also failed to converge.
Only the zero-truncated PIG models converged, producing the lowest AIC and BIC values
of the model—estimated to be 2,500 points less than the negative binomial. Given the
parameterization of the PIG model such that there is a direct relationship between the
mean and dispersion parameter, the model performs best on a distribution of counts
that are shaped like the data modeled here. Note that a standard PIG model using the



J. W. Hardin and J. M. Hilbe 243

pigreg command (Hardin and Hilbe 2012) yields an AIC of 13,210.83, nearly 70 points
lower than that of the negative binomial. But it is clear that a zero-truncated PIG fits
the data best. See Hilbe (2014) for a detailed discussion of the PIG model.

. trncregress los cage gender type procedure, dist(pig) nolog ltrunc(0)
> vce(robust)

Truncated Poisson IG regression Number of obs = 3313
Dist. support on {1, ..., .} LR chi2(4) = 1735.61
Log pseudolikelihood = -5028.09 Prob > chi2 = 0.0000

Robust
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

cage .1719878 .0072864 23.60 0.000 .1577067 .1862689
gender -.9136862 .0802663 -11.38 0.000 -1.071005 -.7563671

type 1.085622 .0805258 13.48 0.000 .9277945 1.24345
procedure 3.099462 .0920468 33.67 0.000 2.919054 3.279871

_cons -1.912977 .1201499 -15.92 0.000 -2.148466 -1.677487

/lnalpha 1.023893 .0903574 .8467954 1.20099

alpha 2.784011 .2515559 2.332161 3.323405

. predict countpig
(option n assumed; predicted number of events)

. generate double pigalpha = [lnalpha]_cons

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 3313 -5895.893 -5028.09 6 10068.18 10104.81

Note: N=Obs used in calculating BIC; see [R] BIC note

We can interpret the model coefficients more clearly if we exponentiate them. Be-
cause the PIG mean was parameterized in trncregress using the log link {η = log(µ)},
we can interpret the coefficients as we do the incidence-rate ratios of Poisson and neg-
ative binomial models.
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. trncregress, eform

Truncated Poisson IG regression Number of obs = 3313
Dist. support on {1, ..., .} LR chi2(4) = 1735.61
Log pseudolikelihood = -5028.09 Prob > chi2 = 0.0000

Robust
los exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cage 1.187663 .0086538 23.60 0.000 1.170823 1.204746
gender .4010432 .0321903 -11.38 0.000 .3426639 .4693685

type 2.961282 .2384596 13.48 0.000 2.528925 3.467555
procedure 22.18602 2.042153 33.67 0.000 18.52375 26.57234

_cons .1476403 .017739 -15.92 0.000 .116663 .1868429

/lnalpha 1.023893 .0903574 .8467954 1.20099

alpha 2.784011 .2515559 2.332161 3.323405

Open surgery is indeed a predictor of a greater length of stay, as is emergency
admission compared with elective and being female.

Following estimation, predicted statistics can be developed to create graphics that
help to assess model fit. Following Cameron and Trivedi (2013), we generated the ob-
served and predicted probabilities of the first 10 outcomes (see figure 1). Because the
outcome variable has such a large proportion of outcomes of 1 and a few very large out-
comes, the models have the most difficulty fitting the distribution for small values. We
can see from the listed probabilities, the comparison of BIC values, and the graph that
the zero-truncated PIG model is preferred over the negative binomial and ZTP models.

. * NOTE: doit is a program we wrote to list out observed

. * and predicted probabilities. It is part of the

. * downloaded files for those interested readers.

. doit 1 10

Outcome Obs. Poisson Nbreg PIG
1 0.5823 0.3839 0.1523 0.5720
2 0.1422 0.1971 0.0915 0.0840
3 0.0377 0.1127 0.0633 0.0405
4 0.0184 0.0759 0.0477 0.0257
5 0.0205 0.0559 0.0379 0.0182
6 0.0251 0.0424 0.0311 0.0137
7 0.0235 0.0323 0.0261 0.0107
8 0.0238 0.0246 0.0222 0.0086
9 0.0220 0.0186 0.0192 0.0071
10 0.0199 0.0140 0.0167 0.0059
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Figure 1. Comparison of differences of observed and predicted probabilities for outcomes
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