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Abstract. Cancer registries are often interested in estimating net survival (NS),
the probability of survival if the cancer under study is the only possible cause of
death. Pohar Perme, Stare, and Estéve (2012, Biometrics 68: 113–120) proposed
a new estimator of NS based on inverse probability weighting. They demonstrated
that existing estimators of NS based on relative survival were biased, whereas the
new estimator was unbiased. The new estimator was developed for continuous
survival times, yet cancer registries often have only discrete survival times (for
example, survival time in completed months or years). Therefore, we propose an
approach to estimation for when survival times are discrete. In this article, we
describe the stnet command for life-table estimation of NS, adapting the Pohar
Perme estimation approach to life-table estimation. Estimates can be made using
a period or hybrid approach in addition to the traditional cohort (or complete)
approach, and age-standardized survival estimates are available.

Keywords: st0375, stnet, net survival, relative survival, competing risks, life table,
cancer survival, age standardization, period analysis

1 Introduction

Cancer registries are often interested in net survival (NS), the probability of survival
when the cancer under study is the only possible cause of death. Although NS is defined
under a hypothetical condition (Tsiatis 2005), it is useful in practice for comparing
cancer survival between countries (Coleman et al. 2008) and over time (Dickman and
Adami 2006) because it is independent of mortality due to other diseases that varies
between countries and over time.

NS is typically estimated using one of two methods: cause-specific survival, which re-
lies on accurate information on cause of death, and relative survival (Estève et al. 1990).
Relative-survival estimates NS by contrasting the all-cause mortality of the patients to
the expected mortality of a comparable group from the general population (that is, a
group with the same demographics of the patients). This method is preferred by the
cancer registries because it does not require the cause of death, which may be unavail-
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able or unreliable, and it captures mortality that is indirectly caused by the cancer, such
as mortality due to treatment side effects. On the other hand, relative survival assumes
that the expected mortality of the general population correctly reflects the mortality
from causes other than cancer in the patients (Sarfati, Blakely, and Pearce 2010).

Pohar Perme, Stare, and Estève (2012) showed that none of the available methods
actually estimate NS in a relative-survival setting because the methods do not account
for the effect of competing causes of mortality. They proposed a new estimator1 (often
called the Pohar Perme estimator), which was shown in a simulation study to produce
unbiased estimates of NS (Danieli et al. 2012), provided that patients have the same
survival experience as the general population if they did not have cancer (Rachet et al.
2010; Hinchliffe et al. 2012).

The Pohar Perme estimator was developed for continuous survival times; however,
cancer registries often have only discrete survival times (for example, survival time in
completed months or years). The continuous survival time approach forces NS to be
estimated using the cumulative expected survival computed at each event time, which
may result in some approximation. Furthermore, continuous survival time and actuarial
methods differ in their handling of individuals with identical survival times: the former
assumes that all censored individuals were at risk at their time of death, whereas the
latter assumes that only half the individuals were at risk at their time of death. As a
result, when there are ties between censored and observed survival times, the continuous
survival time approach tends to overestimate survival. Therefore, actuarial estimates
are usually preferred (Therneau and Grambsh 2000).

We propose an actuarial approach to the estimation of NS that adapts the Pohar
Perme estimation method to life-table estimation. In this article, we describe the stnet
command for life-table estimation of NS.

2 Methods

For computing NS, the Pohar Perme estimation method weights2 the contribution of
each individual according to the inverse of his or her cumulative expected survival
probability. As a consequence of the inverse probability weighting, the number at risk
at time t becomes the sum of the weights of the individuals at risk, and the number of
deaths becomes the sum of the weights of individuals dying at that time. Intuitively,
the effect of the weights is to increase the number of people at risk and the number of
deaths to account for person-time and deaths not observed as a result of mortality due
to competing causes.

1. The estimator has been implemented in the rs.surv function, available in the relsurv package of
R software (Pohar and Stare 2006; Pohar Perme 2013), and more recently in the user-written stns

command for Stata (Clerc-Urmés, Grzebyk, and Hedelin 2014).
2. All information for the weights can be obtained from the population mortality tables.



In our approach, the interval-specific NS is estimated by transforming the estimated
cumulative weighted excess hazard, Λw

ei; the difference of the cumulative weighted ob-
served hazard, Λw

i ; and the cumulative weighted expected hazard, Λ∗w
i :

NSi = exp(−Λw
ei) = exp{−(Λw

i − Λ∗w
i )} = exp

(

− ki
dwi − d∗wi

ywi

)

where dwi is the weighted number of deaths in the interval, d∗wi is the weighted number
of expected deaths in a comparable general-population group, ywi is the weighted time
at risk, and ki is the length of the interval. The weighted quantities dwi , d

∗w
i , and ywi

are the sums of interval-specific observations of n patients weighted by the inverse of
their cumulative expected survival probabilities; that is,

dwi =

n
∑

j=1

dij

S∗
ij

, d∗wi =

n
∑

j=1

− log(p∗ij)yij

S∗
ij

, and ywi =

n
∑

j=1

yij

S∗
ij

where dij is the indicator of death, p
∗
ij is the expected probability of surviving one year,

yij is the time at risk for patient j in interval i, and the cumulative expected survival
probability S∗

ij is computed at the midpoint of interval i.

The cumulative NS at the end of interval t is the product of the interval-specific NS

probabilities:

NS(t) =

t
∏

i=1

NSi

The variance of the cumulative NS is approximated by the delta method
Var{NS(t)} = NS(t)2Var{Λw

e (t)}, where the variance of the cumulative weighted excess
hazard, Λw

e (t) =
∑t

i=1 Λ
w
ei, at the end of interval t is

Var{Λw
e (t)} =

t
∑

i=1

k2i

∑n

j=1
dij

S∗2

ij

(ywi )
2

Confidence bounds are then computed after a log-log transformation. Because this
approach assumes that the hazard and weights are constant within the interval, stnet
is sensitive to the choice of interval length. In practice, an interval length of one month
is a safe choice; in our experience using this interval, we have never found differences
of any practical significance when survival times were recorded in days and results were
also obtained after specifying shorter time intervals or using the continuous survival
time estimator. The same interval length may also be applied when survival times are
grouped in months or larger time units. However, note that continuous survival time
estimates do not constitute a good reference in this case (see section 4).

3 The stnet command

In general, two data files are required to estimate NS in a relative-survival setting: a file
containing individual-level data on the patients and a file containing expected probabili-
ties of death for a comparable group from the general population (the popmort.dta file;



see section 3.3). The stnet command is for use with survival-time (st) data; therefore,
the patient data file must be stset (see [ST] stset) with time since entry in years as
the timescale before using stnet.

3.1 Syntax

stnet using filename
[

if
] [

in
] [

weight
]

, breaks(range) mergeby(varlist)

diagdate(varname) birthdate(varname)
[

by(varlist) attage(newvar)

attyear(newvar) survprob(varname) maxage(#) ederer2

standstrata(varname) list(varlist) listyearly format(%fmt) notables

level(#) saving(filename
[

, replace
]

) savstand(filename
[

, replace
]

)
]

using filename specifies a file containing general-population survival probabilities
(see section 3.3). Importance weights (iweights) are allowed and should be specified as
proportions; they produce age-standardized estimates (see the example in section 4.1).

3.2 Options

breaks(range) specifies the cutpoints for the life-table intervals as a range in the
forvalues command (see [P] forvalues). The units must be years; for example,
specify breaks(0(0.08333)5) for monthly intervals up to five years. breaks() is
required.

mergeby(varlist) specifies the variables that uniquely determine the records in the
file of general-population survival probabilities (the using file, also known as the
popmort.dta file). The using file must also be sorted by these variables. mergeby()
is required.

diagdate(varname) specifies the variable containing the date of diagnosis. diagdate()
is required.

birthdate(varname) specifies the variable containing the date of birth. birthdate()
is required.

by(varlist) specifies the life-table stratification variables. One life table is estimated for
each combination of these variables.

attage(newvar) specifies the variable containing attained age (that is, age at the time
of follow-up). This variable cannot exist in the patient data file (it is created as the
integer part of age at diagnosis plus follow-up time) but must exist in the using file.
The default is attage( age).

attyear(newvar) specifies the variable containing attained calendar year (that is, cal-
endar year at the time of follow-up). This variable cannot exist in the patient data
file (it is created as the integer part of year of diagnosis plus follow-up time) but
must exist in the using file. The default is attyear( year).



survprob(varname) specifies the variable in the using file that contains the general-
population survival probabilities. The default is survprob(prob).

maxage(#) specifies the maximum age for which general-population survival probabili-
ties are provided in the using file. Probabilities for individuals older than this value
are assumed to be the same as for the maximum age. The default is maxage(99).

ederer2 specifies that Ederer II relative-survival estimates be calculated. Note that
stnet calculates the observed survival by transforming the interval-specific cumula-
tive hazard; therefore, the results are not exactly equal to those obtained by using
ltable (Dickman 2010; see [ST] ltable).

standstrata(varname) specifies a variable defining strata across which to average the
cumulative survival estimate. With this option, a weight must also be specified as
follows: [iweight=varname].

list(varlist) specifies the variables to be listed in the life table. The variables start
and end are included by default; however, if only one of these is specified in the
list() option, then the other is suppressed.

listyearly displays life-table survival estimates only at the end of each year of follow-
up.

format(%fmt) specifies the format for variables containing survival estimates. The
default is format(%6.4f).

notables suppresses display of the life tables.

level(#) sets the confidence level based on the value of global macro S level. The
default is level(95).

saving(filename
[

, replace
]

) specifies to save in filename a dataset containing one
observation for each life-table interval.

savstand(filename
[

, replace
]

) specifies to save standardized estimates in filename.

3.3 The population mortality file

The population mortality file (typically named popmort.dta) must contain general-
population survival probabilities (conditional probabilities of surviving one year) strat-
ified by those variables which uniquely determine the records and upon which it is
assumed expected survival depends. Typically, those variables are age, sex, and period,
but further variables may be included, such as race, region of residence, or social class
(Coleman et al. 1999). Such probabilities (or corresponding rates that can be trans-
formed to probabilities) are available from the Human Mortality Database3 for many
populations or can be obtained from local government authorities (typically the central
statistics office). The filename is specified via the using option, and the variables by
which the file is sorted are specified using the mergeby(varlist) option. The following
is a listing of the first five rows of the Finnish popmort.dta file:

3. See http://www.mortality.org/.



. use popmort

. list sex _year _age prob in 1/5, noobs

sex _year _age prob

1 1951 0 .96429
1 1951 1 .99639
1 1951 2 .99783
1 1951 3 .99842
1 1951 4 .99882

Probabilities must be provided for every year that the patients will attain during
follow-up; if data are not available for recent years, it is standard practice to assume the
probabilities are the same as those most recently available. When estimating expected
survival, we require the expected probabilities of death according to age and year at
time of follow-up (rather than time of diagnosis). The command must, therefore, keep
track of both.

The patient data file must contain variables for date of diagnosis (diagdate()) and
date of birth (birthdate()). Internally, stnet computes age and calendar year at
diagnosis. These variables are then updated with follow-up. By default, these “time-
updated” variables are named age and year, but alternative names can be specified
using the appropriate options. popmort.dta must contain variables age and year

(or as otherwise specified) because the expected survival probabilities are merged using
these variables.

4 Example

Here we illustrate the command using data provided by the Finnish Cancer Registry on
patients diagnosed with colon carcinoma in Finland, 1975–1994. In the original data,
the diagnosis and censoring dates were recorded only to the nearest month, so we added
a random day to these dates. Date of birth has also been randomly generated from the
recorded age. We first estimate NS in patients diagnosed from 1980–1984 up to 10 years
from diagnosis.



. use colon_net
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995. Date of diagno)

. quietly stset exit, origin(dx) f(status) scale(365.24)

. stnet using popmort if yydx>=1980 & yydx<1985, mergeby(_year sex _age)
> breaks(0(.083333333)10) diagdate(dx) birthdate(birthdate)
> list(n d cns locns upcns secns) listyearly

failure _d: status
analysis time _t: (exit-origin)/365.24

origin: time dx

Cumulative net survival according to Pohar Perme, Stare and Estéve method.

start end n d cns locns upcns secns

.9167 1 2393 56 0.6650 0.6484 0.6811 0.0084
1.917 2 1918 17 0.5682 0.5500 0.5859 0.0091
2.917 3 1677 18 0.5234 0.5043 0.5421 0.0097
3.917 4 1490 12 0.4952 0.4751 0.5150 0.0102
4.917 5 1344 14 0.4709 0.4493 0.4923 0.0110

5.917 6 1232 8 0.4577 0.4343 0.4807 0.0118
6.917 7 1150 7 0.4576 0.4325 0.4824 0.0127
7.917 8 1078 5 0.4623 0.4349 0.4893 0.0139
8.917 9 1010 9 0.4666 0.4358 0.4969 0.0156
9.917 10 936 5 0.4762 0.4415 0.5100 0.0175

The variable exit contains the exit date from the study, and the variable dx contains
the date of diagnosis. The timescale must be time since diagnosis in years, so we have
applied a scale factor of 365.24. We have chosen to use one-month intervals to estimate
NS, but the option listyearly displays the results only at the end of each year of follow-
up. Variables containing dates of diagnosis (dx) and dates of birth (birthdate) must
also be supplied to stnet. The Pohar Perme NS estimate is listed in the column labeled
cns, log-log confidence bounds are in the columns locns and upcns, and standard errors
are in the column secns.

Sometimes survival times are provided only in months or years from diagnosis. In the
colon net data, we can mimic these situations by creating new variables with survival
times in months and years.

. generate surv_mm = floor((exit-dx)/365.24*12)+.5

. generate surv_yy = floor((exit-dx)/365.24)+.5

We can use the survival time in months after

. quietly stset surv_mm, failure(status) scale(12)

and use the survival time in years after

. quietly stset surv_yy, failure(status)

We can then compute NS estimates in the original data, where time is recorded in
days, and in the derived data, where time is recorded in months and years, by applying
time-continuous (stns) and life-table approaches (stnet).



In the estimation of NS, note that the time-continuous approach is forced to use
cumulative expected survival computed at each event time (Clerc-Urmès, Grzebyk, and
Hedelin 2014), yet the life-table approach computes cumulative expected survival at
the specified time intervals. Therefore, we can continue to use time intervals in months
when survival times are provided in years, thus resulting in more accurate estimates of
the cumulative expected survival.

Table 1. NS estimates using time-continuous and life-table approaches with survival
times recorded in days, months, and years

Years Approach
Time

Days Months Years

5

Life table
0.4709 0.4709 0.4752

(stnet)
Time cont.

0.4713 0.4721 0.4784
(stns)

10

Life table
0.4762 0.4762 0.4807

(stnet)
Time cont.

0.4754 0.4790 0.4921
(stns)

Table 1 shows that in the derived data, the time-continuous approach overesti-
mates the survival in the original data mostly when time is recorded in years. The
life-table approach yields the same estimates when times are grouped in months and
shows smaller differences with the original data when times are recorded in years. When
survival times are grouped because of rounded survival times, the life-table approach
is less sensitive than the time-continuous approach to the precision of survival times
(Seppä, Hakulinen, and Pokhrel Forthcoming).

4.1 Example 2: Age-standardized NS

NS generally depends on age at diagnosis, and the age distribution of cancer patients
varies over time and across populations. As such, age standardization is recommended
for comparing estimates between different populations or over time within the same pop-
ulation (Pokhrel and Hakulinen 2009). Here we derive age-standardized NS estimates
using the Corazziari, Quinn, and Capocaccia (2004) standard cancer patient popula-
tion number 1 as the standard population. We use the by() option together with
standstrata() to produce age-standardized estimates for each sex.



. egen agegr = cut(age), at(0 45(10)75 100) icodes

. recode agegr 0=0.07 1=0.12 2=0.23 3=0.29 4=0.29, generate(standw)
(15564 differences between agegr and standw)

. stnet using popmort if yydx>=1980 & yydx<1985 [iw=standw],
> mergeby(_year sex _age) breaks(0(.083333333)10)
> diagdate(dx) birthdate(birthdate) notables noshow
> standstrata(agegr) listyearly by(sex) savstand(agestand_sex_NS,replace)
file agestand_sex_NS.dta saved

Specifying the standstrata() option results in stnet first producing stratified life
tables for each level of the variables specified in standstrata() and then producing
standardized estimates using the weights contained in the variable specified as iweight.
(The weights should be specified as proportions.) The notables option requests sup-
pression of output, and the savstand() option saves life-table survival estimates in the
file agestand sex NS.

The following command produces figure 1, which illustrates the age-standardized NS

and confidence bounds for each sex.

. use agestand_sex_NS, clear

. twoway (rarea locns upcns end, col(gs10))
> (line cns end, lc(black) lw(medthick) lp(l)),
> by(sex, legend(off)) xlabel(0(2)10) xtitle("Years from diagnosis")
> ytitle("Net survival") ylabel(0(.2)1, format(%2.1f))

Figure 1. NS by sex for colon cancer cases diagnosed in Finland from 1980–1984

4.2 Example 3: Period and hybrid estimation

To produce more up-to-date survival estimates, Brenner and associates suggested that
life-table survival estimates be made using a period analysis (Brenner et al. 2004; Bren-
ner and Gefeller 1996). The fundamental characteristic of the period analysis is that



time at risk is left-truncated at the start of the period window and right-censored at
the end.

Our approach to period estimation using Stata is to first identify the time at risk
during the period window for each individual by applying stset with calendar time as
the timescale. For example, we might be interested in the period between 1 January
1990 and 31 December 1994 (the last five years for which incidence data were collected
in this dataset).

. stset exit, origin(dx) enter(time mdy(1,1,1990)) f(status)
> scale(365.24) exit(time mdy(12,31,1994))

We can then apply stnet to obtain NS estimates according to the period analysis.

. stnet using popmort, mergeby(_year sex _age) breaks(0(.083333333)10)
> diagdate(dx) birthdate(birthdate) listyearly nosh

Cumulative net survival according to Pohar Perme, Stare, and Estéve method.

start end n d cns locns upcns secns

.9167 1 3188 73 0.6910 0.6766 0.7050 0.0072
1.917 2 2535 33 0.6013 0.5853 0.6170 0.0081
2.917 3 2126 17 0.5608 0.5435 0.5776 0.0087
3.917 4 1878 13 0.5321 0.5136 0.5502 0.0094
4.917 5 1624 11 0.5105 0.4907 0.5298 0.0100

5.917 6 1404 11 0.4862 0.4639 0.5082 0.0113
6.917 7 1244 5 0.4848 0.4604 0.5087 0.0123
7.917 8 1162 2 0.4862 0.4588 0.5130 0.0138
8.917 9 1054 6 0.4848 0.4522 0.5165 0.0164
9.917 10 947 4 0.4905 0.4539 0.5260 0.0184

Application of this approach may be problematic if the follow-up period extends be-
yond the period for which incident cases are accrued. For example, our sample dataset
contains patients diagnosed until December 1994 with follow-up until December 1995.
For this reason, we censored the follow-up of all individuals on 31 December 1994
in the previous example. What would we do if we wanted to perform period analy-
sis with a window from 1 January 1991 to 31 December 1995? In such a situation,
Brenner and Rachet (2004) suggested that the period window be widened for the first
year (it should be 1 January 1990 to 31 December 1995 so that patients diagnosed in
1989–1994 will contribute person-time). They called this approach hybrid analysis.

The distinctive feature of this approach is that the date at which individuals become
at risk (the start of the period window) differs according to year of diagnosis. This is
relatively easy to apply in Stata:

. generate long hybridtime = cond(yydx>1989, dx, mdy(1,1,1991))

. stset exit, origin(dx) failure(status) enter(time hybridtime)
> scale(365.24)

. stnet using popmort, mergeby(_year sex _age)
> breaks(0(.08333333)10) diagdate(dx) birthdate(birthdate)



We create the new variable hybridtime to hold the date at which each individual
becomes at risk. This corresponds to the date of diagnosis for patients diagnosed in
1990–1994 and corresponds to 1 January 1991 for patients diagnosed before 1 January
1990.4 We then stset the data with hybridtime as the start of the time at risk (using
the enter() option) and call stnet in the usual manner.

5 Conclusion

Pohar Perme, Stare, and Estève (2012), by developing an unbiased estimator of NS,
significantly advanced the field of estimating NS of cancer patients in a relative-survival
framework. Their approach was developed for continuous survival times. We have
adapted an actuarial approach to the estimation of NS that is helpful in cases of grouped
survival times. The new command, stnet, will enable users to easily compute this
unbiased estimator, directly obtain age-standardized NS, and produce more up-to-date
survival estimates by using period or hybrid analysis. In particular, we hope that stnet
will be useful for survival analysis by population cancer registries.
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Estève, J., E. Benhamou, M. Croasdale, and L. Raymond. 1990. Relative survival and
the estimation of net survival: Elements for further discussion. Statistics in Medicine

9: 529–538.

Hinchliffe, S. W., M. J. Rutherford, M. J. Crowther, C. P. Nelson, and P. C. Lambert.
2012. Should relative survival be used with lung cancer data? British Journal of

Cancer 106: 1854–1859.

Pohar, M., and J. Stare. 2006. Relative survival analysis in R. Computer Methods and

Programs in Biomedicine 81: 272–278.

Pohar Perme, M. 2013. relsurv: Relative survival. R. package version 2.0-4.
http://CRAN.R-project.org/package=relsurv.
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