
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, University of Konstanz, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell, Shelbi Seiner, and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com



http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145

2-year subscription $210 2-year subscription $270

3-year subscription $285 3-year subscription $375

1-year student subscription $ 85 1-year student subscription $115

1-year institutional subscription $345 1-year institutional subscription $375

2-year institutional subscription $625 2-year institutional subscription $685

3-year institutional subscription $875 3-year institutional subscription $965

Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85

2-year subscription $155 2-year subscription $155

3-year subscription $215 3-year subscription $215

1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2015 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.



Generating univariate and multivariate

nonnormal data

Sunbok Lee
Center for Family Research

University of Georgia
Athens, GA

sunboklee@gmail.com

Abstract. Because the assumption of normality is common in statistics, the ro-
bustness of statistical procedures to the violation of the normality assumption is
often of interest. When one examines the impact of the violation of the normal-
ity assumption, it is important to simulate data from a nonnormal distribution
with varying degrees of skewness and kurtosis. Fleishman (1978, Psychometrika

43: 521–532) developed a method to simulate data from a univariate distribu-
tion with specific values for the skewness and kurtosis. Vale and Maurelli (1983,
Psychometrika 48: 465–471) extended Fleishman’s method to simulate data from
a multivariate nonnormal distribution. In this article, I briefly introduce these
two methods and present two new commands, rnonnormal and rmvnonnormal, for
simulating data from the univariate and multivariate nonnormal distributions.

Keywords: st0371, rnonnormal, rmvnonnormal, nonnormal data, skewness, kurto-
sis

1 Introduction

The assumption of normality is common in statistics. For example, in many statistical
models, sampling distributions of statistics of interest or error terms are typically as-
sumed to follow normal distributions. However, the normality assumption may not hold
in practice. The asymptotic normal approximation of the sampling distributions may
not hold when sample sizes are too small to justify the use of the asymptotic theory.
Also variables are often somewhat skewed or kurtotic because of outliers, truncations,
or floor and ceiling effects, which may threaten the validity of the normal error terms.
Therefore, the robustness of statistical procedures to the violation of the underlying
normality assumption is often of interest. Two good examples of this are the studies on
the robustness of the ordinary least-squares regression (Jarque and Bera 1987) or struc-
tural equation modeling (Finney and DiStefano 2006) to the violation of their normality
assumptions. When one investigates the impact of nonnormality, it is important to sim-
ulate nonnormal data with varying degrees of skewness and kurtosis. Fleishman (1978)
proposed a power method in which a nonnormal random variable Y can be obtained
from the linear combination of the first three powers of a standard normal random
variable X. Vale and Maurelli (1983) extended Fleishman’s power method to simulate
multivariate nonnormal variables. In the following sections, I briefly discuss these two
methods. I then introduce two new commands (rnonnormal and rmvnonnormal) that

c© 2015 StataCorp LP st0371



implement the two methods. I also conduct a simulation study to verify the accuracy
of rnonnormal and rmvnonnormal.

2 Univariate nonnormal data

Fleishman (1978) proposed a method for generating data from a univariate nonnormal
distribution with specific values of the skewness and kurtosis. In Fleishman’s method,
a random variable Y with desired values for the skewness and kurtosis is defined by

Y = a+ bX + cX2 + dX3 (1)

where X is a random variable distributed normally with zero mean and unit variance.
That is, Y is expressed by the linear combination of the first three powers of a stan-
dard normal random variable X. The key to Fleishman’s method is to determine the
coefficients a, b, c, and d in such a way that the distribution of Y has desired moments
of the first four orders, that is, the mean, variance, skewness, and kurtosis. To do
this, Fleishman (1978) expressed the first four moments of Y in terms of the first four
moments of X. For example, the first moment of Y can be expressed by

E(Y ) = a+ bE(X) + cE
(

X2
)

+ dE
(

X3
)

Similarly, other higher moments of Y also can be expressed in terms of the first four
moments of X. Because X is assumed to follow a standard normal distribution, its
first four moments are known constants: E(X) = 0, E(X2) = 1, E(X3) = 0, and
E(X4) = 3. Therefore, the coefficients a, b, c, and d in (1) can be determined given the
first four moments of Y. More specifically, suppose that the desired four moments of Y
are E(Y ) = 0, E(Y 2) = 1, E(Y 3) = γ1, and E(Y 4) = γ2 +3, where γ1 and γ2 represent
the specific values of skewness and kurtosis, respectively. Then the coefficients a, b, c,
and d can be determined using the following equations:

a+ c = 0

b2 + 6bd+ 2c2 + 15d2 − 1 = 0

2c
(

b2 + 24bd+ 105d2 + 2
)

− γ1 = 0

24
{

bd+ c2
(

1 + b2 + 28bd
)

+ d2
(

12 + 48bd+ 141c2 + 225d2
)}

− γ2 = 0

Here γ1 and γ2 are the desired skewness and kurtosis of the nonnormal variable Y . Note
that when one obtains the coefficients a, b, c, and d, real solutions for the coefficients
do not always exist for all values of γ1 and γ2. For example, when γ1 = 1.5, γ2 must be
larger than 2.46 to get real solutions for the system of equations above.

Alternative procedures for generating nonnormal data are available, but Fleishman’s
method is the easiest to implement and can be executed the fastest. Also Fleishman’s
method can easily be extended to generate multivariate nonnormal data. One of the
limitations of Fleishman’s method is that the exact distribution produced is unknown,



so it lacks probability density and cumulative distribution functions (Vale and Maurelli
1983; Tadikamalla 1980). In Fleishman’s method, nonnormal data are generated using
the first four moments of a random variable without knowing the exact distribution of
the random variable.

3 Multivariate nonnormal data

Vale and Maurelli (1983) extended Fleishman’s method and proposed a method for gen-
erating multivariate nonnormal random numbers with desired intercorrelations. Their
method consists of two steps: 1) random numbers are generated from a multivariate
normal distribution with a specific correlation matrix, which is called an intermediate
correlation matrix; and 2) the generated multivariate normal random numbers are uni-
variately transformed by using Fleishman’s method to produce multivariate nonnormal
random numbers with desired intercorrelations. The key to this method is to find an
intermediate correlation matrix in the first step such that the multivariate normal ran-
dom numbers with the intermediate correlation matrix are univariately transformed to
produce the multivariate nonnormal random numbers with desired intercorrelations.

3.1 Generating correlated multivariate normal random numbers

To generate multivariate nonnormal random numbers, we start by generating multivari-
ate normal random numbers with a specific intermediate correlation matrix. Specifically,
we consider an n-dimensional random vector X that is defined as

X = AZ+ b

where Z is the n-dimensional random vector whose elements are random variables fol-
lowing the standard normal distributions, A is an n×n matrix, and b is the mean vector
of X. Given the standard random vector Z, the matrix A needs to be determined such
that the resulting random vector X transformed from Z can have a specific intermediate
correlation matrix. To do this, we express the covariance matrix of X, which is denoted
as CX, in terms of the matrix A:

CX = Cov(X) = Cov(AZ+ b) = ACov(Z)A′ = AA
′ (2)

We can determine the matrix A by using the eigenvalue decomposition, in which a real
or complex matrix C is decomposed into the product of three other matrices,

C = UDU
′

where U = (u1, . . . , un) is a real or complex unitary matrix containing eigenvectors of
C, and D = diag(d1, . . . , dn) is a diagonal matrix containing eigenvalues of C. When
CX is a positive semidefinite covariance matrix (that is, every eigenvalue of CX is
nonnegative), CX can be expressed as

CX = UDU
′ = UD

1

2D
1

2U
′ =

(

UD
1

2

)(

UD
1

2

)′

(3)



where D
1/2 = diag(

√
d1, . . . ,

√
dn). Therefore, by comparing (2) with (3), we see that

A = UD
1/2. In sum, by decomposing the desired covariance matrix C with the eigen-

value decomposition, we determine the transformation matrix A. Now the random
vector X, which is transformed from Z using A, has the desired covariance matrix.

3.2 Determining intermediate correlations

Given the multivariate normal random numbers with specified intercorrelations, mul-
tivariate nonnormal random numbers can be obtained by applying Fleishman’s (1978)
power transformation method univariately. One problem with the two-step procedure is
that Fleishman’s transformation changes the prespecified intercorrelations in the multi-
variate normal random numbers. As a result, the transformed multivariate nonnormal
random numbers no longer have the prespecified intercorrelations. Therefore, the in-
tercorrelations in generating multivariate normal random numbers must be specified
such that the transformed nonnormal random numbers have the desired intercorrela-
tions. Vale and Maurelli (1983) derived a formula describing the relationship between
the correlation for two normal random variables and the correlation for transformed
nonnormal random variables. Suppose that Y1 and Y2 are nonnormal random variables
that are transformed from the standard normal random variables X1 and X2 by using
Fleishman’s transformation as follows:

Y1 = a1 + b1X1 + c1X
2
1 + d1X

3
1

Y2 = a2 + b2X2 + c2X
2
2 + d2X

3
2

Then, the correlation rY1Y2
between Y1 and Y2 can be expressed in terms of the corre-

lation ρX1X2
between X1 and X2 with the following equation:

rY1Y2
= ρX1X2

(b1b2 + 3b1d2 + 3d1b2 + 9d1d2) + ρ2X1X2
(2c1c2) + ρ3X1X2

(6d1d2) (4)

Given the desired correlation rY1Y2
for the nonnormal random variables, we can deter-

mine the intermediate correlation ρX1X2
for the normal random variables by solving (4).

Then, with the intermediate intercorrelations, we can obtain the multivariate nonnormal
random numbers with desired moments by applying Fleishman’s method univariately.



4 rnonnormal and rmvnonnormal commands

4.1 Syntax

The commands rnonnormal and rmvnonnormal generate univariate and multivariate
nonnormal random numbers with specified skewness and kurtosis by implementing the
power methods developed by Fleishman (1978) and Vale and Maurelli (1983). The
syntax of each command is as follows:

rnonnormal, n(#) skewness(#) kurtosis(#)

rmvnonnormal, n(#) skewness(vectorname) kurtosis(vectorname)

correlation(matname)

Options for rnonnormal

n(#) specifies the sample size of univariate nonnormal random numbers. n() is re-
quired.

skewness(#) specifies the skewness of univariate nonnormal random numbers.
skewness() is required.

kurtosis(#) specifies the kurtosis of univariate nonnormal random numbers.
kurtosis() is required.

Options for rmvnonnormal

n(#) specifies the sample size of multivariate nonnormal random numbers. n() is
required.

skewness(vectorname) specifies the vector with skewness of each random variable in
multivariate nonnormal random variables, where k is the dimension of the vector
vectorname. skewness() is required.

kurtosis(vectorname) specifies the vector with kurtosis of each random variable in
multivariate nonnormal random variables, where k is the dimension of the vector
vectorname. kurtosis() is required.

correlation(matname) specifies the matrix of intercorrelations among multivariate
nonnormal random variables, where k is the number of rows and columns of the
matrix matname. correlation() is required.



4.2 Stored results

rnonnormal stores the following in r():

Scalars
r(a) a in Fleishman’s equation r(b) b in Fleishman’s equation
r(c) c in Fleishman’s equation r(d) d in Fleishman’s equation
r(skew) sample skewness r(kurt) sample kurtosis
r(sd) sample standard deviation r(mean) sample mean

Matrices
r(Y) n× 1 random numbers

rmvnonnormal stores the following in r():

Matrices
r(table) descriptive statistics r(Y) n× k random numbers

4.3 Examples

In this section, I present examples using the commands rnonnormal and rmvnonnormal.
I provide seeds for random-number generation for replicability. I also provide sample
statistics such as sample skewness, kurtosis, and correlations. The sample statistics can
deviate from prespecified values. However, the averages of the sample statistics across
replications would be very close to prespecified values for sufficiently large samples, as
will be shown by the simulation study in the next section.

Example

rnonnormal

. set seed 777

. rnonnormal, n(1000) skewness(1.5) kurtosis(3.75)

. return list

scalars:
r(a) = -.2210276210126192
r(b) = .8658862035231392
r(c) = .2210276210126192
r(d) = .0272206991580893

r(kurt) = 3.612271257758691
r(skew) = 1.452691091582093

r(sd) = 1.027291300889708
r(mean) = .0202128245923377

matrices:
r(Y) : 1000 x 1



Example

rmvnonnormal

. set seed 735

. matrix C = (1,0.3\0.3,1)

. matrix S = (1.5,2)

. matrix K = (3.5,4)

. rmvnonnormal, n(1000) skewness(S) kurtosis(K) correlation(C)

. return list

matrices:
r(table) : 2 x 4

r(Y) : 1000 x 2

. matrix list r(table)

r(table)[2,4]
mean sd skewness kurtosis

Y1 -.02194593 .99951995 1.4408197 2.9355151
Y2 .00421734 1.0344233 1.7600212 3.7932998

. correlate _all
(correlate command was used to check sample correlation matrix)

Y1 Y2

Y1 1.0000
Y2 0.3372 1.0000

5 Simulation study

In this section, I demonstrate the accuracy of rnonnormal and rmvnonnormal in terms
of obtaining Fleishman’s (1978) coefficients and recovering the skewness and kurtosis.

The accuracy of obtaining Fleishman’s coefficients

Fleishman (1978) provided a table containing coefficients of the power transformation
for various values of skewness and kurtosis. Some selected coefficients in Fleishman’s
table are listed in table 1 and compared with the values from rnonnormal. For each
condition of skewness and kurtosis in table 1, Fleishman’s coefficients and the ones from
rnonnormal are exactly the same up to 14 decimal points. Fleishman’s coefficients from
rnonnormal can be checked in the stored results of rnonnormal.
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The accuracy of recovering skewness and kurtosis

In this section, I evaluate the accuracy of rnonnormal and rmvnonnormal in terms of
recovering the prespecified values for the skewness and kurtosis. Following Fleishman
(1978), to test rnonnormal, I set the values for the skewness at 0, 0.25, 0.5, 0.75, 1, and
1.25 and the values for the kurtosis at −1, 0, 1, 2, 3, and 4. I also set the sample sizes
for nonnormal random numbers at 10, 25, 50, 100, 200, 1,000, and 2,000 to examine the
impact of sample size on the accuracy of recovery. Each simulation condition is repli-
cated 3,000 times. The average of the sample skewness and kurtosis across replications
is calculated using the simulate command. Note that some simulation conditions such
as skewness() = 1 and kurtosis() = −1 are omitted from the results because, as
previously mentioned, Fleishman’s coefficients do not always exist for all values of the
skewness and kurtosis. The simulation results for rnonnormal are plotted in figures 1
and 2. In the figures, the x axis indicates the true values for the skewness and kurtosis,
and the y axis indicates the estimated values of the skewness and kurtosis. Therefore,
simulation results that are close to the y = x line indicate that the true and estimated
values are close to each other. For all combinations of skewness and kurtosis, the aver-
ages of the estimated values across 3,000 replications are quite close to the true values
when the sample sizes are larger than 1,000. This can also be checked from figure 5, in
which the errors between true and estimated values for some cases are plotted.
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Figure 1. Estimated skewness from rnonnormal



True Kurtosis (Skewness = 1.00)
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Figure 2. Estimated kurtosis from rnonnormal



To test the accuracy of rmvnonnormal, I use the command to generate bivariate non-
normal random samples. The correlation between 2 nonnormal random variables is set
at 0.3. The values for the skewness and kurtosis for 1 nonnormal random variable are
fixed to 1.5 and 3.0, respectively. The values for the skewness and kurtosis for the
other nonnormal random variable are manipulated to have the same values as in the
simulation for rnonnormal. The simulation results for rmvnonnormal are plotted in
figures 3 and 4, and the results are similar to those from rnonnormal. The averages of
the estimated values across 3,000 replications are quite close to the true values when
the sample sizes are larger than 1,000, which also can be observed in figure 5.

True Skewness (Kurtosis = 3)

E
s
ti
m

a
te

d
 S

k
e
w

n
e
s
s

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

True Skewness (Kurtosis = 4)

E
s
ti
m

a
te

d
 S

k
e
w

n
e
s
s

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

True Skewness (Kurtosis = 1)

E
s
ti
m

a
te

d
 S

k
e
w

n
e
s
s

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

True Skewness (Kurtosis = 2)

E
s
ti
m

a
te

d
 S

k
e
w

n
e
s
s

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

True Skewness (Kurtosis = −1)

E
s
ti
m

a
te

d
 S

k
e
w

n
e

s
s

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

n=10
n=25
n=50
n=100
n=200
n=1000
n=2000

True Skewness (Kurtosis = 0)

E
s
ti
m

a
te

d
 S

k
e
w

n
e

s
s

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00 1.25

Figure 3. Estimated skewness from rmvnonnormal



True Kurtosis (Skewness = 1.00)

E
s
ti
m

a
te

d
 K

u
rt

o
s
is

−1

0

1

2

3

4

−1 0 1 2 3

True Kurtosis (Skewness = 1.25)

E
s
ti
m

a
te

d
 K

u
rt

o
s
is

−1

0

1

2

3

4

−1 0 1 2 3

n=10
n=25
n=50
n=100
n=200
n=1000
n=2000

True Kurtosis (Skewness = 0.5)

E
s
ti
m

a
te

d
 K

u
rt

o
s
is

−1

0

1

2

3

4

−1 0 1 2 3

True Kurtosis (Skewness = 0.75)

E
s
ti
m

a
te

d
 K

u
rt

o
s
is

−1

0

1

2

3

4

−1 0 1 2 3

True Kurtosis (Skewness = 0)
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Figure 4. Estimated kurtosis from rmvnonnormal
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Sample Sizes 

E
rr

o
r 

(=
E

s
ti
m

a
te

d
 −

 T
ru

e
)

−0.8

−0.6

−0.4

−0.2

0.0

0 500 1000 1500 2000

skewness=0.00
skewness=0.25
skewness=0.50
skewness=0.75
skewness=1.00
skewness=1.25

rmvnonnormal (Skewness = 0)

Sample Sizes 

E
rr

o
r 

(=
E

s
ti
m

a
te

d
 −

 T
ru

e
)

−4

−3

−2

−1

0

0 500 1000 1500 2000

kurtosis=−1
kurtosis=0
kurtosis=1
kurtosis=2
kurtosis=3
kurtosis=4

rnonnormal (Kurtosis = 4)

Sample Sizes 

E
rr

o
r 

(=
E

s
ti
m

a
te

d
 −

 T
ru

e
)

−0.6

−0.4

−0.2

0.0

0 500 1000 1500 2000

skewness=0.00
skewness=0.25
skewness=0.50
skewness=0.75
skewness=1.00
skewness=1.25

rnonnormal (Skewness = 0)

Sample Sizes 

E
rr

o
r 

(=
E

s
ti
m

a
te

d
 −

 T
ru

e
)

−4

−3

−2

−1

0

0 500 1000 1500 2000

kurtosis=−1
kurtosis=0
kurtosis=1
kurtosis=2
kurtosis=3
kurtosis=4

Figure 5. Errors of rnonnormal and rmvnonnormal for some cases

6 Conclusion

In this article, I briefly introduced two methods for simulating univariate and mul-
tivariate nonnormal data. Fleishman (1978) proposed a method for simulating uni-
variate nonnormal data by transforming random numbers sampled from a standard
normal distribution. Vale and Maurelli (1983) extended Fleishman’s univariate method
to simulate multivariate nonnormal data with specified values for the skewness, kur-
tosis, and intercorrelations. I then introduced two new commands, rnonnormal and
rmvnonnormal, and demonstrated their accuracy by implementing them in example



simulation studies. According to the simulation results, on average, rnonnormal and
rmvnonnormal recover the true values for the skewness and kurtosis when the sample
sizes are larger than 1,000.
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