
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, University of Konstanz, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell, Shelbi Seiner, and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145

2-year subscription $210 2-year subscription $270

3-year subscription $285 3-year subscription $375

1-year student subscription $ 85 1-year student subscription $115

1-year institutional subscription $345 1-year institutional subscription $375

2-year institutional subscription $625 2-year institutional subscription $685

3-year institutional subscription $875 3-year institutional subscription $965

Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85

2-year subscription $155 2-year subscription $155

3-year subscription $215 3-year subscription $215

1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2015 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

newspell: Easy management of complex spell

data

Hannes Kröger
European University Institute

Florence, Italy
hannes.kroger@eui.eu

Abstract. Biographical data gathered in surveys are often stored in spell format,

allowing for overlaps between spell states. On the one hand, these kind of data

provide useful information for researchers. On the other hand, the data structure

is often complex and not easy to handle. The newspell program offers a solution

to the problem of spell-data management with three important features. First, it

can rank spells and cut off overlaps according to the rank order. Second, newspell

can combine overlapping parts of spells into new categories of spells, generating

entirely new states. Third, it can detect gaps in the spell data that are not yet

coded. It also includes subcommands for the management of complex spell data.

Spell states can be merged and filled in with information from adjacent spells, and

the data can be transformed to long or wide format. The command can be used to

clean data, to combine two spell-data sources that have information on different

kinds of states, or to deal with spell data that are complex by survey design.

newspell is useful for users who are not familiar with complex spell data and have

little experience in Stata programming or data management. For experienced

users, newspell saves a lot of time and coding work.

Keywords: dm0078, newspell, spell data, data management, complex data

1 Complex spell data

Biographical data gathered in surveys are a valuable source of information for researchers
from different disciplines. Whether the data are collected retrospectively or prospec-
tively, they are often stored in spell format. Spell format reduces the size of the files
that store the data and usually mirrors the data collection process.

However, as soon as overlaps of spells are allowed, complex spell structures emerge.
Overlaps occur either if overlaps are possible by design of the data collection process or
if two sources of spell data on different kinds of states are combined (for example, spells
of marital status could be combined with residency spells to analyze interdependencies
of spatial mobility and marital status). Some popular surveys that include complex
spell data are the Panel Study of Income Dynamics, the Health and Retirement Study,
and the German Socio-economic Panel Study.

Because of the unique nature of spells, several problems and solutions have been
discussed for managing this data format in Stata. Cox (2007) details the nature of
spells and how to construct and manipulate them in Stata. (Many of the technical

c© 2015 StataCorp LP dm0078

details explained in Cox (2007) are presupposed for this article.) Two commands that
help generate spells are spell (Cox and Goldstein 1998) and tsspell (Cox 2002). They
allow the identification of spells or continuous sequences (given a certain condition) from
the data. A command to help manage already existing spell data is spellutil (Leuven
2003). It allows users to merge adjacent spells, transform spell data to panel data, or
join overlapping spells with metric information. spellutil is especially useful for spells
that carry metric information, like wages.

Survival analysis is a field that often applies spell data. Cleves (1999) describes
how data are stset for the use of survival analysis. In most cases, however, we want a
noncomplex structure of the spell data before running a survival analysis. There might
be exceptions, but overlaps of different spell states generally should be resolved. The
command I propose here, newspell, is ideally suited for such a purpose. In this article,
I present the newspell command, which simplifies management of complex spell data.
In contrast to spellutil, newspell is most useful for spells defined by categorical spell
states.

In the next section, I present an overview of the program along with its core features
and its syntax. In the third section, I describe the functionality of the subcommands
and provide examples. I conclude the article in the last section.

2 Overview of newspell subcommands

newspell1 is a collection of smaller programs, each of which helps to manage complex
spell data. The subcommands for newspell are as follows:

merge merges spells of different states
rank solves the problem of overlapping spells by cutting them off

according to a given ranking
fillin fills in certain types of spells with information from adjacent

spells, according to a priority given by the user
combine creates new states from any combination of overlapping spells
gaps searches for gaps in spell data and fills them with spells

of a new state
towide/tolong transforms spell data into wide or long (panel) format, even

if overlapping spells still remain

1. For the programming of newspell, Stata 12.1 was used.

2.1 Syntax

newspell subcommand
[

if
] [

in
]

, subcommand options id(varname)

snumber(varname) stype(varname) begin(varname) end(varname)
[

sort(varlist) ncensor(newvarname) missing(# | string)

newsnumber(newvarname) report
]

2.2 Shared options

Several options are shared among many of the subcommands. I describe these shared
options only once, in this section, for brevity. See section 3 for details about each
individual subcommand and options available only to that subcommand.

id(varname) specifies the variable that uniquely identifies the unit to which the spells
refer. If individual survey data are used, this variable will likely refer to an individual
or a household. In other contexts, it can be virtually any unit (for example, com-
panies or countries). id() takes both numeric and string variables (see section 3.7
on the use of newspell with string variables). Together, id() and snumber() must
uniquely identify the observations in the data. Missing values are not allowed. id()
is required.

snumber(varname) specifies the variable that contains the number of the spell within
the units of id(). snumber() must be a numeric variable. Together, id() and
snumber() must uniquely identify the observations in the data. Missing values are
not allowed. snumber() is required.

stype(varname) specifies the variable that contains the different spell states (or types
of spells). varname should indicate what content the spell actually holds. stype()
takes both string and numeric variables. Missing values are not allowed. stype() is
required.

begin(varname) specifies the variable defining the beginning of a spell. Missing values
are not allowed. begin() is required.

end(varname) specifies the variable defining the end of a spell. Missing values are not
allowed. end() is required.

sort(varlist) indicates how the transformed data should be sorted. The transformed
data will always be sorted first by the id() variable and then by the variables
specified in sort().

ncensor(newvarname) specifies the name of a new censor variable. The new variable
contains technical censoring codes. Using the additional option missing() yields
a more detailed code. If ncensor() is not used, no new censoring variable will be
created.

missing(# | string) indicates whether one of the spell states defined in stype() is a
missing-information code. This information helps in coding a more precise new cen-
soring variable via the option ncensor(). missing() can be used only if ncensor()
is used.

newsnumber(newvarname) specifies the name of the new spell number variable. The
default is newsnumber(snumber new).

report requests a brief report about the changes made to the data. The output depends
on the subcommand.

3 Subcommands

3.1 merge

newspell merge allows the user to merge two or more states to a common state. Ad-
jacent spells of the same state are automatically collapsed into one spell.

Syntax

newspell merge
[

if
] [

in
]

, merge(rule
[

rule ...
]

)
[

nstype(newvarname)
]

id(varname) snumber(varname) stype(varname) begin(varname)

end(varname)
[

sort(varlist) ncensor(newvarname) missing(# | string)

newsnumber(newvarname) report
]

Options

merge(rule
[

rule ...
]

) defines the states to be joined. The rules are analogous to
those for the recode command (see [D] recode). Rules should not be separated by
commas, and brackets are not needed. For example, merge(2 3=4 1 5/7 =7 8=9)

recodes the spell type variable so that states 2, 3, and 4 all receive code 4; states 1,
5, 6, and 7 are all recoded to the state with code 7; and states 8 and 9 together form
the state with code 9. If the variable specified in stype() is a numeric variable,
the value labels of the new state variable will contain the different merging rules
specified in merge(). For the example above, the value 4 would be labeled 2 3=[4],
the value 7 would be labeled 1 5/7 =[7], and the value 9 would be labeled 8=[9].
merge() is required.

nstype(newvarname) specifies the name of the variable that contains the new type of
spells. The default is nstype(spelltype new).

Example

Figure 1 shows a fictional spell structure for one individual, with job history as spells
and age in years as the time intervals.

1
2

3
4

5
6

7
8

9
1
0

1
1

10 20 30 40 50 60 70 80

Age

Education FT Emp. PT Emp. Unemployment

Retired Other No Information

Figure 1. Original spell structure

Figure 2 shows the transformation when newspell merge is used to create an em-
ployment spell merging full-time and part-time employment.

. newspell merge, merge(2 3=2) nstype(stype m) id(pid) stype(stype)
> snumber(n) begin(begin) end(end) newsnumber(n2) sort(begin)

The new variable will be assigned the value label 2 3=[2] for value 2.

1
2

3
4

5
6

7
8

10 20 30 40 50 60 70 80

Age

Education FT or PT Unemployment

Retired Other No Information

Figure 2. Full-time and part-time employment are merged to one spell

3.2 rank

newspell rank solves the problem of overlapping spells. A ranking of the states must be
specified. Spells are cut off according to that ranking so that only one state remains per
time interval. States are allowed to have equal ranking; in this case, overlaps between
states of equal rank are not resolved.

Syntax

newspell rank
[

if
] [

in
]

, rank(#
[

#
][

, # ...
]

)
[

split(newvarname)
]

id(varname) snumber(varname) stype(varname) begin(varname)

end(varname)
[

sort(varlist) ncensor(newvarname) missing(# | string)

newsnumber(newvarname) report
]

Options

rank(#
[

#
][

, # ...
]

) defines the ranking rule that will solve overlaps. The values
of the states are inserted and separated by commas to indicate different ranks. The
first state in rank() is assigned the highest rank; the following states receive an
incrementally decreasing rank. Several states can have the same rank by writing
them subsequently without a comma. All states in the data that are not specified in
rank() are treated as being on the lowest rank (jointly). If two spells overlap, only
the information of the spell with the higher rank is kept for the overlapping part.
Overlaps between spells of equal rank are not resolved. rank() is required.

For example, rank(2, 4 5, 9 8) means that state 2 is ranked highest, states 4 and
5 are ranked second, states 9 and 8 are ranked third, and all other states are ranked
fourth (lowest).

split(newvarname) specifies the name of the new variable that indicates whether and
how often a spell was split into two spells during the execution of the newspell

rank command. The default is split(split).

Example

The data from figure 1 are transformed so that no overlaps remain. Figure 3 shows
the result. The following syntax is used:

. newspell rank, rank(4,1,2,3,5,6,99) id(pid) stype(stype) snumber(n)
> begin(begin) end(end) newsnumber(n2) sort(begin)

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

10 20 30 40 50 60 70 80

Age

Education FT Emp. PT Emp. Unemployment

Retired Other No Information

Figure 3. Overlapping spells are cut off

3.3 fillin

newspell fillin fills all spells of a type specified by the user with information from
adjacent spells. Adjacent spells can begin either before the beginning or after the end
of the spell that is filled in. This is useful, for example, for filling in gaps or spells of
missing information.

Syntax

newspell fillin
[

if
] [

in
]

, fill(# | string
[

,

pre | post | both | bothpost | rank | prop
]

)
[

prop(emp |# #)

overlap(one | whole) rank(#, #, ...)
]

id(varname) snumber(varname)

stype(varname) begin(varname) end(varname)
[

sort(varlist)

ncensor(newvarname) missing(# | string) newsnumber(newvarname) report
]

Options

fill(# | string
[

, pre | post | both | bothpost | rank | prop
]

) specifies which state to fill
in. The suboptions define how the state should be filled in: pre will fill in the spell
from the spell ending before it; post will fill in the spell from the spell beginning
after it; both will fill in the spell equally from both sides. If the spell to be filled
in has an unequal number of time intervals, the middle is coded from the prespell
by default when both is used; bothpost requests that the postspell be used instead.

rank will fill in the spell from the adjacent spell that is ranked highest. prop will
fill in the spell according to a user-specified ratio from pre- and postspells; the ratio
is defined using the prop() option. fill() is required.

prop(emp |# #) specifies a ratio by which to use the adjacent spells to fill in a spell.
prop(emp) requests that the empirical ratio of the lengths of the prespell and post-
spell be used; empirical proportions are rounded to 1% precision. prop(# #)

requests that the specified proportions of prespell and postspell be used to fill in
the spell. The two numbers used must be integer numbers that add up to 100. For
example, prop(15 85) requests that the spell be filled in 15% from the prespell and
85% from the postspell.

overlap(one | whole) specifies to fill in the spell from both sides but allow overlaps.
overlap() may be specified only if fill(#, both) is used. overlap(one) requests
that only the time interval exactly in the middle of the spell overlap. overlap(whole)
requests that the whole spell overlap with the pre- and postspell.

rank(#, #, ...) specifies a ranking for the states. Equal ranks are not allowed.2

If two or more spells are adjacent to the spell to be filled in, the ranking specifies
which information be used for the fill in. If rank() is not specified, the ranking is
automatically created according to the order of the spell states in the spell state
variable (stype()).

Example

For this example, the missing-information spell from figure 1 is filled in. Figure 4
shows the result.

. newspell fillin, fill(99, both) rank(5,3) id(pid) stype(stype) snumber(n)
> begin(begin) end(end) newsnumber(n2) sort(begin)

2. This is in contrast to the newspell rank command, where equal ranks are allowed.

1
2

3
4

5
6

7
8

9
1
0

10 20 30 40 50 60 70 80

Age

Education FT Emp. PT Emp. Unemployment

Retired Other No Information

Figure 4. Spell with missing information is filled in from both sides

3.4 combine

The newspell combine command will create a new type of spell from overlapping parts
of two or more spells. The user specifies the states that are to be combined into a new
spell type. For every overlap in the data, newspell combine checks whether the over-
lapping spells (or a subset thereof) can be combined into the new type of spell according
to the rules specified by the user. If this is the case, a new spell will be created for the in-
terval of overlap. For example, the states "married" and "full-time employed" could
be combined to "married and full-time employed". Any combination is possible as
long as there are corresponding overlaps in the data.

Syntax

newspell combine
[

if
] [

in
]

, combine(# #
[

...
]

) ncode(#)
[

keepold
]

id(varname) snumber(varname) stype(varname) begin(varname)

end(varname)
[

sort(varlist) ncensor(newvarname) missing(# | string)

newsnumber(newvarname) report
]

Options

combine(# #
[

...
]

) specifies the original codes of the states to combine. Do not
use commas to separate the codes. combine() is required.

ncode(#) defines the code of the new state that is created. # cannot be a code that
already exists. ncode() is required.

keepold requests that the information from the overlapping parts of the original spells
be kept in the data. By default, the overlaps are cut off.

Example

Using the data presented in figure 1, newspell combine can create a new state to
indicate that a person is still working part-time after retirement. Figure 5 shows the
transformation of the data after applying the following syntax.

. newspell combine, combine(3 5) id(pid) stype(stype) snumber(n) begin(begin)
> end(end) newsnumber(n2) sort(begin) ncode(7)

1
2

3
4

5
6

7
8

9
1
0

1
1

10 20 30 40 50 60 70 80

Age

Education FT Emp. PT Emp. Unemployment

Retired Other Work+retired No Information

Figure 5. Part-time and retired are combined to a new state

3.5 gaps

A gap exists when a certain period in the data is not covered by a spell. newspell

gaps detects gaps in the data and then fills them in with a new spell state.

Syntax

newspell gaps
[

if
] [

in
]

, ncode(#)
[

first(individual | total |#)

last(individual | total |#)
]

id(varname) snumber(varname)

stype(varname) begin(varname) end(varname)
[

sort(varlist)

ncensor(newvarname) missing(# | string) newsnumber(newvarname) report
]

Options

ncode(#) defines the code of the new state used to indicate gaps in the data. # cannot
be a code that already exists. ncode() is required.

first(individual | total |#) defines the time interval at which newspell gaps should
begin filling in gaps. first(individual) (the default) specifies to begin filling in
gaps at the earliest time point a spell begins within one unit (or individual) defined
by id(). first(total) specifies to begin filling in gaps at the earliest time point
a spell begins, across all units in id(). first(#) specifies to begin filling in gaps
at the time point # regardless of whether spells that are already in the data start
before that point.

last(individual | total |#) defines the time interval at which newspell gaps should
stop filling in gaps. last(individual) (the default) specifies to stop filling in gaps
at the latest time point a spell ends within one unit (or individual) defined by id().
last(total) specifies to stop filling in gaps at the latest time point a spell ends,
across all units in id(). last(#) specifies to stop filling in gaps at the time point
regardless of whether spells that are already in the data end after that point.

Example

Figure 6 shows a fictional spell structure for one individual with job history as spells
and age in years as the time intervals. The information on full-time employment shown
in figure 1 has been deleted here. This created gaps in the data that newspell gaps

can detect and fill in. Figure 7 shows the transformation of the data after the newspell
gaps command was used.

. newspell gaps, ncode(15) first(individual) last(individual) id(pid)
> stype(stype) snumber(n) begin(begin) end(end) newsnumber(n2) sort(begin)

1
2

3
4

5
6

7
8

9

10 20 30 40 50 60 70 80

Age

Education FT Emp. PT Emp. Unemployment

Retired Other No Information

Figure 6. Original spell structure with full-time employment deleted

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

10 20 30 40 50 60 70 80

Age

Education gap spell PT Emp. Unemployment

Retired Other No Information

Figure 7. Gaps are detected and filled in with a gap spell

3.6 towide/tolong

newspell towide and newspell tolong allow the user to transform existing spell data
into data structured in the long (panel) or the wide format. For newspell tolong, this
implies that there will be one entry per time point per unit in id(). The time points
will range from the lowest value in option begin() to the highest value in end() for

each unit defined by id(). newspell towide creates one state variable for each time
point in the spell data.3

newspell tolong is useful if spells are to be analyzed (or managed) as if they were
panel data. newspell towide could be used before a sequence analysis. For sequence
analysis, some programs require the data to be in wide format instead of spell format.

newspell tolong
[

if
] [

in
]

, time(newvarname)
[

add(varlist) constant(varlist)

nooverlaps(#
[

, #, ...
]

)
]

id(varname) snumber(varname)

stype(varname) begin(varname) end(varname)

newspell towide
[

if
] [

in
]

, time(newvarname)
[

add(varlist) constant(varlist)

nooverlaps(#
[

, #, ...
]

)
]

id(varname) snumber(varname)

stype(varname) begin(varname) end(varname)

Options

time(newvarname) specifies the name of the new variable that contains the single time
points generated in the tolong/towide command (for example, year or month).
time() is required.

add(varlist) allows the user to transform other, additional variables than the state
variable from spell format to long/wide format.

constant(varlist) allows the user to transform other, additional variables that are
constant over spells from spell format to long/wide format.

nooverlaps(#
[

, #, ...
]

) requests that overlaps in the spells be cut off. The rank
order in which this should be done can be specified according to the same rules
as the rank() option of newspell rank. All existing states must be specified in
nooverlaps(), without equal ranks, if all overlaps should be resolved. It is possible
to resolve only some of the overlaps.

3. The functionality of newspell tolong is very similar to the spell2panel command of
spellutil.ado (Leuven 2003). In contrast to spell2panel, newspell tolong focuses on spell
states that are categorical and not metric.

Example

To illustrate the use of newspell tolong, the first three spells from figure 1 are
transformed from spell format to long format.

. use "art.dta"

. keep if n <=3
(8 observations deleted)

. list

pid begin end stype n

1. 111 15 25 1 1
2. 111 22 28 3 2
3. 111 28 40 2 3

. newspell tolong, time(age) id(pid) snumber(n) stype(stype) begin(begin)
> end(end) nooverlaps(1,3,2)

. list

pid age stype

1. 111 15 1
2. 111 16 1
3. 111 17 1
4. 111 18 1
5. 111 19 1

6. 111 20 1
7. 111 21 1
8. 111 22 1
9. 111 23 1
10. 111 24 1

11. 111 25 1
12. 111 26 3
13. 111 27 3
14. 111 28 3
15. 111 29 2

16. 111 30 2
17. 111 31 2
18. 111 32 2
19. 111 33 2
20. 111 34 2

21. 111 35 2
22. 111 36 2
23. 111 37 2
24. 111 38 2
25. 111 39 2

26. 111 40 2

Example

To illustrate the use of newspell towide, the first three spells from figure 1 are
transformed from spell format to wide format.

. use "art.dta", clear

. keep if n <=3
(8 observations deleted)

. list

pid begin end stype n

1. 111 15 25 1 1
2. 111 22 28 3 2
3. 111 28 40 2 3

. newspell towide, time(age) id(pid) snumber(n) stype(stype) begin(begin)
> end(end) nooverlaps(1,3,2)

. list, linesize(59)

1. pid stype_15 stype_16 stype_17 stype_18
111 1 1 1 1

stype_19 stype_20 stype_21 stype_22
1 1 1 1

stype_23 stype_24 stype_25 stype_26
1 1 1 3

stype_27 stype_28 stype_29 stype_30
3 3 2 2

stype_31 stype_32 stype_33 stype_34
2 2 2 2

stype_35 stype_36 stype_37 stype_38
2 2 2 2

stype_39 stype_40
2 2

3.7 Using string variables with newspell

newspell supports the use of string variables for both id() and stype(). If the iden-
tifier variable (id()) is a string variable, nothing changes for the user. However, if the
variable identifying the spell states (stype()) is a string variable, some rules must be
followed to ensure newspell works as intended.

The first rule for a string variable specified in stype() is that it cannot contain
missing values, as with numeric variables. Missing values for string variables are empty
strings, containing no character or space: "". The second rule is that the variable cannot

contain values that contain either only spaces (for example, " "), only one comma
(","), or only one equal sign ("="). However, spaces, commas, and equal signs are
allowed in combination with other characters. For example, the value "married and

living apart" is allowed. The same goes, for example, for "part-time,full-time

employment" or "=20hours per week". This means that, not counting the specific
exceptions, newspell can deal with all kinds of strings stored in the spell state variable,
as long as Stata can deal with the strings.

If the spell state variable is a string variable, all values of the variable that are
specified in the options of one of the subcommands of newspell must be enclosed in
quotes, even if the value does not contain spaces. As in all dealings with strings, users
must be precise in specifying the string values. If a space is left out, even at the end,
newspell will recognize it as a different state and might produce an error message.

Example

For the purpose of showing the correct use of newspell with a spell state variable
that contains strings, I generated data that mirror the example from figure 1 with string
codes.

. generate pidstring = string(pid)

. generate stypestring = "Education" if stype ==1
(10 missing values generated)

. replace stypestring = "FT, PT" if stype ==2
(2 real changes made)

. replace stypestring = "PT Emp." if stype ==3
(3 real changes made)

. replace stypestring = "Unemployment" if stype ==4
stypestring was str9 now str12
(2 real changes made)

. replace stypestring = "Retired" if stype ==5
(1 real change made)

. replace stypestring = "Other" if stype ==6
(1 real change made)

. replace stypestring = "99=No Information" if stype ==99
stypestring was str12 now str17
(1 real change made)

newspell rank is correctly specified in the following way:

. newspell rank, rank("Unemployment","Education","FT, PT","PT Emp.","Retired",
> "Other","99=No Information") id(pidstring) stype(stypestring) snumber(n)
> begin(begin) end(end) newsnumber(n2) sort(begin) ncensor(ncens)
> missing("99=No Information")

This is how a state can be filled in using a string variable:

. newspell fillin, fill("99=No Information", both) rank("Retired","PT Emp.")
> id(pidstring) stype(stypestring) snumber(n) begin(begin) end(end)
> newsnumber(n2) sort(begin)

This is how two states, stored as strings, can be merged with newspell:

. newspell merge, merge("FT, PT" "PT Emp." ="FT, PT") nstype(stypestringm)
> id(pidstring) stype(stypestring) snumber(n) begin(begin) end(end)
> newsnumber(n2) sort(begin)

4 Conclusion

In this article, I presented the user-written newspell command, which can be used
to conduct different important data-management tasks when dealing with spell data.
These tasks are merging or cutting off spells, finding gaps in the data, filling those gaps,
transforming spell data to wide or long format, and creating completely new states from
overlapping spells. Using newspell, each of these tasks requires only one line of code.
Spell-data management therefore becomes easier for inexperienced users and saves a lot
of time for experts.

To the best of my knowledge, there is no comparable tool in any statistics package
that has the same range of functions for spell-data management. I am open to sugges-
tions from users of newspell with regard to new functions and other improvements so
that I can update and improve it on a regular basis.

5 Acknowledgments

I thank Sebastian Beil, Lea Kröger, Jan Goebel, and Oliver Winkler for suggestions and
bug-reports on earlier versions of the program. I am especially grateful for the helpful
comments of an anonymous reviewer. The work was partly funded by a grant from the
European Research Council (ERC: 313532).

6 References
Cleves, M. 1999. FAQ: How do I convert my spell-type data into a survival dataset?
http://www.stata.com/support/faqs/statistics/stset-spell-type-data/.

Cox, N. J. 2002. tsspell: Stata module for identification of spells or runs in time series.
Statistical Software Components S426901, Department of Economics, Boston College.
http://econpapers.repec.org/software/bocbocode/s426901.htm.

. 2007. Speaking Stata: Identifying spells. Stata Journal 7: 249–265.

Cox, N. J., and R. Goldstein. 1998. spell: Stata module for identification of spells
or runs of similar values. Statistical Software Components S344901, Department of
Economics, Boston College.
http://econpapers.repec.org/software/bocbocode/s344901.htm.

Leuven, E. 2003. spellutil: Stata module of utilities for the manipulation of timespan
data. Statistical Software Components S431701, Department of Economics, Boston
College. http://econpapers.repec.org/software/bocbocode/s431701.htm.

About the author

Hannes Kröger is a research assistant in the SESandHealth project at the European University

Institute in Florence. His research interests include health and labor market sociology, statisti-

cal and survey methods, and structural equation modeling. In his dissertation, he investigated

the influence of social context on health selection processes on the labor market.

