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Abstract. The Bayesian optimal interval (BOIN) design is a novel phase I trial
design for finding the maximum tolerated dose (MTD). With the BOIN design,
phase I trials are conducted as a sequence of decision-making steps for assigning an
appropriate dose for each enrolled patient. The design optimizes the assignment
of doses to patients by minimizing incorrect decisions of dose escalation or de-
escalation; that is, it decreases the chance of erroneously escalating or de-escalating
the dose when the current dose is higher or lower than the MTD. This feature
of the BOIN design strongly ensures adherence to ethical standards. The most
prominent advantage of the BOIN design is that it simultaneously achieves design
simplicity and superior performance in comparison with similar methods. The
BOIN design can be implemented in a simple way that is similar to the 3 + 3
design, but it yields substantially better operating characteristics. Compared with
the well-known continual reassessment method, the BOIN design yields average
performance when selecting the MTD, but it has a substantially lower risk of
assigning patients to subtherapeutic or overly toxic doses. In this article, we
present a command (optinterval) for implementing the BOIN design in a phase
I clinical trial setting.

Keywords: st0372, optinterval, Bayesian optimal interval, phase I clinical trial
design, maximum tolerated dose, operating characteristic

1 Introduction

Many phase I trial designs have been proposed to identify the maximum tolerated
dose (MTD) of a new drug. These methods can be classified into algorithm-based and
model-based approaches. Algorithm-based designs do not assume any dose-toxicity
curve, except that toxicity monotonically increases with the dose. This family of
designs conducts dose escalation and de-escalation strictly according to the prespec-
ified algorithm. The most commonly used algorithm-based method is the 3 + 3 design
(Storer 1989). Other algorithm-based methods include the accelerated titration designs
(Simon et al. 1997), the random walk rule (Durham, Flournoy, and Rosenberger 1997)
and its improved up-and-down design (Leung and Wang 2001), and the biased coin de-
sign (Stylianou and Flournoy 2002). Algorithm-based methods are robust because they
do not rely on any parametric model structures, and they are easy to implement by fol-
lowing a set of prespecified rules. However, these designs, particularly the 3+ 3 design,
have been criticized for poor operating characteristics.

c© 2015 StataCorp LP st0372
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Model-based dose-finding designs assume a parametric dose-toxicity model. During
the trial, the model parameter is continuously updated using all the observed data, and
dose-escalation decisions are made using the estimated toxicity probabilities from the
dose-toxicity model. The best-known example of model-based designs is the continual
reassessment method (CRM) (O’Quigley, Pepe, and Fisher 1990). By modeling all the
observed data, the CRM has been shown to be superior to the algorithm-based 3 + 3 de-
sign. However, this model must be fit repeatedly, so it is more complicated to implement
in practice than the BOIN design.

The Bayesian optimal interval (BOIN) design combines the advantages of algorithm-
based designs (that is, simplicity and robustness) and model-based designs (that is,
superior performance). It uses a Bayesian model for deriving the optimal decision rule
for dose escalation or de-escalation, while the implementation of the design takes a
form of algorithm-based designs. The BOIN design can be implemented in a simple way
similar to the 3 + 3 design, but it yields superior operating characteristics comparable
with (or better than) that of the CRM. The design is optimal in that it minimizes the
chance of assigning patients to subtherapeutic or overly toxic doses, which is a top
priority and concern among clinicians seeking to effectively treat patients.

The idea behind the BOIN design is straightforward. Phase I trials are conducted
as a sequence of decision-making steps of dose assignment for patients enrolled in the
trial. At each moment of decision making, using the observed data, we do one of three
things: escalate, de-escalate, or retain the current dose. Under the standard assumption
that efficacy monotonically increases with toxicity (for cytotoxic agents), an ideal trial
design would escalate the dose when the current dose is below the MTD to avoid treating
a patient at a subtherapeutic dose level; de-escalate the dose when the current dose is
above the MTD to avoid exposing a patient to an overly toxic dose; and retain the
same dose level when the current dose is equal (or close) to the MTD. However, such
an ideal design is not available in practice because we do not know whether the current
dose is actually below, above, or equal (or close) to the MTD, and we must infer that
information and make decisions using the data collected from patients who have been
enrolled and treated in the trial. Because of the randomness of the observed data
and small-sample sizes of phase I trials, we often make incorrect decisions for dose
assignment; for example, we may erroneously escalate (or de-escalate) the dose when
it is actually higher (or lower) than the MTD, which results in overly aggressive (or
conservative) dose assignments and treating excessive numbers of patients at dose levels
above (or below) the MTD. From a practical and ethical viewpoint, it is highly desirable
to minimize these decision errors so that the design behaves as closely as possible to the
ideal (error-free) design. The BOIN design is proposed to achieve this goal.

The BOIN design possesses sound theoretical properties. It is long-memory coherent
in that the probability of dose escalation (or de-escalation) is zero when the observed
toxicity rate, p̂j , at the current dose is higher (or lower) than the target toxicity rate, φj .
Conversely, the probability of de-escalation is zero when p̂j < φj . The BOIN design has
a convergence property similar to that of the CRM, and it converges almost entirely at a√
n rate to exclusive allocations of the target dose. The numerical study evaluating the

designs performance shows that the BOIN design has superior operating characteristics
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that are comparable with or better than those of the CRM but that are much easier to
implement.

In this design, dose transition is defined by the relative location of the observed
toxicity rate (that is, the number of patients who experienced toxicity divided by the
total number of patients treated) at the current dose with respect to a prespecified
toxicity tolerance interval. If the observed toxicity rate is located within the interval, we
retain the current dose; if the observed toxicity rate is greater than the upper boundary
of the interval, we de-escalate the dose; and if the observed toxicity rate is smaller than
the lower boundary of the interval, we escalate the dose. To use the BOIN design, we need
to specify only the interval (or dose escalation or de-escalation) boundaries at the trial
design phase, because they are the only design parameters that control dose escalation
or de-escalation. When clinicians conduct the trial, they need no additional software
and can simply count the number of patients who experience toxicity and compare the
observed toxicity rate with the prespecified dose escalation or de-escalation boundaries
to determine dose assignment until the trial is completed.

2 Methods

The complete description of the BOIN design is detailed in Liu and Yuan (2015). Below
is a brief overview of the design.

2.1 Interval design

Assume we have J prespecified doses to be examined, and denote φ as the target toxicity
rate. Then, the interval design can be described as follows:

1. Patients in the first cohort are treated at the lowest dose level.

2. At the current dose level j, assume that a total of nj patients have been treated
and mj of them have experienced a toxicity. Let p̂j = mj/nj denote the ob-
served toxicity rate at dose level j, and let λ1j(nj , φ) and λ2j(nj , φ) denote
the prespecified lower and upper boundaries of the interval, respectively, with
0 ≤ λ1j(nj , φ) ≤ λ2j(nj , φ) ≤ 1. The next cohort dose assignment will be decided
by the following steps:

a. if p̂j ≤ λ1j(nj , φ), escalate the dose level to j + 1;

b. if p̂j ≥ λ2j(nj , φ), de-escalate the dose level to j − 1;

c. otherwise, λ1j(nj , φ) < p̂j < λ2j(nj , φ).

3. Continue step 2 until the maximum sample size is reached.
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2.2 Local BOIN design

The notations λ1j(nj , φ) and λ2j(nj , φ) will be simplified to λ1j and λ2j , respectively.
The local BOIN design selects λ1j and λ2j to minimize incorrect decision of dose esca-
lation and de-escalation in which the optimization is based upon three point (or local)
hypotheses. To minimize incorrect decisions on dose assignment, we will define correct
and incorrect decisions as follows. Let pj be the true toxicity probability of dose level j
for j = 1, . . . , J . We then define the three point hypotheses as

H0j : pj = φ

H1j : pj = φ1

H2j : pj = φ2

where φ1 denotes the highest toxicity probability deemed subtherapeutic, suggesting
that dose escalation is required, and φ2 denotes the lowest toxicity probability deemed
overly toxic, suggesting that dose de-escalation is required. Hence, H0j indicates that
the current dose is the MTD and should be retained for the next cohort of patients, H1j

indicates that the current dose is below the MTD and dose escalation should occur, and
H2j indicates that the current dose is above the MTD and dose de-escalation should
occur. That is, the correct decisions under H0, H1, and H2 are retainment, escalation,
and de-escalation (each based on the current dose level), denoted as R, E, and D,
respectively. Correspondingly, the incorrect decisions under H0, H1, and H2 are R, E,
and D, respectively, where R denotes the decisions complementary to R (that is, R
includes E and D), and D and R denote the decisions complementary to D and R.

Under the Bayesian paradigm, we assign each of the hypotheses a prior probability
of being true, denoted as πkj = Pr(Hkj), k = 0, 1, 2. Then, under the proposed design,
the probability of making an incorrect decision (the decision error rate), denoted as
α(λ1j , λ2j), at each of the dose assignments is given by

α(λ1j , λ2j) = Pr(H0j)Pr
(
R |H0j

)
+ Pr (H1j) Pr

(
E |H1j

)
+ Pr (H2j) Pr

(
D |H2j

)

Assuming equal prior probabilities to the three hypotheses (that is, π0j = π1j = π2j =
1/3), we can show that the decision error rate is minimized when

λ1j =

log

(
1− φ1
1− φ

)

log

{
φ(1− φ1)

φ1(1− φ)

} and λ2j =

log

(
1− φ

1− φ2

)

log

{
φ2(1− φ)

φ(1− φ2)

}
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2.3 Global BOIN design

The global BOIN design accounts for all possible values of pj by specifying three com-
posite hypotheses. Values of λ1j and λ2j are chosen to minimize the average decision
error over the whole support of pj ∈ (0, 1). Specifically, the three composite hypotheses
are

H0j : φ1 < pj < φ2

H1j : 0 ≤ pj ≤ φ1

H2j : φ2 ≤ pj ≤ 1

where H0j indicates that dose level j is close to the MTD and that the dose should be
retained, H1j indicates that dose level j is below the MTD and that the dose should be
escalated, and H2j indicates that the dose level is too toxic and that the dose should be
de-escalated. Let f(pj |Hkj) denote the prior distribution of pj underHkj for k = 0, 1, 2.
The global decision error rate is given by

αg(λ1j , λ2j) = Pr(H0j)

∫
f(pj |H0j)Pr

(
R|pj , H0j

)
dpj

+ Pr(H1j)

∫
f(pj |H1j)Pr

(
E | pj , H1j

)
dpj

+ Pr(H2j)

∫
f(pj |H2j)Pr

(
D | pj , H2j

)
dpj

Unlike that of the local BOIN design, the minimization of the global decision error,
αg(λ1j , λ2j), does not yield closed forms of λ1j and λ2j , and it requires numerical search.
Additionally, numerical studies show that the local BOIN design has better operating
characteristics than the global BOIN design. Therefore, we recommend the local BOIN

design for general use in practice.

2.4 Stopping rule for safety

Because BOIN designs use only the toxicity information at the current dose level to
determine escalation rules, the dose assignment alternates between two adjacent doses
when one of the doses is much lower than the MTD and the other is much higher than
the MTD. Therefore, we implemented the following rule to ensure patient safety, and to
avoid assigning too many patients to an overly toxic dose: if Pr(pj > φ | tj , nj) > π∗
and nj ≥ 3, then dose levels j and higher are eliminated from the trial, where Pr(pj >
φ | tj , nj) can be evaluated using a beta-binomial model with a prior for pj ∼ β(1, 1).
This means that doses will be eliminated if the posterior probability that the current
dose’s toxicity rate is higher than the target toxicity rate is greater than some upper
bound π∗. We also allow a different π∗ to be used for dose one explicitly. We recommend
that the cutoff, π∗, be lower than the cutoff used for doses greater than the first dose.
This is done for greater safety when the first dose’s toxicity rate is higher than the
target rate.
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3 The optinterval command

3.1 Syntax

optinterval, target(#) ncohort(#)
[
getboundary selectmtd oc design(#)

cohort(#) saf(#) tox(#) cut(#) cut1(#) npts(numlist) ntox(numlist)

startdose(#) truep(numlist) ntrials(#)
]

3.2 Options

target(#) specifies the target toxicity rate. target() is required and must be greater
than 0.05 and less than or equal to 0.60.

ncohort(#) specifies the total number of cohorts to be enrolled. ncohort() is required.

getboundary specifies that the dose escalation rules for a proposed design be calculated.

selectmtd specifies finding the MTD at the end of a trial.

oc specifies that the operating characteristics for a proposed design be calculated.

design(#), with 1, specifies the local optimal design and, with 2, specifies the global
optimal design. The default is design(1).

cohort(#) specifies the cohort size. The default is cohort(1).

saf(#) specifies the highest toxicity probability that is deemed subtherapeutic (that
is, below the MTD) such that dose escalation is required. The default is saf(0.6×
target(#)).

tox(#) specifies the lowest toxicity probability that is deemed overly toxic (that is,
above the MTD) such that dose de-escalation is required. The default is tox(1.4×
target(#)).

cut(#) specifies the cutoff to eliminate the overly toxic doses for safety monitoring of
doses greater than the first dose. The default is cut(0.95).

cut1(#) specifies the cutoff to eliminate the overly toxic dose for safety monitoring of
only the first dose. The default is cut1(0.95).

npts(numlist) specifies the number of patients treated at each dose at the end of the
trial. npts() is required when selectmtd is specified.

ntox(numlist) specifies the number of toxicities at each dose at the end of the trial.
ntox() is required when selectmtd is specified.

startdose(#) specifies the starting dose for the trial. The default is startdose(1).

truep(numlist) specifies the true toxicity probabilities for each dose. truep() is re-
quired when oc is specified.
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ntrials(#) specifies the number of trials to simulate when calculating operating char-
acteristics. The default is ntrials(10000).

4 Examples

Suppose we have a proposed new therapeutic treatment to improve survival in a specific
cancer population. We must conduct a phase I clinical trial to find the MTD of the new
treatment. We will conduct our trial using the BOIN design. The trial will enroll patients
in cohorts of size 3 and will enroll a total of 10 cohorts. The toxicity rate of the new
treatment is targeted to be 0.30. We have selected the elimination cutoff boundary, π∗,
for dose 1 to be 0.85. This is 0.10 lower than the cutoff for doses greater than dose 1.
This is done to ensure that if dose 1 is overly toxic, we will eliminate it with higher
probability.

4.1 Escalation or de-escalation boundaries

To conduct our trial, we will need the predefined escalation and de-escalation bound-
aries. We can obtain these by using optinterval as follows:

. optinterval, getboundary target(0.3) ncohort(10) cohort(3) cut1(0.85)

Escalate dose if the observed toxicity rate at the current dose <= .23649069
Deescalate dose if the observed toxicity rate at the current dose >= .35851946

This is equivalent to the following decision boundaries

Eliminate Eliminate
Escalate Deescalate Dose 1 Doses > 1

N (if # DLT <=) (if # DLT >=) (if # DLT >=) (if # DLT >=)

3 0 2 2 3
6 1 3 3 4
9 2 4 5 5
12 2 5 6 7
15 3 6 7 8
18 4 7 8 9
21 4 8 9 10
24 5 9 10 11
27 6 10 11 12
30 7 11 12 14

For example, if 0 toxicities were observed in the first cohort of 3 patients, we would
escalate to dose level 2. If 6 patients were treated at a particular dose and 1 or fewer
toxicities were observed, we would escalate the dose. On the other hand, if 3 or more
toxicities were observed, we would de-escalate. If the 6 patients were treated at dose
level 1 and 3 toxicities or more were observed, dose 1 would be eliminated. If it were
a dose larger than dose 1, then 4 toxicities or more would be needed to eliminate that
particular dose. In this example, if we did not want to limit ourselves to a constant
cohort size, we would set ncohort(30) and cohort(1) to list all possible escalation
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rules. This would allow us to make our decision at any time in the trial for any given
number of patients treated at a current dose.

4.2 Operating characteristics

It is often useful to obtain the operating characteristics of the design to ensure that the
trial will be conducted as planned for a particular set of hypothetical toxicity rates at
each dose level. First, we must construct a set of representative dose-toxicity scenarios
that may be encountered in the trial. These scenarios should have different locations of
the MTD and different shapes of the dose-toxicity curve. Second, through simulation,
we can evaluate the probability of correct selection of the true MTD and the number of
patients assigned to each dose. Good operating characteristics indicate that the design
has good selection percentage of the MTD and that it assigns a large number of patients
to the MTD across all scenarios. Using the same design as in section 4.1, we can obtain
the operating characteristics for different dose-toxicity scenarios as follows:

. set seed 1234

. optinterval, oc target(0.30) ncohort(10) cohort(3)
> truep(0.40 0.50 0.55 0.60 0.70) cut1(0.85)

Dose 1 2 3 4 5

Pr(Toxicity) 0.40 0.50 0.55 0.60 0.70

% Selected 23.93 4.46 0.59 0.03 0.03
Avg Toxicity 4.42 1.56 0.25 0.03 0.00
Avg Patients 11.01 3.10 0.45 0.05 0.00

Avg Patients = 14.61
Avg Toxicities = 6.26

% Dose 1 overly toxic = 70.96

. optinterval, oc target(0.30) ncohort(10) cohort(3)
> truep(0.30 0.40 0.45 0.50 0.60) cut1(0.85)

Dose 1 2 3 4 5

Pr(Toxicity) 0.30 0.40 0.45 0.50 0.60

% Selected 34.74 18.54 5.53 1.32 0.13
Avg Toxicity 3.62 2.58 0.83 0.21 0.04
Avg Patients 12.01 6.49 1.88 0.41 0.07

Avg Patients = 20.85
Avg Toxicities = 7.28

% Dose 1 overly toxic = 39.74
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. optinterval, oc target(0.30) ncohort(10) cohort(3)
> truep(0.05 0.15 0.30 0.45 0.60) cut1(0.85)

Dose 1 2 3 4 5

Pr(Toxicity) 0.05 0.15 0.30 0.45 0.60

% Selected 1.19 23.48 53.91 19.00 1.61
Avg Toxicity 0.20 1.37 3.33 2.14 0.49
Avg Patients 4.10 9.10 11.04 4.73 0.82

Avg Patients = 29.78
Avg Toxicities = 7.52

% Dose 1 overly toxic = .81

. optinterval, oc target(0.30) ncohort(10) cohort(3)
> truep(0.05 0.15 0.20 0.25 0.30) cut1(0.85)

Dose 1 2 3 4 5

Pr(Toxicity) 0.05 0.15 0.20 0.25 0.30

% Selected 1.20 9.22 20.02 28.81 39.88
Avg Toxicity 0.21 1.02 1.42 1.52 1.67
Avg Patients 4.16 6.68 7.19 6.15 5.59

Avg Patients = 29.77
Avg Toxicities = 5.84

% Dose 1 overly toxic = .87

In the first scenario, the first dose is higher than the target toxicity rate; in the second
scenario, the first dose is the target toxicity rate; in the third scenario, the target toxicity
rate lies in the middle of the dose-toxicity curve; and in the fourth scenario, the last
dose is the target toxicity rate. Notice that the target toxicity rate, 0.30, is selected
the majority of the time, indicating that the characteristics of this design perform well
under the given hypothesized toxicity rates.
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4.3 Selecting MTD

When the trial is completed, we can select the MTD by using the observed data. We
select the MTD by finding the dose that has an isotonic estimate of toxicity rate closest
to the target rate. We can do this by using optinterval as follows:

. optinterval, selectmtd target(0.30) npts(3 6 12 3 0 0) ntox(0 1 3 2 0 0)
> cut1(0.85)

The MTD is dose level 3

Posterior DLT 95% Prob
Dose Estimate Credible Interval DLT > .3

1 0.016 0.000 - 0.196 0.013
2 0.172 0.006 - 0.527 0.177
3 0.252 0.062 - 0.519 0.318
4 0.661 0.160 - 0.985 0.910
5 - - - - - - - - - - - - -
6 - - - - - - - - - - - - -

For this combination of toxicities and patients at each dose, the MTD for this drug
would be dose 3. A table of posterior dose-limiting toxicity estimates is presented with
a corresponding 95% credible interval along with the probability that the dose’s toxicity
rate is greater than the target rate.
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