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ENTROPY METHODS FOR RECOVERING 
INFORMATION FROM ECONOMIC MODELS 

Douglas J. Miller"' 

Economics and Information Theory 

Economists have long recognized the importance of information in behavioral models. 
Although information is potentially valuable if it allows agents to reduce uncertainty, it is also 
intangible and subjective. Consequently, information has been very difficult to incorporate in 
standard models of economic behavior. Prior to the flourish of interest in the economics of 
information that was led by developments in game theory and the publication of Akerlofs 
'lemons' paper, Arrow concluded that information is "an economically interesting category of 
goods which has not hitherto been accorded much attention by economic theorists". 

Works by Marschak, Arrow, and Theil are among the limited number of early attempts 
to use information in an economic context. Unlike more modem treatments of information, these 
research efforts referred to a body of literature known as information theory. Information theory 
is concerned with sending and receiving coded signals over noisy communication channels, and 
it is the foundation for research in computer science and electrical and electronic engineering. 
The economists applied information theory to the problem of measuring the amount of 
information contained in a given signal. The purpose of this paper is to introduce one measure 
of information, entropy, and to demonstrate methods that use entropy as a criterion for 
recovering information from data on observed economic behavior. 

Entropy 

To introduce the measure of information, consider a Bernoulli trial (e.g. the flip of a coin) 
that has success probability p. Given some p close to 1, we expect to observe a success and 
would be very surprised to observe a failure. If we receive a message or a signal that a success 
was observed, then the signal has very little informational content. Conversely, a signal 
reporting a failure would be very informative. 

One way to convert the probabilities to a measure of 'informational content' is to use the 
minus-log transform. That is, define our measure of information in the signal as H(p) = - 1log(p) 
- Olog(1-p) = -log(p) for a success and H(p) = -Olog(p) -1log(1-p) = -log(1-p) for a failure. Note 
that for a large value of p, H(p) is nearly zero for a success (we expected the message), and H(p) 
is infinitely large for a failure (we are 'shocked' to learn of a failure). Further, we can use 
H(p) = - plog(p) - (1-p)log(1-p) as an ex ante measure of the expected information contained in 
the signal. 

This functional form is the basis for a measure of information devised by Claude 
Shannon, who is often regarded as the founder of information theory. For an experiment that 
has K possible outcomes, Shannon's measure of uncertainty takes the following form: 
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H(p) = - ~1 Pi ·log(pi) (1) 

where Pi is the probability of observing the ith outcome. Shannon named the measure entropy 
at the suggestion of John von Neumann, who recognized the similarity between Shannon's 
function and the measures of physical entropy used in statistical mechanics. Assuming Olog(O) 
= O, H(p) takes on a maximum when pis the discrete uniform distribution, and it is minimized 
by a degenerate distribution (i.e. Pr[i] = 1 for some i). Thus, the distribution with 'maximum 
entropy' contains the most uncertainty about the outcome of the trial. When we know the 
outcome with certainty, the distribution has minimum entropy. Although all applications of 
H(p) in this paper use natural logarithms, we can normalize H to a unit scale by using base-K 
logarithms. 

Cross-Entropy 

A more general measure was later proposed by Kullback, and it is commonly known as 
Kullback-Leibler directed divergence, I-divergence, or cross-entropy: 

(2) 

Here, p and q are different probability distributions over the same set of outcomes (support). 
For instance, q may be a set of prior probabilities, and p is the associated set of posterior 
probabilities. I(p,q) is then viewed as a measure of the information used to form the posterior 
from the prior distribution or as the amount of additional information reflected in the posterior. 
Alternately, q may represent our ex ante or prior beliefs, and p is the observed frequency 
distribution of outcomes from a number of trials. If q ·is a discrete uniform distribution, note 
that I(p,q) = - H(p) + log(K). 

Although I(p,q) :I: I(q,p) implies that I(p,q) is not a true distance function, we may still 
use it as a measure of the distance between p and q as we move with the flow of information 
(i.e. from prior to posterior). Although this flaw is not important in practice, we can use the 
joint entropy function, J(p,q) = I(p,q) + I(q,p), to form a 'true' distance measure if the 
commutative property is required. 

The cross-entropy measure may be extended to more general probability measures by 
employing the Riemann-Stieltjes integral: 

l(f,g) = ftog[f(x)/ g(x)]dF(x) (3) 

where the support of g contains the support of f. In this way, the entropy of continuous 
(Lesbesgue) or mixed distributions may be calculated. The entropy and related properties of 
various continuous distributions is summarized in a recent article by Maasoumi (1993). For 
convenience, the present discussion will be limited to discrete probability distributions. 
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Entropy and Information Recovery 
.,,. 

To this point, we have used entropy as a diagnostic or descriptive tool. As with other 
· measures like the sum of squared errors, we may also use entropy as a criterion for forming 
inferences about unknown parameters. Jaynes proposed the Method of Maximum Entropy as 
a feasible means of recovering a probability distribution from a set of moment conditions or 
other restrictions on the distribution. Given that observed economic data are often functions (e.g. 
averages or quantiles) of the underlying distribution of firms or consumers, entropy may be a 
useful criterion for solving a variety of problems in economics. The Method of Maximum 
Entropy is presented in the next section, and an extension proposed by Judge and Golan is 
discussed in the following section. 

Method of Maximum Entropy 

To motivate the Method of Maximum Entropy, consider Jaynes' dice problem. Suppose 
a six-sided die is· rolled a large number of times, but we only observe the average of the 
outcomes. If the die is fair and follows the discrete uniform distribution, the Weak Law of Large 
Numbers implies that the observed average should converge (in probability) to 3.5. However, 
convergence to some other value (e.g. 4) is not consistent with the discrete uniform distribution 
(or any other distribution with a mean of 3.5). Given that there exist an infinite number of 
discrete distributions with a mean of y = 4 and support X = [1, 2, 3, 4, 5, 6], the true distribution 
cannot be identified with certainty. 

Jaynes noted that a conservative estimate of the unknown distribution would be the set 
of probabilities that satisfy the observed moment relations and are most uniform. Using 
Shannon's entropy as a measure of uniformity, Jaynes' Method of Maximum Entropy selects the 
distribution, p , that solves the following problem: 

subject to: 

Max H(p) = - p'log(p) 

y = Xp and p'1 = 1 

(4) 

(5) 

where y is a T-vector of observed moments and Xis a (T x K) matrix containing the associated 
supports. The model restrictions in equation (5) are known as the consistency and additivity 
constraints, respectively. By including the observed information in the constraint set, the 
Maximum Entropy distribution "agrees with what is known, but expresses 'maximum 
uncertainty' with respect to all other matters" (Jaynes, 1968 p. 231). Note that this approach is 
a form of Generalized Method of Moments inference: the sample moments are equated with the 
population moments, and the equations are solved for the unknown probabilities under the 
entropy distance function. 

. The solution of the optimization problem has some special features to. be noted. First, 
His strictly concave on the interior of the additivity constraint set, sK-l = {p: p » O and p'l = 
1}, which is an open unit simplex. So, a solution exists if the intersection of the consistency 
constraint set and sK-1 is non-empty. Second, the first-order conditions (FOC) from the 
associated Lagrangian expression provide the following solutions: 
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p = exp(-X?..) / [1'exp(-X?..)J (6) 

Clearly, the ME solutions are admissible because each Pie (0,1) and the probabilities sum to 1. 
However, the FOC do not have a known closed-form solution, and· the probabilities are 
expressed in terms of the unknown Lagrange multipliers on the consistency constraints, )... 
Numerical optimization techniques must be used to solve the problem. Note that ignoring the 
consistency constraint yields the discrete uniform distribution (pi = 1 /K for i = l, ... ,K). Further, 
maximizing entropy without the additivity and consistency constraints results in Pi = e-1 for all 
i = l, ... ,K. 

In the case of Jaynes' dice problem, we cannot recover the distribution by the traditional 
ML technique (using the multinomial distribution) because the frequency distribution over the 
outcomes is unknown. We often say that such problems are ill-posed because the number of 
unknowns (6) exceeds the number of identify~g restrictions (2). However, we may proceed to 
solve the problem by the Method of Maximum Entropy. Given y = 4 and X = [l, 2, 3, 4, 5, 6], 
the numerical solution is: 

p = l 0.103, 0.123, 0.146, 0.174, 0.207, 0.247 J 

If the more extreme average of y = 5.5 is observed, then: 

p = l 0.003, 0.009, 0.025, 0.075, 0.224, 0.664 J 

Further, the discrete uniform distribution solves the inverse problem if y = 3.5, as expected. 

Thus, Maximum Entropy provides one basis for recovering the probability distribution 
in a severely ill-posed problem. Aside from any intuitive appeal of Maximum Entropy, axioms 
and other principles of information theory have been used to justify Jaynes' approach. Given 
information in the form of constraints, Shore and Johnson (1980) prove that there is a unique, 
invariant distribution satisfying the constraints and other consistency axioms of information 
theory. They further demonstrate that this distribution may be recovered by maximizing 
entropy. Skilling and Csiszar employ alternate sets of axioms and achieve similar conclusions. 

) 

Note that Jaynes is implicitly assuming that the unknown probabilities are roughly 
uniform. The Method of Maximum Entropy may also be extended to include non-uniform 
(informative) prior information through the Method of Minimum Cross-Entropy. Given prior 
distribution q, replace the objective function, H(p), with I(p,q) and minimizing this criterion 
subject to the same additivity and consistency constraints. Effectively, pis the least informative 
posterior distribution given our prior beliefs. Note that I(p, q) = -H(p) + log(K) if q is a uniform 
density. So, maximizing entropy is equivalent to minimizing cross-entropy under uniform q, 
and the Method of Maximum Entropy is a special case of the Method of Minimum Cross
Entropy. 

Generalized Maximum Entropy 

Critics of the Method of Maximum Entropy argue that the technique is not applicable 
when the moment conditions are observed with noise, y = Xp + e, because the disturbance term, 
e, is ignored. The disturbances may represent randomness in the behavior of economic agents 
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or measurement errors. To mitigate this problem, Judge and Golan (1992) proposed Generalized 
Maximum Entropy by rewriting the linear model as y = Xp + e = Xp + Vw, or: 

Y1 X1 P1 W1 0 . 0 V1 

~ ~ ~ 0 ~- 0 ~ 
= + (7) 

YT XT PK 0 0 WT VT 

where Vis a (T x JT) matrix containing the support of w, a JT-vector of probabilities. So, the 
unknown disturbances are expressed as the _expected values of the finite and discrete probability 
distribution, w, and the reparameterized model conforms to the Maximum Entropy formalism. 

Information about the unknown components of the general linear model may now be 
recovered by the Generalized Maximum Entropy. The problem is now to select p and w that 
maximize: 

subject to: 

H(p,v) = - p'log(p) - w'log(w) 

y=Xp+ Vw 

E;;;=l Pkm = 1 'v k = 1, ... ,K 

zj=l Wtj = 1 'v t = 1, ... ,T 

(8) 

(9) 

(10) 

(11) 

where equation (9) is the consistency constraint, and equations (10) and (11) provide the 
additivity constraints. 

Judge and Golan also extended their reparameterization to incorporate prior information 
about the unknowns. Generalized Cross-Entropy minimizes the following objective function: 

subject to the standard additivity and consistency constraints. Here, q and u are vectors of prior 
probabilities for the unknown probabilities and disturbances. 
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Recovering Markov Transition Probabilities 

To demonstrate the potential of the entropy-based methods of recovering unknown 
probability distributions, consider data generated by a finite and discrete, first-order Markov 
process. A given process is characterized by the transition probability matrix, P = {pij}, where 
each element represents the probability that an agent moves from state i to state j in one time 
period. For a collection of agents who behave according to the same process, the expected 
proportion of the group occupying state i at period t, "it' may be computed as: 

Xit = ~l Xjt-1Pji V i = 1, ... ,K (13) 

where {Xjt-11 is the frequency distribution of agents across the K states in the previous period, 
t-1. Further, equation (13) may be expressed in matrix form as xt = xt_1P, where xt and xt-l are 
K-vectors and Pis the (K x K) Markov transition matrix. Finally, the Markov process is said to 
be stationary if P is time-invariant, and the observations from T periods may be assembled in 
matrix form. The transition relation may be rewritten as: 

X12 P11 

X2 X1 
X1T PK1 

P =ZP ~ 
X21 = (IK © Z) 

P12 (14) . = 

XT XT-1 

XKT PKK 

which takes the same form as the consistency constraint, y = Xp, where p = vec(P). 

Given the linear model with noise, y = Xp + e, researchers must recover p from observed 
values of y and X. One common approach is the least squares (LS) criterion. The properties ·of 
the LS estimator, p = (X'Xr1X'y, are well-known and are discussed at length by Lee, Judge, and 
Takayama; Lee, Judge, and Zellner; and Madansky. Unfortunately, the LS estimates may be 
inadmissible for p (i.e. Pi ~ [0,1] for some i = 1, ... ,K). Consequently, Lee, Judge, and Takayama 
note that an alternate approach is to solve the LS problem as a quadratic programming (QP) 
problem in which the boundary and additivity constraints are explicitly specified. 

When additional equality or inequality constraints are imposed on the LS problem, the 
conditions of the Gauss-Markov Theorem are violated and the LS estimator may not be best 
linear unbiased. A popular alternative to the least squares criterion is the minimum absolute 
deviations (MAD) estimator, which was introduced as a generic curve-fitting technique (see 
Karst, Fisher). The advantages.of MAD over LS estimators are presented in articles by Ashar 
and Wallace and by Bassett and Koenker. Finally, Kim and Schaible developed a generalized 
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form of the MAD estimator that simplifies the problem by reducing the number of variables. 
Their MOMAD estimator is named for the minimization criterion, the median of minimum 
absolute deviations. 

To estimate P by these traditional methods, the problem must have more transition than 
states {i.e. T-1 > K) to be considered well-posed. Unfortunately, data are often limited so that 
there are more states than observed transitions conforming to a stationary Markov process. 
Hence, ill-posed problems may be common with Markov models. Given that the Method of 
Maximum Entropy is designed to estimate probabilities in ill-posed problems, we may recover 
an image of P by maximizing: 

(15) 

subject to: xt = xt_1P for t = 2, ... ,T (16) 

Ef=1 Pij = 1 'V i = 1, ... ,K 

where equations (16) and (17) are the consistency and additivity constraints, respectively. 

Transitions Observed without Noise 

(17) 

To examine the performance of the Method of Maximum Entropy in consider the 
following 4-state transition matrix devised by Lee, Judge, and Takayama: 

0.6 0.4 0 0 

0.1 0.5 0.4 0 (18) P= 
0 0.1 0.7 0.2 

0 0 0.1 0.9 

,· 
which was used to generate synthetic sample proportions for several transitions. The data may 
represent the aggregate behavior of an industry {e.g. size distribution of firms) or a collection 
of consumers {e.g. market shares of a good). Data for eleven periods {i.e. ten transitions) appear 
in the article by Kim and Schaible. 

Suppose we only observed the last two transitions in the synthetic data set. From these 
eight sample proportions, the Method of Maximum Entropy recovers: 
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0.614 ·0.386 0 0 

0.096 0.508 0.396 0 (19) PME = 
0 0.099 0.695 0.206 

0 0 0.103 0.897 

If we measure the accuracy of the estimators in terms of squared error loss (SEL), the Maximum 
Entropy probabilities are very close to correct with an SEL of just 5.48x10-4. 

Suppose we further restrict our information to the last transition, but know that the six 
"northeast" and "southwest" elements of P contain zeros (i.e. states 1 and 3, 1 and 4, and 2 and 
4 do not communicate in one step). Given just four sample proportions, the Method of 
Maximum Entropy yields: 

P= 

with an SEL of 0.415. 

0.434 0.566 · 0 0 

0.148 0.366 0.486 0 

0 0.125 0.332 0.544 

0 0 0.298 0.702 

(20) 

Given that additional knowledge may exist, the Method of Maximum Entropy may be 
extended to incorporate informative prior information. Suppose we specify a matrix of modest 
prior beliefs, Q, that places a 50% chance of remaining in the same state and is uniform (or zero) 
elsewhere. Then, Q and the estimated transition matrix are: 

0.5 0.5 0 0 0.457 0.543 0 0 

0.25 0.5 0.25 0 0.141 0.574 0.345 0 (21) Q= P= 
0 0.25 0.5 0.25 0 0.084 0.467 0.449 

0 0 o:5 0.5 0 0 0.243 0.757 

and the SEL has declined from 0.415 to 0.215 by considering Q. Thus, we have enhanced the 
message contained in very limited data by incorporating prior information. 

Finally, consider the relative performance of the Method of Maximum Entropy when the 
problem is well-posed. Kim and Schaible use several subsets of the transition data to compare 
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the accuracy of the QP, MAD, and MOMAD estimates. Using all of the data, their most accurate 
image of P: 

-· 
0.598 0.402 0 0 

0.101 0.508 0.391 0 (22) 
P= 

0 0.094 0.706 0.200 

0 0.002 0.098 0.900 

is recovered from the median-based MOMAD estimator with SEL = 2.34x10-5. 

From GAMS, the Maximum Entropy transition matrix is: 

0.603 0.397 0 0 

0.099 0.501 0.400 0 (23) P= 
0 0.100 0.700 0.200 

0 0 0.100 0.900 

with an SEL = 2.24x10-6, ~hich is less than one-tenth the MOMAD loss. 

Kim and Schaible estimate P for several subsets of the data, which were also used here 
to derive the Maximum Entropy estimates. To conserve space, only the squared error loss of 
each estimate appears in Table 1 below. Note that the losses from the median techniques (MAD 
/ MOMAD) are generally less than those generated by the QP estimator; Kim and Schaible used 
the greater accuracy of the median methods and the reduction in variables provided by MOMAD 
to promote their estimator. Further, Maximum Entropy losses are uniformly less than the losses 
resulting from the QP and MAD / MOMAD estimators. Thus, the entropy-based method of 
inference provides a substantial improvement over the standard techniques in this limited trial. 
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Table 1: Squared Error Loss of Competing Estimators 

Sample QP MAD/MOMAD Maximum Entropy 

9-18 0.077434 0.000234 0.0000224 

10-18 0.067556 0.000306 0.000043 

11-18 0.065884 0.001452 0.000289 

12-18 0.325224 0.074104 0.000063 

13-18 0.356956 0.362354 0.000603 

14-18 0.63913 0.07633 0.0060 

9-17 0.07201 0.000222 0.0000136 

9-16 0.070144 0.000978 0.0000268 

9-15 0.082204 0.000312 0.0000085 

9-14 0.086366 0.030288 0.0000482 

9-13 0.089232 0.07165 0.0000788 

9-12 0.370968 0.000932 0.000261 

Transitions Observed with Noise 

To examine a Markov problem in which the transitions may be observed with noise, 
consider the study of the cigarette market completed by Telser. The market shares of the three 
major U.S. cigarette brands (Camel, Lucky Strike, and Chesterfield) were collected for 1925-43. 
Telser then estimated the Markov transition probabilities in order to measure brand loyalty 
patterns among U.S. smokers. 

Assuming all smokers behave according to a stationary, first-order Markov process, the 
QP estimate of the 3-state Markov transition matrix is: 

[ 
0.6686 0.1423 0.1891 ] 

P = 0 0.8683 0.1317 

0.4019 0 0.5981 

(24) 

Lee, Judge, and Zellner present estimates from the other traditional techniques, but the results 
are similar to the QP estimate and are not included here. Given the relatively large probabilities 
along the diagonal of the transition matrix, Telser concludes that there was a considerable degree 
of brand loyalty among cigarette consumers within the sample period. 
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The Method of Maximum Entropy was also employed, but the numerical optimization 
algorithm declared the inverse problem to be infeasible. The difficulty may be due to sampling 
errors in Telser's data. The consistency constraints do not account for the disturbances, and the 
entropy method must accept all of the variability in y as signal variation. Consequently, the 
algorithm is not able to find a candidate p that represents the systematic and noise components 
as purely signal variation. Thus, the consistency constraints are not satisfied because they are 
misspecified. 

Alternately, consider the image of P recovered by the generalized method of Judge and 
Golan. Here, the support use_d for each of the disturbances is center~ about ~ero ai:id is ~j = 
[-0.5, -0.4, ... , 0, ... , 0.4, 0.5] for J = 1, ... ,T. Further, suppose moderately mformatlve pnor beliefs 
about the transition probabilities, Q, and uniform prior beliefs about the distribution of the errors 
are maintained. The resulting image recovered by Generalized Maximum Entropy is: · 

[ 
0.664 

P = 0.035 

0.363 

which is comparable to the QP estimate. 

0.143 . 0.194 ] 
0.786 0.180 

0.102 0.535 

(25) 

The lengthy sample extends .~n~er a very turbulent economic period, and the stationarity 
assumption required for the standard estimation techniques is difficult to justify. Because the 
entropy methods are not confined to well-posed problems, it is possible to estimate P for smaller 
and perhaps more homogeneous samples. If we believe the behavior of cigarette smokers varied 
over the periods of expansion, depression, and war, the sample may be divided into three 
distinct subsamples: 1925-29, 1929-39, and 1939-43. The resulting images of Pare: 

P25-29 = [ ~::~: i~:~ i::: ] 
0.252 0.228 0.519 

P29-39 = [ ~:~~: i::: i~1
: ] 

0.405 0.009 0.586 

. [ 0.517 0.316 0.166 ] 

P39-43 = 0.272 0.378 0.350 

0.279 0.351 0.371 

given the same prior beliefs about the probabilities and the error distributions. 

(26) 
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Summary and Conclusions 

Based on the limited results presented above, entropy appears to be a very useful 
diagnostic tool for economic analysis as well as a criterion for forming inferences about unknown 
probability distributions. Although Jaynes devised the Maximum Entropy formalism to solve 
ill-posed problems for an unknown probability distribution, the method may be extended to 
recover several distributions from data observed with noise. Judge and Golan also demonstrate 
that Generalized Maximum Entropy may be used to provide reasonable inferences in problems 
with real-valued unknowns. Specific applications include the general linear model, systems of 
simultaneous linear equations, non-stationary stochastic processes, and qualitative choice models. 
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