
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, University of Konstanz, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell, Shelbi Seiner, and Deirdre Skaggs

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145

2-year subscription $210 2-year subscription $270

3-year subscription $285 3-year subscription $375

1-year student subscription $ 85 1-year student subscription $115

1-year institutional subscription $345 1-year institutional subscription $375

2-year institutional subscription $625 2-year institutional subscription $685

3-year institutional subscription $875 3-year institutional subscription $965

Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85

2-year subscription $155 2-year subscription $155

3-year subscription $215 3-year subscription $215

1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2015 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2015)
15, Number 1, pp. 45–76

More power through symbolic computation:

Extending Stata by using the Maxima computer

algebra system

Giovanni L. Lo Magno
Department of Economics, Business, and Statistics

University of Palermo
Palermo, Italy

lomagno.gl@virgilio.it

Abstract. Maxima is a free and open-source computer algebra system that can
perform symbolic computations such as solving equations, determining derivatives
of functions, obtaining Taylor series, and manipulating algebraic expressions. In
this article, I present the Maxima Bridge System, which is a collection of software
programs that allows Stata to interface with Maxima so that Maxima can be used
for symbolic computation to transfer data from Stata to Maxima and to retrieve
results from Maxima. The cooperation between Stata and Maxima provides an
environment for statistical analysis in which symbolic computation can be easily
used together with all the facilities supplied by Stata. In this environment, sym-
bolic computation algorithms can be used to manage the complexity of algebra
and calculus, whereas numerical computation can be used when speed matters. I
also discuss the software architecture of the Maxima Bridge System, and I present
several examples to illustrate how to develop new Stata commands that exploit
the capabilities of Maxima.

Keywords: pr0059, maxima, maximaget, maximaput, Maxima Bridge System,
symbolic computation, computer algebra system

1 Introduction

A computer algebra system (CAS) is a software program that can perform symbolic
computations; namely, it can manipulate symbols for mathematical objects such as ra-
tios, numbers with arbitrary numerical precision, equations, integrals, and well-known
mathematical constants (Grabmeier, Kaltofen, and Weispfenning 2003). Unlike soft-
ware programs used for numerical computations, such as Stata, CAS uses symbols as
the main inputs and outputs. For example, the computation of Γ (1/2) provides the
following output in Stata,

. display exp(lngamma(1/2))
1.7724539

while the evaluation of the same expression in a CAS gives
√
π as output. This latter

algebraic expression is exactly what would be displayed on the monitor. Stata stores the
numerical information it manages in machine floating-point numbers, namely, sequences

c© 2015 StataCorp LP pr0059

46 More power through symbolic computation

of bits that represent both integer and noninteger numbers. Thus the previous result is
internally stored in Stata as the following 64-bit sequence:

0011111111111100010110111111100010010001101101001110111101101011

In a CAS, the evaluation of the same expression will be stored in a more sophisticated
manner, which could be described as “the square root of the well-known mathematical
constant π”. Data stored by Stata are approximations of the real value

√
π because

an exact representation in the IEEE754 format of that number would require an infinite
number of bits (IEEE 2008; Linhart 2008). Mathematical information stored in a CAS is
not affected by issues of numerical precision, and it can therefore be said to be “exact”.

Computer algebra overcomes the risk of obtaining incorrect results from algebraic
manipulations, which easily occur when computations are performed with traditional
pencil-and-paper methods. In addition, computer algebra provides easy access to ad-
vanced mathematical techniques; resolves problems that would otherwise be intractable
for humans (when they are too complex or time consuming); allows one to obtain
complex formulas from a simple description of the theory on which they are based;
and facilitates the testing of conjectures and enables the researcher to perform exper-
imentation with mathematical objects (Cohen, Davenport, and Heck 1993). For these
reasons, computer algebra is used in many fields of science, including the life sciences
(Barnett 2002), physics, and engineering (Boyle and Caviness 1990). Zeilberger (2004)
introduced several examples of applications to statistics and automatically obtained
theorems for the calculus of the moments of combinatorial random variables through
computer algebra. Bollen and Bauldry (2010) also presented examples, in which they
assessed the identifiability of structural equation models (Hoyle 2012) using a general
method requiring the solutions of complex, nonlinear systems of equations.

There are currently special symbolic software programs for statistics. For example,
Rose and Smith created mathStatica (Rose and Smith 2002; Stokes 2012; Vinod 2003),
an add-on for the commercial Mathematica CAS (Wolfram 2003) that makes it possible
to perform complex symbolic computations in statistics. These computations include
expected values for random variables (defined by arbitrary probability density func-
tions); a derivation of the distribution of the product of random variables; derivations
of maximum likelihood estimators (Rose and Smith 2000); and derivations of exact den-
sity functions of order statistics (Rose and Smith 2005). Another software package used
in symbolic statistical computations is A Probability Programming Language, or APPL

(Glen, Evans, and Leemis 2001), which is based on the Maple CAS (Dodson 2004) and
is oriented to the manipulation of random variables. These software packages relieve
the statistician from the burden of complex and error-prone algebraic manipulations
and provide students with a powerful learning tool (Rose 2007).

G. L. Lo Magno 47

Maxima is a free and open-source CAS written in Lisp, and it can be downloaded
from http://maxima.sourceforge.net (Joyner 2006; Li and Racine 2008). Maxima per-
mits access to the underlying Lisp implementation on which it runs, and the user can
use both Lisp and Maxima instructions in the Maxima environment. It is a command-
line software program. Thus interaction with Maxima is effected through the ter-
minal; that is, the user inputs the commands from the keyboard, while the output
is obtained in plain-text style. Several graphical user interfaces (GUIs) for use with
Maxima are freely available, all of which provide comfortable point-and-click inter-
faces for interacting with Maxima and for obtaining a well-formatted, textbook-style
output. I recommend using wxMaxima, which is a free GUI for use with Maxima
(http://sourceforge.net/projects/wxmaxima/).

In this article, I present Maxima Bridge System (MBS), a collection of software
programs that enables Stata to use Maxima as a symbolic computational engine. With
MBS, the user can launch Maxima commands from within Stata in an interactive session
or create new Stata commands that have been written by mixing Stata and Maxima
instructions. Programs with Stata and Maxima instructions combined are called ado-
Maxima programs in the MBS jargon.

The components of MBS are varied:

• Maxima Bridge: a stand-alone application, written in C++, that links Stata and
Maxima, thus allowing the interaction between the two software programs;

• Maxima Plugin: a Stata plugin, written in C++, that communicates via a local
TCP/IP connection with Maxima Bridge to dispatch commands to Maxima and
retrieve subsequent output;

• maxima: a Stata command that basically functions as a wrapper for Maxima
Plugin;

• maximaget: a Stata command used to transfer data from Maxima to Stata;

• maximaput: a Stata command used to transfer data from Stata to Maxima; and

• MBS utilities package: a collection of Maxima commands, written in Lisp, that
eases the interaction between Stata and Maxima and assists with various pro-
gramming tasks.

To my knowledge, MBS is the first software to integrate a CAS into Stata. Analogous
systems for the statistical software R (R Development Core Team 2014) are the Rya-
cas package (Goedman et al. 2012), which allows for integration with the Yacas CAS

(http://yacas.sourceforge.net), and rSymPy (Grothendieck 2012), which interfaces R
with the Python library for symbolic computation, SymPy (http://www.sympy.org).

48 More power through symbolic computation

MBS and its source code can be downloaded from

https://sourceforge.net/projects/maximabridgesystem/

The ado-files and plugins of MBS can be downloaded from

http://www.stata-journal.com/software/sj15-1/pr0059

This article is organized as follows: In section 2, I discuss how MBS works and
introduce its capabilities. In section 3, I further discuss the software architecture of
MBS. In section 4, I highlight the differences between Stata and Maxima regarding the
treatment of floating-point numbers. In sections 5 through 8, I describe the syntax of
the Stata commands of MBS and provide various examples of use for these commands. In
section 9, I describe the Maxima functions from the MBS utilities package. In section 10,
I propose various applications of MBS. Finally, in section 11, I conclude.

The aim of this article is not to introduce Maxima. To learn about Maxima, please
refer to the reference manual and several tutorials, which are available at
http://maxima.sourceforge.net/documentation.html.

2 A glance at MBS

Before discussing the full syntax relating to the Stata commands provided by MBS, I will
outline a sample MBS session using the maxima, maximaget, and maximaput commands.
Here I provide the basics relating to the launch of a Maxima command from Stata,
transferring data from Stata to Maxima, and retrieving data from Maxima to Stata.

To enable the interaction between Stata and Maxima, one must launch Maxima
Bridge. Thereafter, the Maxima process1 must also be running, and a client must be
connected to Maxima Server with Stata Server listening (Maxima Server and Stata
Server will be discussed in section 3). These conditions can be verified by looking at
the status bar of the Maxima Bridge application.

An interactive Maxima session can be launched by simply typing maxima in Stata.

. maxima
maxima (type end to exit)

. val: integrate(sqrt(x), x, 0, 1);

2
(%o1) -

3
(%i2)
. end

After launching the maxima command, one can use only Maxima commands. To exit
from the Maxima session, one can simply type end.

1. A Maxima process is automatically launched and used by Maxima Bridge: Maxima Bridge com-
municates with this process to issue Maxima commands and retrieve the subsequent output.

G. L. Lo Magno 49

In the previous Maxima session, the value for the definite integral (from 0 to 1) of
f(x) =

√
x was calculated and assigned to the Maxima symbol val. This value can be

imported into Stata using the maximaget command.

. maximaget val

(%o2) done
(%i3)

. scalar dir val
val = .66666667

The scalar, created in Stata in the previous example, contains the floating-point
approximation of 2/3.

In the next example, a scalar is created in Stata, and its value is assigned to the
Maxima symbol stval by using maximaput. Thereafter, a Maxima session is invoked
to check that the data have been correctly transferred.

. scalar stval = 21.3

. maximaput stval

(%o3) 21.3
(%i4)

. maxima
maxima (type end to exit)

. stval;

(%o4) 21.3
(%i5)
. end

Maxima can also be invoked in inline mode, namely, by typing the word maxima

immediately followed by Maxima instructions, as follows:

. maxima val: integrate(sqrt(x), x, 0, 1);

2
(%o5) -

3
(%i6)

In this mode, no Maxima session will remain open, and Stata is ready to accept
ordinary Stata commands after the command has been executed.

An important feature of the inline mode is the possibility of mixing Maxima instruc-
tions with Stata macros.

. global sup "5"

. maxima integrate(sqrt(x), x, 0, $sup);

3/2
2 5

(%o6) ------
3

(%i7)

50 More power through symbolic computation

In the above example, the code is executed by Maxima as if the user typed maxima

integrate(sqrt(x), x, 0, 5);.

Maxima requires that instructions end with a semicolon (;) or a dollar sign ($) (a
dollar sign at the end of a Maxima instruction suppresses its subsequent output). If
neither a semicolon or a dollar sign is typed at the end of the string that has been passed
to maxima, then a semicolon is automatically appended.

3 MBS architecture

Stata communicates with Maxima in the MBS environment through a local TCP/IP
network. The network infrastructure enabling the connection between the two software
programs is provided by Maxima Bridge, which is a stand-alone application acting
as a bridge between Stata and Maxima (figure 1). To issue a command to Maxima,
Stata connects to Maxima Bridge to dispatch a string containing the command. Next,
Maxima Bridge reads the string and repeats it to Maxima. Then, Maxima executes
the command and sends the output back to Maxima Bridge. Finally, Maxima Bridge
sends the received output to Stata. Thus the entire MBS works only if Maxima Bridge
is running correctly.

Figure 1. The MBS architecture

When Maxima Bridge starts, a Maxima process is launched in the background. Once
started, Maxima will immediately connect to Maxima Bridge, and it will run as a client
(however, Maxima does not run as a server). Maxima Bridge manages two different
servers: Stata Server and Maxima Server. Stata Server opens a network port (whose
default number is 4059), which is used by Stata to communicate with Maxima Bridge,
while Maxima Server opens a port (default number 4060) to allow for communication
between Maxima Bridge and Maxima. The Stata server port is left open to allow Stata
to communicate with Maxima Bridge.

Maxima Bridge can be considered as independent software from MBS in that it is
useful even when not used as a “bridge” between Stata and Maxima. It also functions
as a GUI for Maxima, and its interface can be used to issue commands to Maxima and
obtain output. The GUI of Maxima Bridge can be extended through plugins,2 which
are written in C++. A Maxima Bridge plugin provides a convenient GUI for issuing
Maxima commands. For more information regarding Maxima Bridge and to learn how
to develop new plugins, see the online help for Maxima Bridge.

2. Such plugins, which are called Maxima Bridge plugins in MBS jargon, should not be confused with
Stata plugins.

G. L. Lo Magno 51

The MBS components running inside Stata include Maxima Plugin and the following
Stata commands: maxima, maximaget, and maximaput. Maxima Plugin is at the heart
of MBS because it allows communication between Stata and Maxima Bridge. Every com-
mand sent to Maxima is issued through Maxima Plugin. Furthermore, Maxima output
is retrieved by Maxima Plugin itself and generally echoed to Stata. Maxima Plugin
is written in C++. MBS provides three versions of this plugin for the major operat-
ing systems Linux, Mac, and Windows; they are called maximaplugin linux.plugin,
maximaplugin mac.plugin, and maximaplugin windows.plugin, respectively. maxima
automatically chooses the correct version to load according to the operating system
currently in use. The Maxima Plugin will be discussed in more detail in section 5.

Maxima Plugin could be directly used, but it is not very user friendly. Thus MBS

provides the maxima command, which is a convenient wrapper for the plugin. maxima

can be used to issue commands to Maxima in an interactive session or to include Maxima
instructions in an ado-program.

After a command has been issued via Maxima Plugin or the maxima command, the
Stata GUI freezes until all output has been received. In other words, Stata cannot be
used when Maxima is calculating. Every output sent from Maxima to Stata is a string
with an ASCII code 4 as its terminating character, which is used to mark the end of
the string transmission. This terminating character is automatically appended to the
output because Maxima Bridge sets this character as the prompt suffix for Maxima once
Maxima has been launched. Thus, every time a prompt is obtained in Maxima, this
terminating character is sent to the stream, which is redirected to Stata. When Stata
receives the terminating character, it “understands” that the output has been received
in its entirety, and it then disconnects from Stata Server, prints the output, and restores
its GUI.

If the terminating character is not received, Stata will freeze interminably. For ex-
ample, this can happen when the user forgets to close the quotes in a command, as is
the case with the command string print("hello world. When Maxima receives this
string, it expects a second quotation mark, so it does not process the string. Con-
sequently, no output is produced, the prompt is not displayed, and no terminating
character is obtained. In such cases, the user could complete the string by typing “");”
from the Maxima Bridge console, thus unfreezing Stata. Unfortunately, there are no
easy solutions in other cases. To learn how to deal with such cases, see the online help
of Maxima Bridge.

The maximaget and maximaput commands can be used to retrieve data from Maxima
and transfer data to Maxima, respectively. maximaget orders Maxima to write the
requested data in a temporary file and then reads this file; maximaput writes the data
in a temporary file and then orders Maxima to read it. This file is written in binary
format using 64-bit precision, thus ensuring precision and speed. The maximaget and
maximaput commands will be discussed in section 7 and section 8, respectively.

When the Maxima process is launched by Maxima Bridge, it loads a package of Max-
ima functions called theMBS utilities package. This package provides a set of utility func-
tions that eases the interaction between Stata and Maxima. The functions are written in

52 More power through symbolic computation

Lisp, and their code is contained in the maximabridge-init.lisp file, which is located
in the config subfolder under the directory in which Maxima Bridge has been installed.
An example of these functions is statamissing(), a function that provides the floating-
point number corresponding to the Stata missing value, specified as the argument of this
function (for example, statamissing("s") provides 9.0301602172344116E+307, which
corresponds to .s). The remaining functions relating to the MBS utilities package will
be discussed in subsequent sections.

4 Numerical issues

When transferring data from Stata to Maxima and vice versa, the user should be aware
of numerical issues that can arise from the different ways that the two software programs
handle numerical data. The main issue involves missing values (see [U] 12.2.1 Missing

values). These are internally represented by large positive numbers in Stata (where they
affect the evaluation of mathematical expression when they are involved as operands),
but they are absent from Maxima.

The following result of an arithmetic operation in Stata, in which one of the operands
is a missing value, is itself a missing value:

. scalar num = 21

. scalar den = .

. scalar statares = num / den

. scalar dir statares
statares = .

When imported into Maxima, the value for den would simply be read as a large
positive number. The result of the same operation involving the same binary numbers
used previously would therefore be different.

. maximaput num

(%o1) 21.0
(%i2)

. maximaput den

(%o2) 8.9884656743115795E+307
(%i3)

. maxima maximares: num / den;

(%o3) 2.3363275514325615E-307
(%i4)

Also note the way in which Stata and Maxima behave differently when they are
requested to perform arithmetic operations that are undefined (such as division by 0),
operations giving rise to overflow (such as 10350), and operations that do not return
real values (such as

√
−4). In all these cases, Stata returns the system missing value

(.). However, Maxima behaves differently; a division by zero returns an error message,
and an overflow can arise only when Maxima performs calculations involving numbers
that are internally represented as floating-point numbers. The square root of a neg-

G. L. Lo Magno 53

ative number is not a real number in Maxima, so it can not possess a floating-point
representation (which is readable by Stata).

5 Maxima Plugin

Maxima Plugin is the MBS program that enables Stata to connect to Maxima Bridge. It
is a Stata plugin3 written in C++ and compiled for Linux, Mac, and Windows. For those
three operating systems, MBS provides these plugins: maximaplugin linux.plugin,
maximaplugin mac.plugin, and maximaplugin windows.plugin, respectively. To di-
rectly use the plugin, one loads the correct version for the operating system in use.

The plugin accepts two arguments: the first is the name of the macro containing the
Maxima code to be executed, and the second is the Stata Server port. The following
code provides an example of use in Linux:

. local code "taylor(exp(x), x, 0, 9);"

. program maximaplugin, plugin using(maximaplugin_linux.plugin)

. plugin call maximaplugin, "_code" "--port" "4059"

2 3 4 5 6 7 8 9
x x x x x x x x

(%o1)/T/ 1 + x + -- + -- + -- + --- + --- + ---- + ----- + ------ + . . .
2 6 24 120 720 5040 40320 362880

(%i2)

Because code is a local macro, the name that was passed to the Maxima Plugin was
code.4 The 4059 port number was passed to the plugin, preceded by the “--port”
option name. If the port number is unspecified, 4059 is assumed to be the default value.
If the Maxima code passed to the Maxima Plugin does not terminate with a semicolon
or a dollar sign, a semicolon is automatically appended to the command string.

Maxima Plugin is internally used by maxima. This plugin is not designed to be used
by average users; it is more convenient to use maxima because it is a convenient wrapper
for the plugin. I discuss the maxima command in the following section.

6 The maxima command

The maxima command permits the user to execute Maxima commands from within
Stata and to obtain the subsequent output in the Results window. Briefly, maxima is a
command providing the user with a friendly interface between Stata and Maxima.

3. See http://www.stata.com/plugins/.
4. Macro names that begin with an underscore are indeed local macros (see [P] macro).

54 More power through symbolic computation

This command functions only when Maxima Bridge is running correctly. Maxima
Bridge works as a bridge between Stata and Maxima: 1) it receives Maxima commands
from maxima and sends them to Maxima for execution; and 2) it receives output from
Maxima, which is then sent back to maxima.

The maxima command relies on Maxima Plugin, a Stata plugin written in C++ that
is loaded each time maxima is invoked (see section 5). Maxima Plugin is the heart of
maxima, enabling the TCP/IP connection with Maxima Bridge. Because Stata plugins
written in C++ must be compiled, they are platform dependent. Thus the MBS provides
three versions of the Maxima Plugin, one for each of the major operating systems (Linux,
Mac, and Windows). Behind the scenes, maxima always loads the appropriate plugin
for the computer system from which it has been launched.

6.1 Syntax

The syntax relating to the maxima command is

maxima
[
maxima cmd

]

The maxima syntax permits the user to call Maxima in two different modes: inter-
active and inline.

When the user types maxima and then presses the Enter key, a Maxima interactive
session is opened, and everything typed thereafter is sent to Maxima for execution.
When an interactive session is open, only Maxima commands can be used. Stata macros
are not expanded when they are typed inside an interactive session. The special word
end is used to exit from the interactive session and return to ordinary Stata mode.

maxima is invoked in inline mode when Maxima commands are typed after the word
maxima. These commands are sent to Maxima for execution; after the command output
has been returned to Stata, the Stata console is once again ready to accept ordinary
Stata commands. Stata macros that appear in maxima cmd are expanded; thus the
inline mode is useful for integrating Maxima commands into Stata ado-programs.

6.2 Examples

In this section, I discuss examples of several advanced topics relating to maxima. Other
basic examples of the interactive and inline uses of the command were provided in
section 2.

G. L. Lo Magno 55

The first time maxima is called, it loads the Maxima Plugin version that is appro-
priate to the operating system in use.

. display c(os)
Unix

. discard

. program dir

. maxima trigsimp((sin(x))^2 + (cos(x))^2);

(%o2) 1
(%i3)

. program dir
ado 567 maxima

567

maxima.maximaplugin |maximaplugin_linux.plugin|

Maxima manages a system variable called linel, which contains the width (in char-
acters) of the console display. The default value is 79, but when maxima is initially
loaded, it automatically sets linel to the current value of c(linesize) (see [P] cre-
turn) to ensure the maximum exploitation of the width of the Results window of the
Stata GUI.

The linel value used to log all the examples presented here is 79. This value
enables one to exploit all the horizontal space allowed by the formatting style of the
Stata Journal.

The user can change the linel value, as is shown in the following example:

. discard

. display c(linesize)
104

. maxima linel;

(%o4) 104
(%i5)

. maxima %pi, bfloat, fpprec: 300;

(%o5) 3.14159265358979323846264338327950288419716939937510582097494459230781640
> 628620899862803482534211\
7067982148086513282306647093844609550582231725359408128481117450284102701938521
> 105559644622948954930381\
9644288109756659334461284756482337867831652712019091456485669234603486104543266
> 4821339360726024914127b0
(%i6)

. maxima linel: 79;

(%o6) 79
(%i7)

. maxima %pi, bfloat, fpprec: 300;

(%o7) 3.1415926535897932384626433832795028841971693993751058209749445923078164\
062862089986280348253421170679821480865132823066470938446095505822317253594081\
284811174502841027019385211055596446229489549303819644288109756659334461284756\
4823378678316527120190914564856692346034861045432664821339360726024914127b0
(%i8)

56 More power through symbolic computation

. maxima linel: 40;

(%o8) 40
(%i9)

. maxima %pi, bfloat, fpprec: 300;

(%o9) 3.1415926535897932384626433832795\
028841971693993751058209749445923078164\
062862089986280348253421170679821480865\
132823066470938446095505822317253594081\
284811174502841027019385211055596446229\
489549303819644288109756659334461284756\
482337867831652712019091456485669234603\
4861045432664821339360726024914127b0
(%i10)

When used in interactive mode, maxima does not allow expansion of macros; the
latter are expanded only if they appear in the command string passed to maxima when
maxima is invoked in inline mode.

. global test "mess"

. maxima
maxima (type end to exit)

. "this is a $test"

(%o10) this is a $test
(%i11)
. end

. maxima "this is a $test";

(%o11) this is a mess
(%i12)

7 The maximaget command

The maximaget command enables the transfer of data from Maxima to Stata. The
retrieved data can be Maxima scalars, lists, or matrices. maximaget can put the trans-
ferred data into Stata scalars, matrices, or variables.

The name of the Stata object, which will be created or replaced, can be omitted in
the syntax. In this case, maximaget attempts to use the name of the retrieved Maxima
data for that of the Stata target data.

Unless otherwise specified (see below for the toscalar, tomatrix, and tovar op-
tions), a Maxima scalar transfers to a Stata scalar, while a Maxima list or matrix
transfers to a Stata matrix.

G. L. Lo Magno 57

7.1 Syntax

The syntax relating to the maximaget command is

maximaget maxima name
[
if
] [

in
] [

, fromscalar fromlist frommatrix

toscalar tomatrix tovar name(stata name) replace
]

maxima name specifies the Maxima data to be transferred from Maxima to Stata. These
data can be scalars, lists, or matrices. If name() is unspecified, maximaget attempts
to use maxima name as the name for the target Stata data. In this case, max-

ima name must be a valid Stata name (see [U] 11.3 Naming conventions).

if and in qualifiers are allowed only when importing data from Maxima to Stata vari-
ables. These options can therefore be used only when the tovar option is specified

7.2 Options

fromscalar, fromlist, and frommatrix specify the data type that maximaget is re-
quested to retrieve from Maxima; at most, one of the three options is allowed. When
one of fromscalar, fromlist, and frommatrix is specified, maximaget tries to re-
trieve data from Maxima only if data are scalars, lists, or matrices, respectively.
If the data are not of the specified types, an error message is returned. If any of
these three options are unspecified, maximaget attempts to retrieve the requested
data provided the data are scalars, lists, or matrices. Specifying one of these is
recommended when using maximaget within an ado-program because it protects
against the risk of retrieving undesired data. However, when maximaget is used in
interactive mode, the possibility of omitting the specification of one of these options
lightens the syntax, and the user can immediately check whether something is amiss.

toscalar, tomatrix, and tovar specify the type of target Stata data; a maximum of one
of these three options is permitted. toscalar constricts maximaget to import the
Maxima data into Stata scalars, tomatrix permits importation of data into Stata
matrices, and tovar permits importation of data into Stata variables. If any of
these three options are unspecified and maximaget is requested to import a Maxima
scalar, maximaget will attempt to transfer it into a Stata scalar. If any of these
three options are unspecified and maximaget is requested to import a Maxima list
or matrix, maximaget will attempt to transfer it into a Stata matrix.

name(stata name) specifies the name of the Stata data (scalar, matrix, or variable)
that will contain the data retrieved from Maxima. When this option is unspecified,
maximaget will try to use maxima name to name the target Stata data. stata name

must follow the Stata naming conventions.

58 More power through symbolic computation

replace replaces an existing variable with data retrieved from Maxima. If this option
is unspecified, maximaget does not allow the contents of an existing variable to be
replaced by data retrieved from Maxima. replace can be used only when the tovar
option is specified.

7.3 Examples

In the following example, a list called mlist has been created in Maxima and then
imported into Stata by maximaget; because the target type is unspecified and the name()
option is not used, the data have been inserted into a Stata matrix called mlist by
default.

. maxima mlist: [11, 22, 33, 44];

(%o1) [11, 22, 33, 44]
(%i2)

. maximaget mlist

(%o2) done
(%i3)

. matrix list mlist

mlist[1,4]
c1 c2 c3 c4

r1 11 22 33 44

In the next example, the same list has been retrieved from Maxima, and the name()
option is used to specify mymatrix as the name of the target Stata matrix.

. maximaget mlist, name(mymatrix)

(%o3) done
(%i4)

. matrix list mymatrix

mymatrix[1,4]
c1 c2 c3 c4

r1 11 22 33 44

The following instruction reattempts to retrieve mlist from Maxima by using the
fromscalar option. An error message is returned because mlist is a list and not a
scalar.

. maximaget mlist, fromscalar

(%o4) false
(%i5)
File open error (-601). Probably data does not exist in Maxima or is not of the
> specified type
r(198);

G. L. Lo Magno 59

To load mlist into a Stata variable, we create a dataset with four observations and
use maximaget with the tovar option.

. set obs 4
obs was 0, now 4

. maximaget mlist, tovar name(var1)

(%o5) done
(%i6)

. list

var1

1. 11
2. 22
3. 33
4. 44

The following instructions provide an example of the use of in together with the
tovar option:

. set obs 5
obs was 4, now 5

. maximaget mlist in 2/5, tovar name(var2)

(%o6) done
(%i7)

. list

var1 var2

1. 11 .
2. 22 11
3. 33 22
4. 44 33
5. . 44

8 The maximaput command

The maximaput command transfers numerical data from Stata to Maxima. The trans-
ferred Stata data can be scalars, matrices, or variables, and they can be exported to
Maxima scalars, matrices, or lists. If the name of the Maxima object that will contain
the transferred data is unspecified, maximaput will attempt to use the name of the source
Stata object. In this case, the data name must also be valid for Maxima according to
its naming conventions.

The type of the target data can be specified by toscalar, tomatrix, or tolist. If
none of these options have been specified, maximaput behaves according to the following
rules: if the source Stata data are scalars, the target Maxima data are scalars; if the
source Stata data are matrices, the target Maxima data are matrices; and if the source
Stata data are variables, the target Maxima data are lists. It is possible to use Stata

60 More power through symbolic computation

matrices as source data and Maxima scalars as target data. In this case, the target
scalar will contain the very first element of the specified matrix. Analogously, if the
source is a Stata variable and the target is a Maxima scalar, the target object will
contain the first observation of the Stata variable. If the source is a matrix and the
target is a list, the latter will contain the elements of the matrix concatenated by rows.

8.1 Syntax

The syntax relating to the maximaput command is

maximaput stata name
[
if
] [

in
] [

, fromscalar frommatrix fromvariable

toscalar tolist tomatrix name(maxima name)
]

stata name specifies the Stata data to be transferred from Stata to Maxima. These
data can be scalars, matrices, or variables. If the name() option is not specified,
maximaput will attempt to use stata name as the name of the target Maxima data.
In this case, stata name must be a valid Maxima name.

if and in are permitted only when exporting a Stata variable. They can be used to
limit the observations requested for export. if is used to specify a condition, while
in permits the range to be specified.

8.2 Options

fromscalar, frommatrix, and fromvariable specify the data type that maximaput is
requested to export to Maxima. At most, one of these three options is permitted.
When one of fromscalar, frommatrix, and fromvariable is specified, maximaput
will attempt to export the specified Stata data only if they are scalars, matrices, or
variables, respectively. If stata name is not of the specified types, an error message
will be returned. If any of these three options are unspecified, maximaput will try
to export the requested data, provided they exist. Specifying one of these options is
recommended when maximaput is used within an ado-program because this syntax
option prevents the exporting of undesirable data. However, when maximaput is
used in interactive mode, the possibility of omitting the specification of one of these
options lightens the syntax, and the user can immediately check whether anything
is amiss.

toscalar, tolist, and tomatrix specify the type of the Maxima target data. At
most, one of these three options is allowed. toscalar forces maximaput to export
the specified Stata data to Maxima scalars; tolist forces the exporting of data to
Maxima lists; and tomatrix compels the exporting of data to Maxima matrices. If
any of these three options are unspecified, maximaput will export data to Maxima
scalars, matrices, or lists if the source data are Stata scalars, matrices, or variables,
respectively.

G. L. Lo Magno 61

name(maxima name) specifies the name of the Maxima data (scalar, list, or matrix) con-
taining the data exported from Stata. When this option is unspecified, maximaput
will attempt to use stata name to name the target Maxima data. maxima name

must be a valid Maxima name according to Maxima naming conventions.

8.3 Examples

In the following example, a matrix is created in Stata and then exported to Maxima:

. matrix M = (1, 2 \ 3, 4 \ 5, 6)

. maximaput M

[1.0 2.0]
[]

(%o1) [3.0 4.0]
[]
[5.0 6.0]

(%i2)

Because the name() option was not used and the target type was unspecified, the data
were exported to a Maxima matrix with the same name as the Stata matrix.

In the following example, the tolist option is used to export the same matrix to a
list:

. maximaput M, tolist

(%o2) [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
(%i3)

The next example shows how to use maximaput to export the contents of a variable
to a Maxima list by using the if and name() options.

. sysuse auto, clear
(1978 Automobile Data)

. maximaput price if price > 12000, name(x)

(%o3) [14500.0, 15906.0, 13594.0, 13466.0, 12990.0]
(%i4)

The user can export a scalar to a matrix. In this case, the target data will be in a
1× 1 matrix, in which the unique element is the value of the exported scalar.

. scalar stscalar = 21.3

. maximaput stscalar, tomatrix name(mscalar)

(%o4) [21.3]
(%i5)

. maxima matrixp(mscalar)

(%o5) true
(%i6)

62 More power through symbolic computation

If a variable and a scalar have the same name in Stata and maximaput is asked to
export the data with this name, the command resolves this ambiguity by exporting the
variable, unless the fromscalar option has been specified.

. clear

. set obs 5
obs was 0, now 5

. generate mydata = 1234

. scalar mydata = 5.6

. maximaput mydata

(%o6) [1234.0, 1234.0, 1234.0, 1234.0, 1234.0]
(%i7)

. maxima listp(mydata)

(%o7) true
(%i8)

. maximaput mydata, fromscalar

(%o8) 5.6
(%i9)

. maxima scalarp(mydata)

(%o9) true
(%i10)

9 The MBS utilities package

The MBS utilities package provides these Maxima functions: stataf(), statafm(),
statamissing(), killtemp(), and wxmconnect(). They are all written in Lisp and
can be used only if this package is loaded in Maxima. When Maxima Bridge launches
Maxima, it forces Maxima to load the MBS utilities package in the background, thus
ensuring that all the functions of the package are available in MBS. In this section, I
briefly present all the functions of the MBS utilities package.

9.1 stataf()

The stataf() function can be used to define a new Maxima function called “derived
function” on the basis of another function called “base function”. The purpose of the
derived-function is to wrap the base function to slightly modify its behavior so that the
floating-point number corresponding to the Stata system missing value (.) is returned
when a call to the function generates an error (for example, an error generated by a
division by zero or an overflow).

stataf() requires two arguments. The first is the name of the derived function,
and the second is a list of the arguments of the base function. The following example
clarifies how stataf() can be used:

G. L. Lo Magno 63

. maxima divide(x, y) := x/y;

x
(%o1) divide(x, y) := -

y
(%i2)

. maxima res: divide(3, 0);

expt: undefined: 0 to a negative exponent.
#0: divide(x=3,y=0)
-- an error. To debug this try: debugmode(true);

(%i3)

. maxima st_divide(x, y) := stataf(divide, [x, y]);

(%o3) st_divide(x, y) := stataf(divide, [x, y])
(%i4)

. maxima res: st_divide(3, 0);

(%o4) 8.9884656743115795E+307
(%i5)

. maximaget res

(%o5) done
(%i6)

. scalar list res
res = .

9.2 statafm()

The statafm() function is very similar to stataf(), requiring the same arguments as
stataf() (see section 9.1). The only difference is that statafm() returns the floating-
point number corresponding to the Stata system missing value (.) even when only one
of the values passed as arguments of the function is a missing value.

The following example illustrates the use of statafm():

. maxima sum(x, y) := x + y;

(%o1) sum(x, y) := x + y
(%i2)

. maxima stm_sum(x, y) := statafm(sum, [x, y]);

(%o2) stm_sum(x, y) := statafm(sum, [x, y])
(%i3)

. scalar m = .g

. maximaput m, fromscalar

(%o3) 9.0038268217042019E+307
(%i4)

. maxima res: stm_sum(5, m);

(%o4) 8.9884656743115795E+307
(%i5)

. maximaget res

(%o5) done
(%i6)

. scalar list res
res = .

64 More power through symbolic computation

9.3 statamissing()

The statamissing() function is used to generate floating-point numbers corresponding
to Stata missing values (see [U] 12.2.1 Missing values). The only argument of this
function is a string containing the name of the requested missing value.

In the following example, statamissing() is used to generate the “.g” missing value
and the “.” system missing value:

. maxima missing_g: statamissing("g");

(%o1) 9.0038268217042019E+307
(%i2)

. maxima missing_system: statamissing(".");

(%o2) 8.9884656743115795E+307
(%i3)

. maximaget missing_g

(%o3) done
(%i4)

. maximaget missing_system

(%o4) done
(%i5)

. scalar list missing_g missing_system
missing_g = .g

missing_system = .

9.4 killtemp()

Temporary names and local macros are used in Stata, especially in ado-programs, to
avoid conflicts with global data. Similarly, MBS provides a system for creating temporary
data in Maxima. This system is based on the convention of using names starting with
an underscore () to mark Maxima data as temporary (for example, “ mymaximadata”).
Once temporary Maxima data are correctly named, they can be automatically deleted
using killtemp(). The killtemp() function deletes all Maxima data that have a name
beginning with an underscore. The function does not require an argument.

killtemp() can be used in ado-Maxima programs in which creating temporary Max-
ima data can be useful. An important difference with the analogous system used in Stata
to manage temporary objects is that temporary objects in MBS are not deleted auto-
matically and must be explicitly deleted by invoking killtemp(). A call to killtemp()
is required in the ado-program to delete all the temporary data that have been created
thus far.

G. L. Lo Magno 65

Several ado-Maxima programs in section 10 are examples using the killtemp()

function. The following example demonstrates the basic use of this function:

. maxima a: 1$ _b: 2$ _c: 3$ d: 4$ _e: 5$

(%i6)

. maxima values;

(%o6) [a, _b, _c, d, _e]
(%i7)

. maxima killtemp();

(%o7) done
(%i8)

. maxima values;

(%o8) [a, d]
(%i9)

9.5 wxmconnect()

The wxmconnect() function connects the Maxima process to wxMaxima, a free and
open-source front end for Maxima, and allows the user to take advantage of the GUI of
wxMaxima and interact with Maxima in a more comfortable environment. After the
Maxima process is connected to wxMaxima, wxmconnect() can be used to reconnect the
Maxima process to Maxima Bridge. The only argument required by wxmconnect() is
the network port of the software (wxMaxima or Maxima Bridge) to which the Maxima
process will be connected.

The use of wxmconnect() and its technical details are explained more thoroughly in
the online help for Maxima Bridge.

10 Applications

In this section, I present several examples of using MBS for practical applications. These
applications include many features made available by Maxima: differentiation calculus,
linear programming, arbitrary numerical precision, and 3D plotting. All the proposed
examples are intentionally simple because the goal here is to introduce various poten-
tialities that can arise when using Stata and Maxima together.

10.1 Calculating the moments of a random normal variable

To obtain the moments of a random normal variable, one can exploit its moment-
generating function (MGF). The MGF of a normal variable with expected value µ and
standard deviation σ is

M(t) = eµte
1
2σ

2t2 (1)

66 More power through symbolic computation

The derivative of order r of (1), with respect to t and evaluated at t = 0, is the noncentral
moment of order r of the normal variable with parameters µ and σ.

Typically, software that specializes in numerical computation, such as Stata, does
not provide algorithms for analytical differentiation. However, we can use Maxima to
calculate moments of a normal variable via the differentiation of its MGF. The following
is the code of an egen function called gnormalmoment. This function accepts expected
values and standard deviations of normal variables as arguments, and it generates a
new Stata variable containing the corresponding values of the r-order moments.

. program _gnormalmoment
1. gettoken vartype 0 : 0
2. gettoken newvar 0 : 0
3. gettoken equalsign 0: 0
4. syntax varlist(numeric min=2 max=2) [if] [in], r(integer)
5. local mu : word 1 of `varlist´
6. local sd : word 2 of `varlist´
7. marksample touse
8. quietly {
9. maxima killtemp();
10. maximaput `mu´ if `touse´, fromvar tolist name(_mulist)
11. maximaput `sd´ if `touse´, fromvar tolist name(_sdlist)
12. maxima _G(t, mu, sd) := exp(mu*t)*exp((1/2)*(sd^2)*(t^2));
13. maxima _gdiff: diff(_G(´t, ´mu, ´sd), ´t, `r´);
14. maxima _m(mu, sd) := ´´(at(_gdiff, t=0));
15. maxima _st_m(mu, sd) := stataf(_m, [mu, sd]);
16. maxima _res: map(_st_m, _mulist, _sdlist);
17. maximaget _res if `touse´, fromlist tovar name(`newvar´)
18. maxima killtemp();
19. }
20. end

Lines 1 through 6 parse the syntax. The marksample command, which is used in line
7, avoids the transfer of missing values to Maxima. The remaining lines are MBS com-
mands, which are enclosed between two calls to killtemp(). As stated in section 9.4,
killtemp() deletes all existing temporary Maxima variables whose names start with
an underscore. The first invocation to killtemp() avoids the risk of conflict with pos-
sibly existing temporary data, while the second deletes temporary data that have been
created in gnormalmoment. Because every Maxima object created in gnormalmoment

is temporary datum, no garbage data remain in the Maxima memory after the above
program is executed.

Line 12 defines the MGF function (1), and line 13 specifies its r-order derivative. In
this latter line, the Maxima quote operator (‘) is used before several Maxima symbols
to prevent their evaluation. The m function, which is defined in line 14, evaluates the
r-order derivative of the MGF at t = 0. In line 15, the st m function is created as a
wrapper to m by using the stataf() function from the MBS utilities package. stataf()
ensures that a Stata system missing value (.) is returned whenever a call to m generates
an error. Finally, line 16 creates a list containing the calculated values of the moments,
and line 17 imports these values to a new variable generated in Stata.

G. L. Lo Magno 67

The following is an example using gnormalmoment, in which order-two moments
are calculated for a set of five observations with randomly generated expected values
and standard deviations:

. clear all

. set obs 5
obs was 0, now 5

. set seed 9999

. generate mu = runiform()

. generate sd = runiform()

. egen m2 = normalmoment(mu sd), r(2)

. list

mu sd m2

1. .5706419 .4555794 .53318483
2. .7122409 .4310627 .6931022
3. .9121964 .7898812 1.4560145
4. .3174115 .1223136 .11571071
5. .8693877 .8267023 1.4392716

10.2 Nondiscretionary input in data envelopment analysis

Data envelopment analysis (DEA) is a nonparametric, quantitative method that as-
sesses the relative efficiency in how decision-making units (DMUs)—firms, schools, and
hospitals—transform input into output (see Charnes, Cooper, and Rhodes [1978] and
Cook and Seiford [2009]). The main DEA output is a list of efficiency scores, which are
numbers between zero and one that indicate the performance of each DMU. A DMU is
deemed efficient when its efficiency score is one.

DEA analysis requires the solution to a linear program, namely, the mathematical
problem of optimizing a linear function that is subject to linear equality and linear
inequality constraints. Ji and Lee (2010) provide the dea Stata command for performing
basic DEA analysis, but this command is not as flexible as the linear programming solver
provided by Maxima. For example, the dea command cannot manage a case with various
inputs that are nondiscretionary; that is, it cannot be used when some of the inputs are
beyond the control of the DMUs (for example, the location of firms or the advertising
expenditure decided at the corporate level) (Banker and Morey 1986).

In this section, I explain how to write a rudimentary DEA solver program, called fdea,
that can handle the case when one of the inputs is nondiscretionary. This program uses
MBS and exploits the linear programming solver of Maxima. The fdea command is
intentionally simple because it is presented only for explanatory purposes. Thus it is
provided with certain limitations: 1) only two discretionary inputs, one nondiscretionary
input and one output, are permitted; 2) only first-stage DEA analysis is performed, so
efficiency slacks are not identified; 3) if and in options are not allowed; and 4) if the
command passes Stata missing values to Maxima, they will not be correctly interpreted
by Maxima.

68 More power through symbolic computation

Let n be the number of DMUs; xd1i, xd2i, xfi, and yi denote the first discretionary in-
put, the second discretionary input, the nondiscretionary input, and the output for DMU

i, respectively; and t∗j denotes the efficiency score for DMU j. The efficiency score for
DMU j is obtained from the solution to the following linear program (Banker and Morey
1986).

t∗j = min t
subject to
n∑
i=1

lixd1i ≤ txd1j
n∑
i=1

lixd2i ≤ txd2j
n∑
i=1

lixfi ≤ xfj
n∑
i=1

liyi ≥ yj

t, li ≥ 0, i ∈ (1, 2, . . . , n)

This linear program is translated into the following code of the fdea ado-Maxima
program:

. program fdea
1. syntax newvarname, xd1(varname numeric) xd2(varname numeric)

> xf(varname numeric) y(varname numeric)
2. maxima kill(all)
3. maximaput `xd1´, fromvar tolist name(xd1)
4. maximaput `xd2´, fromvar tolist name(xd2)
5. maximaput `xf´, fromvar tolist name(xf)
6. maximaput `y´, fromvar tolist name(y)
7. maxima load(simplex); nonegative_lp: true;
8. local n = _N
9. maxima l: makelist(concat(l, i), i, 1, `n´);
10. maxima scores: [];
11. maxima for j:1 thru `n´ do ///
12. (///
13. cxd1: l . xd1 <= t*xd1[j], ///
14. cxd2: l . xd2 <= t*xd2[j], ///
15. cxf: l . xf <= xf[j], ///
16. cy: l . y >= y[j], ///
17. first: minimize_lp(t, [cxd1, cxd2, cxf, cy]), ///
18. scores: append(scores, [first[1]]) ///
19.);
20. maximaget scores, fromlist tovar name(`varlist´)
21. end

The code lines from 3 through 6 export the 2 discretionary input variables, the
nondiscretionary input variable, and the output variable, which are specified, respec-
tively, to Maxima in the xd1(), xd2(), xf(), and y() options. Line 7 loads the simplex
Maxima package, which implements the 2-phase standard simplex method for solving
linear programming problems in Maxima. In the same line, the nonegative lp variable
is set to “true” to indicate to the solver that all decision variables are assumed to be
nonnegative. The linear program is solved for each DMU in lines 11 through 19. Here
the minimize lp Maxima function (used in line 17) minimizes the t subject to the linear

G. L. Lo Magno 69

constraints specified in the second argument of the function. Finally, line 20 exports
the calculated efficiency scores to Stata.

The following is an example of the use of fdea, illustrated using a randomly gener-
ated dataset where the x1 and x2 variables are two discretionary inputs, the x3 variable
is the only nondiscretionary input, the y variable is the unique output, and score is a
variable containing the efficiency scores generated by fdea:

. clear all

. set obs 5
obs was 0, now 5

. set seed 4321

. generate x1 = runiform()

. generate x2 = runiform()

. generate x3 = runiform()

. generate y = runiform()

. quietly fdea score, xd1(x1) xd2(x2) xf(x3) y(y)

. list

x1 x2 x3 y score

1. .3195768 .6264579 .3398471 .8968329 1
2. .8935631 .8397377 .1994603 .1145874 .09283615
3. .6512877 .560277 .6148463 .826956 .99954164
4. .6101616 .5916896 .0149962 .4950392 1
5. .8236098 .1597123 .1503211 .2799092 1

The fdea program is a current draft of a possibly more-advanced general command
that could be developed. Nevertheless, it demonstrates how easy it is to develop a DEA

solver to fit a specific need. The advantage of programming a DEA solver in the MBS

environment is that we can obtain a tool that is perfectly integrated into Stata. Thus
the ado-Maxima DEA solver can be combined with all the facilities provided by Stata to
perform subsequent statistical analyses, such as Monte Carlo experiments5 or sensitivity
analysis.

10.3 Arbitrary numerical precision

In this section, I present a case of numerical computation where Stata fails and a way to
overcome this using Maxima. Suppose, for example, that the tricky expression (ex−1)/x
must be evaluated for a very small value of x.

5. A command such as fdea could be used in Monte Carlo experiments like those performed by
Pedraja-Chaparro, Salinas-Jiménez, and Smith (1999).

70 More power through symbolic computation

. set obs 3
obs was 0, now 3

. set seed 9999

. generate double x = runiform()

. replace x = 2^(-150) in 2
(1 real change made)

. generate double stata = (exp(x)-1)/x

. list

x stata

1. .57064196 1.3483105
2. 7.006e-46 0
3. .91219641 1.6331846

The value of (ex − 1)/x for x = 2−150, calculated in the previous example for the
second observation, is 0. This numerical computation is far from the correct one, which
is limx→0(e

x − 1)/x = 1. A better result can be obtained by using Maxima with the
following code:

. quietly maximaput x

. quietly maxima fpprec: 50;

. quietly maxima f(x) := (exp(bfloat(x))-1)/x;

. quietly maxima maxima: map(f, x);

. quietly maximaget maxima, fromlist tovar

. list

x stata maxima

1. .57064196 1.3483105 1.3483105
2. 7.006e-46 0 1
3. .91219641 1.6331846 1.6331846

Here the number of significant digits for the arithmetic relating to big-float numbers
was set to 50 by changing the value of the fpprec Maxima variable. Thereafter, the
f() function was defined to calculate (ex − 1)/x. In the definition of f(), an x value
is converted to a big-float number via the bfloat function; in most cases, expressions
with at least one big-float number are entirely evaluated as big-float (big-float numbers
in Maxima can be conceived of as “contagious”). Thus the evaluation of f() will be
performed to 50 digits of precision. The evaluation of (ex − 1)/x for x = 2−150 (see the
second observation in the output generated by list) is now 1, which is a more accurate
result.

Note that in the previous case, 0 can also be obtained in Maxima for a smaller value
of x, say, 2−250. To obtain 1 again, the user must increase the value of fpprec; a value
of 100 for fpprec would be sufficient.

G. L. Lo Magno 71

10.4 Exploiting gnuplot

Gnuplot is a free command-line software program that creates 2D and 3D graphs of
mathematical functions and data. It comes with Maxima and is one of the graphics
engines used by Maxima for rendering graphs. Gnuplot is accessible from Maxima
through a suite of commands that operates as a convenient interface to gnuplot. In
this section, I present two useful examples of using gnuplot. The first is an ado-Maxima
program for drawing 3D graphs, while the second is a program for extracting coordinates
of points from a scatterplot for which the image is available but not the source data.

The following is the code of scatter3d, an ado-Maxima program that plots 3D
graphs:

. program scatter3d
1. syntax varlist(min=3 max=3 numeric) [if] [in]
2. marksample touse
3. local x: word 1 of `varlist´
4. local y: word 2 of `varlist´
5. local z: word 3 of `varlist´
6. quietly {
7. maxima killtemp();
8. maximaput `x´ if `touse´, fromvar tolist name(_x)
9. maximaput `y´ if `touse´, fromvar tolist name(_y)
10. maximaput `z´ if `touse´, fromvar tolist name(_z)
11. maxima load(draw);
12. maxima draw3d(point_type=plus, color=black, xlabel="x", ylabel="y",

> zlabel="z", points(_x,_y,_z));
13. maxima killtemp();
14. }
15. end

This program takes three numerical variables as input (representing the 3D coordi-
nates) and plots a 3D scatterplot of these variables by using draw3d(), a function of
the draw Maxima package, which is loaded in line 11. draw3d() is called in line 12.
Although the full syntax of draw3d() is very sophisticated, that which is used in the
previous example is easy to understand. draw3d() is requested to plot a scatterplot of
x, y, and z by using the symbol plus as the point style, choosing black as the color
for the points, and setting the labels for all the axes.

As an example, we create the scatterplot of a simulated 3-dimensional normal vari-
able with vector 0 as an expected value and a desired covariance matrix. Here the task
of obtaining a simulated dataset of such a three-dimensional vector variable is assigned
to Stata via the drawnorm (see [D] drawnorm) command.

. clear

. set obs 1000
obs was 0, now 1000

. matrix cov = (1, 0.7, -0.4 \ 0.7, 1, 0.2 \ -0.4, 0.2, 1)

. set seed 9999

. drawnorm x y z, cov(cov)

. scatter3d x y z

72 More power through symbolic computation

The 3D output, produced by gnuplot through the previous commands, is reported
in figure 2, where three different views of the same point cloud have been provided from
different angles. When a graph is obtained in gnuplot, the user can interact with it
through the mouse to zoom or change the angle view.

Figure 2. Three scatterplots of the same simulated three-dimensional normal variable,
viewed from three different angles, obtained using gnuplot

The next example exploits an interactive feature of gnuplot, consisting of retrieving
the coordinates of a point from a graph on which the user has clicked. The takecoords
ado-Maxima program, which I present here, exploits this feature to retrieve the coordi-
nates of the data points of a scatterplot. This program is especially useful for retrieving
data from a scatterplot when the source data are not available.

The following is the code of takecoords:

. program takecoords
1. syntax newvarlist(min=2 max=2) using/ , x1(real) y1(real) x2(real)

> y2(real)
2. if _N != 0 {
3. display as error "you must start with an empty dataset"
4. exit 18
5. }
6. local xVar: word 1 of `varlist´
7. local yVar: word 2 of `varlist´
8. confirm file "`using´"
9. tempfile tempFileName
10. maxima killtemp();
11. maxima load(draw);
12. maxima _img: image(read_xpm("`using´"), `x1´, `y1´, `x2´-`x1´,

> `y2´-`y1´);
13. maxima draw2d(xy_file = "`tempFileName´", _img);
14. maxima killtemp();
15. local dummyInput
16. display "Press ENTER at the end of the interaction with the plot",

> _request(_dummyInput)
17. infile `xVar´ `yVar´ using "`tempFileName´"
18. end

In line 12, the program reads an .xpm image whose position in the file system is spec-
ified through the using option of takecoords. This image is displayed by the draw2d()
Maxima function called in line 13. Furthermore, draw2d() saves the coordinates of the

G. L. Lo Magno 73

user’s clicks on the displayed images in a temporary file specified by the xy file option.
In line 17, the infile Stata command reads the content of that temporary file and loads
the coordinates into two variables that have been specified by the user.

Figure 3. An example scatterplot to use with takecoords

Let’s suppose that the data source of the scatterplot of figure 3 is unavailable and
that we want to extract the data from this picture. First, we crop the figure to preserve
only the part within the dashed box. This operation is necessary to correctly map
the screen area provided by gnuplot with the plot area of the example scatterplot. The
cropped image must be converted to the .xpm format. Second, takecoords can be called
by specifying 1) the two x and y variables that will be filled with the retrieved point
coordinates; 2) the complete path to the .xpm scatterplot image; and 3) the coordinates
of the bottom-left points (10; 40) and the far-right and top points (50; 140) of the plot
area corresponding to the dashed box in figure 3.

. clear

. takecoords x y using "/home/giovanni/figure3_cropped.xpm", x1(10) y1(40)
> x2(50) y2(140)

(output omitted)

* Now the user middle-clicks on the points of the scatterplot

Press ENTER at the end of the interaction with the plot .
(8 observations read)

. list, sep(0)

x y

1. 15.10363 44.68052
2. 17.08479 78.75887
3. 21.03634 89.98685
4. 24.11575 71.63292
5. 31.07133 102.7136
6. 33.03096 121.6724
7. 39.02826 132.6637
8. 42.96904 132.9266

74 More power through symbolic computation

During the interactive session in gnuplot, the user must save the coordinates by
clicking on the points of the scatterplot and then pressing the x key. Thereafter, the
user must press the Enter key in Stata to inform takecoords that the temporary file
can be read and that the x and y variables can be created.

11 Concluding remarks

MBS extends the computational capabilities of Stata in several ways:

• by enabling the computation of something that cannot easily be obtained in Stata
because, for example, the computation would require algebra-intensive algorithms;

• by providing algorithms that facilitate the development of powerful computing
solutions by allowing a direct application of the theory, for example, via differential
and integral calculus; and

• by enabling high-precision calculations using big-float numbers.

Although a CAS can be a powerful tool for dealing with many mathematical prob-
lems, a CAS can occasionally provide incorrect computations, or it may not have the
capability to undertake certain tasks. This article lacks an assessment of the capabil-
ities of Maxima. However, the interested researcher could use the 131 mathematical
problems proposed by Wester (1994) as a comprehensive CAS test suite for evaluating
Maxima.

Apart from its intrinsic utility, MBS is also an example of a software system that en-
ables Stata to communicate with another software application.6 The interested software
developer might draw inspiration from MBS to create new and powerful integrations be-
tween Stata and other software programs: MBS is open-source software, and its code
can be freely examined.

12 References

Banker, R. D., and R. C. Morey. 1986. Efficiency analysis for exogenously fixed inputs
and outputs. Operations Research 34: 513–521.

Barnett, M. P. 2002. Computer algebra in the life sciences. ACM SIGSAM Bulletin 36:
5–32.

Bollen, K. A., and S. Bauldry. 2010. Model Identification and Computer Algebra.
Sociological Methods and Research 39: 127–156.

Boyle, A., and B. F. Caviness, eds. 1990. Future Directions for Research in Symbolic

Computation: Report of a Workshop on Symbolic and Algebraic Computation, April

6. Also see Fiedler (2013) for a Stata plugin that makes the Python language available within Stata.

G. L. Lo Magno 75

29–30, 1988, Washington, DC. Philadelphia: Society for Industrial and Applied
Mathematics.

Charnes, A., W. W. Cooper, and E. Rhodes. 1978. Measuring the efficiency of decision
making units. European Journal of Operational Research 2: 429–444.

Cohen, A. M., J. H. Davenport, and A. J. P. Heck. 1993. An overview of computer
algebra. In Computer Algebra in Industry, ed. A. M. Cohen, 1–52. Chichester, UK:
Wiley.

Cook, W. D., and L. M. Seiford. 2009. Data envelopment analysis (DEA)—Thirty years
on. European Journal of Operational Research 192: 1–17.

Dodson, C. T. J. 2004. Review of Maple 9.5. MSOR Connections 4: 1–2.

Fiedler, J. 2013. python: Stata module for using the Python language within Stata.
Statistical Software Components S457688, Department of Economics, Boston College.
http://econpapers.repec.org/software/bocbocode/s457688.htm.

Glen, A. G., D. L. Evans, and L. M. Leemis. 2001. APPL: A probability programming
language. American Statistician 55: 156–166.

Goedman, R., G. Grothendieck, S. Højsgaard, and A. Pinkus. 2012. Ryacas: R inter-

face to the Yacas computer algebra system. R package version 0.2-11. http://cran.r-
project.org/web/packages/Ryacas/index.html.

Grabmeier, J., E. Kaltofen, and V. Weispfenning, eds. 2003. Computer Algebra Hand-

book: Foundations, Applications, Systems. New York: Springer.

Grothendieck, G. 2012. rSymPy: R Interface to SymPy Computer Algebra System. R
package version 0.2-1.1.
http://cran.r-project.org/web/packages/rSymPy/index.html.

Hoyle, R. H., ed. 2012. Handbook of Structural Equation Modeling. New York: Guilford
Press.

IEEE. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 1–70.

Ji, Y.-B., and C. Lee. 2010. Data envelopment analysis. Stata Journal 10: 267–280.

Joyner, D. 2006. OSCAS: maxima. ACM Communications in Computer Algebra 40:
108–111.

Li, J., and J. S. Racine. 2008. Maxima: An open source computer algebra system.
Journal of Applied Econometrics 23: 515–523.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point
format. Stata Journal 8: 255–268.

Pedraja-Chaparro, F., J. Salinas-Jiménez, and P. Smith. 1999. On the quality of the
data envelopment analysis model. Journal of the Operational Research Society 50:
636–644.

76 More power through symbolic computation

R Development Core Team. 2014. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-
project.org.

Rose, C. 2007. “Oh Zeus, free me!”—Teaching mathematical statistics with Mathe-
matica/mathStatica. Proceedings of the 56th Session of the International Statistical
Institute. Lisbon, Portugal.

Rose, C., and M. D. Smith. 2000. Symbolic maximum likelihood estimation with Math-
ematica. Journal of the Royal Statistical Society, Series D 49: 229–240.

. 2002. Mathematical Statistics with Mathematica. New York: Springer.

. 2005. Computational order statistics. Mathematica Journal 9: 790–802.

Stokes, B. 2012. mathStatica 2.5. Journal of Statistical Software 47: 1–12.

Vinod, H. D. 2003. Review of mathStatica (V.1): An add-on to Mathematica. Journal
of Applied Econometrics 18: 485–491.

Wester, M. 1994. A review of CAS mathematical capabilities. Computer Algebra Ned-

erland Nieuwsbrief 13: 41–48.

Wolfram, S. 2003. The Mathematica Book. 5th ed. Champaign, IL: Wolfram Media.

Zeilberger, D. 2004. Symbolic moment calculus I: Foundations and permutation pattern
statistics. Annals of Combinatorics 8: 369–378.

About the author

Giovanni Luca Lo Magno created stand-alone software that extends the capabilities of Stata.
He is the author of Stata Automatic Report, which is a macro for Microsoft Word for Windows
that allows the integration between Stata and Word. He is also interested in researching gender
differences in employment.

