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IMPLEMENTING STOCHASTIC DOMINANCE WITH RESPECT TO A FUNCTION 

Robert P. King and Lindon J. Robison 

Introduction 

The expected utility hypothesis is the basis for much of the large body 
of theory concerned with decision making under uncertainty. It is the source 
of a general decision rule--expected utility maximization--which permits the 
synthesis of information on decision maker preferences and expectations in.· 

, a manner that ts both analytically elegant and intuitively appealing. Despite 
· its wide acceptance as a theoretical tool, however, the usefulness of the 

expected utility hypothesis in the solution of practical problems has been 
limited by several important operational difficulties. 

One particularly serious problem associated with the implementation of 
the expected utility hypothesis is that empirically estimated utility func­
tions often prove to be unreliable representations of decision maker prefer­
ences (Robison and King). Sources of error include shortcomings in the 
design of elicitation interviews, failure to consider more than a single 
performance criterion by which choices are evaluated, and respondents' own 
lack of precise knowledge about their preferences. Despite such problems, 
a utility function, once estimated, is usually treated as though it were an 
exact representation of preferences when it is used to order alternative 
choices, and any absolute difference in the expected .utilities associated 
with two possible action· choices is taken as a clear indication that one is 
preferred to the other. As a result, inaccuracies in an elicited utility 
function can cause the rejection of an action choice that is actually pre­
ferred by the decision maker. 

Imprecision in the measurement of decision maker preferences can be 
recognized explicitly in 9 decision analysis by using an efficiency criterion 
rather than a single valued utility function to evaluate alternative choices. 
An efficiency criterion is a·preference relationship which provides a partial 
ordering of feasible action choices for decision makers whose preferences 
conform to certain.rather general specifications. As such, an efficiency 
criterion can be used to eliminate some feasible choices from consideration 
without requiring precise information about preferences. First and second 
degree stochastic dominance are among the simplest and mo~t commonly used 
efficiency criteria. Both are fully consistent with the expected utility 
hypothesis, and both require only minimal information about decision maker 
preferences. Unfortunately, however, neither is a particularly discriminat­
ing, evaluative tool. In an application of second degree stochastic domin­
ance by Anderson, for example, 20 of 48 randomly generated farm plans were 
in the efficienct set. Hhile single valued utility functions .often exclude 
too many choices from the efficient set, then, these commonly used efficiency 
criteria often fail to exclude enough choices. 

Robert King is an Assistant Professor in the Department of Economics 
at Colorado State University. Lindon Robison is an Assistant Professor in 
the Department .of Agricultural Economics at Michigan State University. 
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Computational problems have also limited the applicability of the 
expected utility hypothesis in decision situations which require the consid­
eration of a large number of possible actions. Mathematical programming 
techniques are commonly used in the analysis of complex decision problems, 
but a number of serious difficulties are encountered when such techniques 
are employed in the analysis of decisions made under uncertainty. These 
difficulties impose rather severe restrictions on the representation of 
decision maker preferences, on the nature and complexity of probability 
distributions associated with alternative choices, and on the types of deci­
sions that -can be analyzed. Quadratic programming, for example, requires 
that outcome distributions be normal and that decision makers have utility 

·functions of the negative exponential or quadratic form.1 Linear programming 
alternatives to quadratic programming, such as the focus-loss (Boussard and 
Petit), game theoretic (Mcinerney), and MOTAD (Hazell) models, do not require 
that outcome distributions be normally distributed, but they employ choice 
criteria which are not fully consistent with the expected utility hypothesis. 
Finally, all of these models impose rather serious restrictions both on the 
complexity of the stochastic processes that can be modeled and on the kinds 
of management strategies that can be evaluated. With regard to the first of 
these problems, it is particularly difficult in a mathematical programming 
framework to represent stochastic processes in which random variables inter­
act in a non-additive fashion, as is the case when both prices and yields 
are random in a farm planning situation. It is also difficult to deal satis­
factorily with the impact of stochastic resource constraint levels in a mathe­
matical programming model.2 With regard to the types of decisions that can 
be analyzed, choices under uncertainty often take the form of flexible strate­
gies which make forthcoming actions contingent upon future events that the 
decision maker can observe but not control (Mass€). Such strategies are not 
easily evaluated within standard linear programming models; and, as a result, 
rather unrealistic inflexible action choices are often the only ones considered. 3 

In this paper we introduce two related analytical techniques that help to 
resolve some of the problems identified above. Both grew out of an effort to 
implement stochastic dominance with respect to a function (Meyer, 1977a), a 
recently developed efficiency criterion which can be used to provide a more 
complete preference ordering than can be achieved with first or second degree 
stochastic dominance. After a brief explanation of this criterion, the first 
of these new techniques will be discussed. It is a procedure for constructing 
interval measurements of decision maker preferences--measurements that can be 
made as precise or imprecise as a particular decision situation dictates, so 

1When used parametrically, quadratic programming requires only that 
decision makers be everywhere risk averse. 

2Paris has formulated a symmetric quadratic programming model which, at · 
least in part, alleviates this problem. 

3stochastic programming (Cocks, Rae) can be used to analyze such problems 
if they are relatively small. For large multistage problems, however, the 
input-output matrix quickly expands to an unmanageable size under this 
procedure. 
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that problems associated with both single valued utility functions and 
commonly used efficiency criteria can be avoided. Such measurements are 
required for the application of stochastic dominance with respect to a func­
tion. The second technique to be discussed is a computational procedure for 
identifying preferred choices which combines random search, simulation, and 
evaluation by the criterion of stochastic dominance with respect to a func­
tion .. This model is flexible and computationally efficient, and it is well 
suited for the analysis of a wide rangi of practical decision problems. 
Finally, the use of these techniques will be illustrated with a simple example 
concerned with crop mix and land rental decisions under price, yield, and 
wea.ther uncertainty. 

Stochastic Dominance with Respect to a Function 

Stochastic dominance with respect to a function is an evaluative 
criterion which orders uncertain action choices for classes of decision 
makers whose absolute risk aversion functions, r(x), lie everywhere between 
specified lower and upper bounds, r1(x) and r2(x).l In effect, it provides 
an ordering based on an interval measurement of preferences which is analo­
gous in many respects to a statistical confidence interval. Unlike evalua­
tive criteria based on single valued utility functions, stochastic dominance 
with respect to a function does not require that a decision m~ker's prefer­
ences be specified exactly. Unlike other commonly used efficiency criteria, 
such as first and second degree stochastic dominance, which hold only for 
quite broadly and inflexibly defined classes of decision makers, stochastic 
dominance with respect to a function imposes no restrictions on the width or 
shape of the absolute risk aversion interval within which the decision maker's 
own absolute risk aversion function is said to lie. 

Under this criterion, two alternative choices are ordered by identifying 
a utility function which conforms to the restrictions placed on the decision 
maker's absolute risk aversion function and which minimizes the difference 
between the expected utilities associated with the two choices. 2 Should the 
minimum of this difference be positive, the strategy with the higher expected 
utility is clearly preferred to the other by all decision makers whose abso­
lute risk aversion functions conform to the specified constraints. If the 

1The absolute risk aversion function (Arrow; Pratt) is defined by the 
expression: 

r(x) = -u 11 (x)/u 1 (x) 

where u'(x) and u11 (x) are the first and second derivatives of a van Neumann­
Morgenstern utility function. While such a utility function is unique only 
to a positive linear transformation, the absolute risk aversion function 
represents preferences uniquely. 

2optima 1 contra l methods are used to identify this function. Details of 
the solution technique are presented in Meyer (1977a) and an example showing 
how the solution is implemented is given in King. 
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minimum difference between the two expected utilities is negative, the two 
choices under consideration cannot be ordered by unanimous preference. 

An Interval Approach to the Measurement of Decision Maker Preferences 

Stochastic dominance with respect to a function is a remarkably flexible 
evaluative criterion which has the potential for being a valuable tool in 
applied decision analyses. Before this potential can be fully realized, 
however, an operational procedure must be developed for the determination 
of lower and upper bounds on a decision maker's absolute risk aversion func­
tion. Such a procedure is introduced in this section. It provides a means 
by which information revealed through a series of choices between carefully 
selected distributions can be used to establish lower and upper bounds on an 
individual's absolute risk aversion function. The degree of precision with 
which preferences are measure-d--i.e., the size of the interval between these 
lower and upper bound functions--can be specified directly in accordance with 
the characteristics on the problem under consideration. At one extreme the 
interval· can be of infinite width; at the other extreme it can converge to 
a single line. 

The procedure is based on the fact that, under certain conditions, a 
choice between two distributions defined over a relatively narrow range of 
outcome levels divides absolute risk aversion space over that range into two 
regions: one consistent with the choice and the other inconsistent with it.I 
The level of absolLlte risk aversion at which this diviiion is made depends 
solely on the two distributions--i.e., their properties define the two re­
gions. The decision maker's preferences, as revealed by his ordering of the 
two distributions, however, determine into which of these two regions his 
level of absolute risk aversion is said to fall. By confronting the decision 
maker with a series of choices between carefully selected pairs of distribu­
tions, the region of absolute risk aversion space which is consistent with 
his revealed preferences is repeatedly divided. With each choice a portion 
of that region is shown to be inconsistent with the decision maker's pre­
ferences, and the interval measurement of absolute risk aversion is narrowed. 
The procedure continues until a desired level of accuracy is attained. Upper 
and lower limits for the level of absolute risk aversion are determined at 
several income levels, and these values are then used to estimate upper and 
lower limits for the absolute risk aversion function over the relevant range 
of income levels. 

A simple example should help to illustrate how the procedure works. 
Consider the three outcome distributions given in Figure 1. Each contains 
six possible outcomes which are said to have equal probability of occurring. 
It can· be shown that distribution 1 is preferred to distribution 2 by all 
decision makers whose level of absolute risk aversion is greater than .0005 
over the range of outcome levels covered by these two distributions. Distri­
bution 2, on the other hand~ can be shown to be preferred by all decision 
makers whose level of absolute risk aversion is less than .0001. The two 
distributions cannot be ordered by unanimous preference over the interval 

1concepts developed by Meyer (1977b) a re used by King to demonstrate 
the validity of this statement. 
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1. Compare distributions 1 and 2 and indicate which one you prefer. 

If you prefer distribution 1, go to question 3; otherwise, to to 

question 2. 

2 . Compare distr~butions 1 and 3, and indicate which one you prefer. 

• 

3. Compare distributions 2 and 3, and indicate which one you prefer. 

/ 

Distributions 

1 2 3 

2100 1000 1750 

2400 2050 1950 

2550 2650 2500 

3100 3800 2750 

3250 3900 3950 

3450 5200 4000 

Figure 1. A Sample Questionnaire for Interval Preference Measurement 
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(.0001, .0005), which can be termed a boundary interval in risk aversion 
space.I If a decision maker prefers distribution 1 to distribution 2 and 
if it is reasonable to assume that his absolute risk aversion function can 
be adequately approximated by a constant value over the range of outcome 
levels covered by these distributions, then it can be concluded that his 
level of absolute risk aversion over that range is not less than .0001, 
since there is unanimous preference for distribution 2 by decision makers 
less risk averse than .0001. Similarly, if he prefers distribution 2, it 
can be concluded that his level of absolute risk aversion is not greater 
than .0005~ Preference for any one of the two distributions, then, identi­
fies a particular portion of risk aversion space within which his own risk 
aversion function does not lie. · 

Boundary intervals can also be identified for distributions 1 and 3 and 
distributions 2 and 3. For distributions 1 and 3 the interval is (-.0001, 
.0001), _with distribution 3- preferred below the boundary interval and distri­
bution 1 preferred above it. For distributions 2 and 3 the interval is 
(.0005, .0010), with distribution 2 preferred below and distribution 3 pre-
ferred above. , 

Using this information as a guide, the series of questions at the top 
of Figure 1 was specified. They take a form similar to that of a programmed 
learning text. The decision maker is always asked to answer the first ques­
tion, but which of the second two questions he answers will depend on the 
choice he makes in the first. Consider the case where the decision maker 
prefers distribution 2 to distribution 1 in responding to the first question. 
This implies that his level of absolute risk aversion is less than .0005. 
He is then directed to indicate his preference between distributions 1 and 
3. If he prefers distribution 1, his level of absolute risk aversion is 
shown to be greater than -.0001. This combined with the information from 
the first question indicates that his level of absolute risk aversion lies 
on the interval (-.0001, .0005). Had he preferred distribution 3, his level 
of absolute risk aversion would have been shown to be less than .0001, which, 
when combined with the information from the first questions indicates that 
it lies on the interval (- 00 , .0001). Note that, given his response toques­
tion 1, the comparison required in question 3 would not have provided any 
new information. It could serve, however, as a consistency check, since 
preference for distribution 3 in t,his case would not be consistent with 
preference for distribution 1 in the first question. 

Upper and lower bound absolute risk aversion functions constructed 
using this procedure for two decision makers are shown in Figure 2. Each 
is based on interval measurements made over four income ranges. Note that 
the slopes of the absolute risk aversion functions are not restricted. For 
decision maker A, the bounded interval slopes downward as income levels 
increase; while for decision maker B, it slopes upward and then downward. 
It should also be noted that the interval measurements for both decision 
makers contain negative as well as positive values at some income levels. 
When absolute risk aversion functions are derived from empirically estimated 

1second degree stochastic dominance with respect to a function (Meyer, 
1977b) is used to identify boundary intervals for pairs of distributions. 
This procedure is explained in detail by King in his discussion of the imple­
mentation of the interval preference measurement technique. 
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utility functions, on the other hand, their form is often severely limited 
by the functional form used to estimate the utility function (Lin and Chang). 
Finally, it should be noted that the interval approach to the measurement 
of preferences also avoids another common problem encountered in the estima­
tion of single valued utility functions. Because all questions posed re­
quire a choice between two uncertain prospects, biases due to preference 
for or aversion to gambling Qe__i::_~ (Officer and Halter) are avoided. 

The greatest strength of this procedure, however, is its flexibility. 
Results of an experiment designed to test the predictive power of interval 
preference measurements and stochastic dominance with respect to a function 
against that of empirically estimated single valued utility functions and 
first and second degree stochastic dominance, which are summarized in Table 1, 
clearly show the problems associated with the more commonly used evaluative 
criteria. Single valued utility functions provide a complete ordering of 
choices, but they often exclude decision makers' preferred choices from the 
efficient set. Such errors can be likened to Type I errors in a statistical 
test. First and second degree stochastic dominance, on the other hand, 
rarely exclude a preferred choice from the efficient set. Often, however, 
they also fail to reduce the size of the efficient set. Such errors can be 
likened to Type II errors in a statistical test. Clearly, then, there are 
trade-offs between the accuracy and the discriminatory power of a preference 
measurement. The experimental results demonstrate that, unlike other measure­
ment techniques and evaluative criteria, the combined use of stochastic dom­
inance with respect to a function and interval preference measurements allows 
explicit consideration of these trade-offs. By altering the precision of 
interval preference measurements, the percent of choices predicted correctly 
and the percent of choices ordered were easily manipulated. As the preci­
sion of the interval meusurements was increased, they became the basis for 
more discriminating preference orderings. The probability of excluding 
preferred choices from the efficient set also increased, however. 

In addition to this experimental test, the interval approach to preference 
measurement has also been used in a more applied setting. It was used in a 
series of extension workshops as a tool for helping farmers think about their 
own risk attitudes.1 Farmers found the choices to be interesting_ and had 
little difficulty in completing the questionnaire. The range of responses 
was quite broad, with individuals ranging from extremely risk averse to 
extremely risk loving. Several discernable patterns did emerge, however. 
Most decision makers exhibited increasing absolute risk aversion over lower 
income levels and decreasing absolute risk aversion at higher income levels. 
For most, the interval measurement of absolute risk aversion included nega­
tive as well as positive values at some level of income. In fact, only four 
of the seventeen decision makers for whom the questionnaires were analyzed 
had lower-level absolute risk aversion functions which were everywhere non­
negative. This casts serious doubt on the applicability of a criterion such 
as second degree stochastic dominance, which is valid only for decision makers 
who are risk averse at all income levels. 

1The interval measurements shown in Figure 2 were made at one of these 
workshops. 
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Table 1. 

Performance 
Indicator 

1 

1. Percent of cno1ces 98 
predicted b 
correctly 

2. Percent of choices 9 
ordered 

Performance Indicators for Alternative 
Preference Measuresa 

Interval Measurement Single 
Number of Questions Valued 

Utility 
2 3 4 Function 

88 78 72 65 

50 83 91 100 

awe thank Garth Carmen, who helped to conduct this experiment. 

First Second 
Degree Degree 
Stochastic Stochastic 
Dominance Dominance 

100 98 

0 7 

bA choice was said to be predicted correctly if the preferred distribution was not excluded 
from the efficient set. 
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A Generalized Computational Procedure for the Identification 
of Preferred Choices Under Uncertainty 

Interval measurements of decision maker preferences provide information 
required to order any two specified choices. In most decision situations, 
hbwever, a large if not infinite range of choices is open to the decision 
maker. As a result, some systematic technique for the identification and 
evaluation of a large number of possible strategies is also required for 
the implementation of stochastic dominance with respect to a function. Such 
a technique should be flexible enough to be applicable in a wide range of 
decision situations without requiring that important simplifying assumptions 
be made concerning decision maker preferences, the form of outcome distribu­
tions associated with the strategies considered, or the nature of the problem 
itself. Such a technique is introduced in this section. 

Some of the shortcomings of mathematical programming models commonly 
used for the analysis of decisions made under uncertainty were identified in 
the introduction to this paper. They include unrealistic restrictions on 
decision maker preferences and probability distributions and limitations on 
the degree to which complex stochastic processes and flexible management 
strategies can be adequately considered. The risk efficient Monte Carlo 
programming (REMP) model developed by Anderson is, in many respects, an 
attractive alternative to other mathematical programming models.· The REMP 
model employs Monte Carlo programming techniques (Donaldson and Webster) to 
construct a large number of feasible management strategies in a random fash­
ion. The distribution of total net returns associated with each strategy 
under consideration is determined analytically under the assumption that 
distributions of net returns for each activity and distributions of total 
total net returns for each strategy are members of the beta family. The 
evaluative criterion of second degree stochastic dominance is used· to 
evaluate strategies sequentially as they are generated. The REMP model 
allows for considerable flexibility in the representation of probability 
distributions, since the beta distribution can assume a variety of forms. 
It also places few restrictions on decision maker preferences, since second 
degree stochastic dominance requires only that decision makers be risk 
averse. As has already been noted, however, second degree stochastic dom­
inance is not a very discriminating evaluative criterion, and efficient 
sets identified by the REMP model can be prohibitively large. 

The generalized procedure for the identification of preferred choices 
described here is in many respects an extension of the REMP model. Feasible 
strategies are generated using a modified form of the Monte Carlo program­
ming model that is the basis for Anderson's model. Under this more general 
procedure, however, a strategy can be defined by specific levels for choice 
variables, by a set of adaptive decision rules which use information from 
the environment to determine actions through time, or by some combination 
of the two. Probability distributions of outcome levels associated with 
the strategies considered are not determined analytically as in the REMP 
model. Rather, they are determined by simulating performance under each 
strategy for a large number of sample states of nature. The resulting sets 
of outcomes are used to define cumulative distribution functions for the 
outcome distributions associated with each strategy. This procedure facili­
tates the consideration Of the impact of a wide range of random factors and 
allows for much greater flexibility in the representation of compl~ sto­
chastic processes. Finally, strategies are evaluated using interva-1' 
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measurements of decision maker preferences in combination with the evaluative 
criterion of stochastic dominance with respect to a function. 

Like the REMP model, this procedµre is an iterative one. Strategies 
are generated and evaluated sequentially. The determination of a truly 
optimal choice is not ensured. If a sufficiently large number of plans is. 
examined, however, it is reasonab1e to conclude that the efficient set will 
contain a nearly optimal choice. In applications to date, from 250 to 2,000 
strategies have been evaluated. In practice the number considered depen9s 
on the complexity of the problem being analyzed, on the form of the manage­
ment strategies, and on the perceived value of identifying strategies which 
are very nearly optimal. 

Because of its similarity to the REMP model, this procedure for the 
identification of preferred choices under uncertainty can be called the 
genffralized risk efficient Monte Carlo programming model (GREMP). Inter­
relationships among the three major processes within the model--strategy 
generation, outcome distribution determination, and evaluation--are illus­
tr~ted in the flow chart in Figure 3. A more complete description of the 
model and a listing of the computer program which implements it are given 
in King. 

Finally, several additional comments should be made about the imple­
mentation of the GREMP model. Computationally, it is relatively efficient. 
In the analysis of one test problem with 35 choice variables, 12 linear 
constraints, and a relatively simple simulation component, for example, 
1,000 alternative strategies were generated and evaluated usi~g less than 
70 second~ of CPU time on a CDC 6500. Furthermore, the core size of the 
computer program which implements the GREMP model is relatively small, and 
the degree of computational accuracy required for internal calculations is 
not particularly great. This suggests that it may be possible to design 
software which will permit the use of the GREMP model on a moderately sized 
personal computer. With regard to ease of implementation, the computer 
program for the GREMP model can be easily adapted for use in the analysis 
of a wide range of problems. Several problem-specific subroutines must be 
supplied by the user, though, so some knowledge of computer programming is 
required. · 

An Example 

The strengths of the GREMP model and of the interval preference 
measurements which are the primary source of normative information for its 
operation can, perhaps, be best illustrated with an example. The problem· 
considered here involves the identification of a land rental and cropping 
strategy for a cash grain farmer who owns 240 tillable acres. Up to 320 
additional acres can be rented, but land can be rented only in blocks of 
80 acres. Corn and soybeans are the only crops grown. Yields for both 
crops are affected by growing conditions and by timeliness of planting and 
harvest, all of which are considered to be random factors. Product prices 
represent still another source of uncertainty in the problem. 

A management strategy in this simple example is defined by four choice 
variables. Acres rented, v1, must be ari integer multiple of 80 and can range 
from Oto 320. Acres of corn and soybeans, v2 and v3 respectively, are 
considered to be integer multiples of 10. Levels of these variables must 
conform to the following constraint: 
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v2 + v3 = 240 + v1, 

which implies that the combined acreages of the two crops must equal total 
available acreage. Finally, because time available for field work is con­
sidered to be a random factor, it may be desireable in some states of nature 
to stop planting corn before the acreage level specified by· v2 is reached. 
This would be the case, for example, if poor weather in April and early May 
delayed planting to such an extent that expected corn yields would be unac­
ceptably low. The fourth choice variable, v4, then, is a date after which 
all unplanted acreage will be planted in soybeans regardless of the values 
of v2 and v3. Possible values for v4 are: May 18, May 26, and June 3. 

Subjective probability distributions for the three sets of random 
factors in this problem--crop ~rices, crop yields given specific planting 
and harvest dates, and time available for fieldwork during specifi~ planting 
and-~arvest periods--were specified u~ing techniques described in King, and 
Monte Carlo methods were used to construct 20 sample states of the environ­
ment.1 A simple simulation model was specified to determine the level of 
net income realized under any particular management strategy in any given 
state of the environment. The simulation begins with the computation of 
charges for land rental, if any. Subject to time available for fieldwork, 
the model then simulates the planting of corn until the specified corn acre­
age is attained or until the date after which all remaining acreage is to be 
planted in soybeans. Planting of soybeans then proceeds until all acreage 
is planted or until June 19, the final day of the last planting period. 
There is no assurance that all available acres will be planted in a particu­
lar state of nature; this depends on levels of time available for fieldwork. 
Costs for seed, fertilizer, herbicides, and fuel are incurred only for 
acreage actually planted. . 

Harvesting is simulated .in a similar manner. Subject to time available, 
soybeans are harvested as quickly as possible, with acreage planted first 
being harvested first. This continues until all planted soybean acreage is 
harvested or until the date is reached after which all unharvested acreage 
is judged to be a total loss. The harvest of corn then proceeds in a similar 
manner. Again, there is no assurance that all acres planted will be har­
vested. All harvested acreage is classified according to crop, planting 
period, and harvest period so that total production for each crop can be 
determined. Drying and hauling costs are assessed for each for each bushel 
harvested. Finally, receipts from crop sales are determined by multiplying 
the number of bushels of each crop harvested by the relevant crop price, and 
net income is computed by subtracting fixed and variable costs from this 
figure. 

The GREMP model was used to identify an efficient set of choices for 
each of the two decision makers whose preference measurements are given in 
Figure 2. In each case 500 strategies are generated and evaluated. The 
efficient set of choices for decision maker A is comprised of the eight 

1 Crop price and days available for fieldwork distributions were con~ 
sidered to be multivariate beta, while crop yield distributions were con­
sidered to be multivariate normal. A procedure developed by King for the 
generation of variates from non-normal multivariate distributions was used 
to construct the sample environmental states. 
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strategies defined in Table 2. Levels of land rented range from Oto 160, 
with four of the eight strategies calling for land rental levels of 80 acres. 
Soybeans are the predominant crop in each strategy, reflecting the fact that 
cost-price relationships favor soybeans in this example. Because of the low 
corn acreage levels, the switching rule is of little importance in these 
strategies. Mean income levels range from slightly less than $3,000 to 
slightly above $10,000. Minimum income levels vary little from one strategy 
to another, but maximum income levels are significantly affected by land 
rental values. 

The efficient set of choices for decision maker·B is comprised of the 
nine strategies defined in Table 3. In this case land rental levels tend to 
be higher than those call~d for in the strategies included in the efficient 
set of decision maker A. With the higher total acreage levels, the mix 
between corn and soybeans becomes more even, but most of the available 
acreage is still planted to soybeans in each strategy. Mean income levels 
tend to be higher in this set of strategies, but the dispersion of possible 
income levels is also greater. Given the differences in the preference 
measurements for the two decision makers, the dissimilarity between the two 
efficient sets is understandable. The interval measurement of absolute risk 
aversion for decision rnaker A indicates a high level of absolute risk aver­
sion over negative income levels, which implies that he has a strong aver­
sion to losses. Decision maker B, on the other hand, has much lower levels 
of absolute risk aversion at low income levels, and his efficient set contains 
strategies which provide opportunities for the realization of relatively high 
income levels but which can also result in substantial losses. 

Several general comments can be made about these results. First, they 
provide clear evidence of the discriminatory power of interval preference 
measurements and stochastic dom1nance with respect to a function. Both 
efficient sets contain less than 2 percent of the total number of strategies 
examined. Second, these results demonstrate that preferences have an impor­
tant impact on the choices made by individuals, which implies that explicit 
consideration should be given to them in an applied decision analysis. 
Finally, the results help to illustrate the power of the GREMP model. 
Though the problem considered here is a relatively simple one, it would be 
extremely difficult to solve, as formulated, using more conventional mathe­
matical programming techniques due to the nature of the management strategy, 
which has integer choice variables and is flexible enough to allow for changes 
in crop mix in response to environmental conditions, and due to the complex­
ity of the stochastic process that is modeled. 

Implications for Future Research 

The two related analytical techniqu~s introduced in this paper were 
designed to facilitate the application of decision theory based on the 
expected utility hypothesis in a practical context. They help to resolve 
some of the problems that have limited the usefulness of this valuable 
theoretical tool in the solution of actual decision problems in which uncer­
tainty is an important factor. Both techniques have been used in.recently 
completed or ongoing research projects. The interval approach to preference 

_measurement is currently being used in a study designed to test for correla­
tions between decision maker attributes and their attitudes toward risk tak­
ing (Carman). This study will provide valuable additional experience with 

. • 
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Table 2. [fficient Strategies for Decision Maker A 

Control Variable' Levels Properties of Net Cash Income Distribution 
Efficient Acres Acres Acres - S,1-itchi11g Standard Mi11imum Max in;um Strategy Mean .,.. Rented Corn Soybeans Date Deviation Value Value 

0 0 240 June 3 3816 8357 -11875 20368 

2 160 120 280 May 26 l 0152 12517 -12468 30877 

3 80 60 260 May 18 7138 10328 -12102 25972 

4 160 110 290 May 26 9936 12526 -12605 31170 

5 80 50 270 May 18 7168 l 0437 -12220 26419 

6 80 80 240 June 3 6994 l 0142 -11865 24305 

7 0 50 190 May 26 2949 7691 -11482 15963 

8 80 70 250 June 3 7079 10239 -11983 251_65 

Table 3. Efficient Strategies for Decision Maker B 

Control Variable Levels Properties of Net C-ash Income Distribution 
Efficient Acres Acres Acres Switching Standard Minimum Maximum Strategy Rented Corn Soybeans Date Mean Deviation Value Value 

160 160 240 May 26 9840 12199 -12987 27685 

2 240 200 280 May 26 10808 15481 -17272 33952 

3 160 120 280 May 26 10152 12517 -12168 30877 

4 160 140 260 May 18 10167 12466 -12231 30331 

5 240 190 290 May 26 10798 15483 -17272 33952 

6 160 130 270 May 18 10193 12472 -12350 30]66 

7 lGO 140 260 June 3 10088 12395 -12231 29610 

8 160 130 270 May 26 10167 12458 -12350 303!i6 
,. 

9 160 150 250 June 3 9949 12367 -12604 28764 i 
' 
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this procedure. The GREMP model was used in an extension of the example 
presented in the preceeding section to evaluate combined production and 
marketing strategies for an agricultural firm (King). Of particular inter­
est in this application is the incorporation of adaptive forward contracting 
decision rules into a larger marketing strategy. These flexible strategies, 
the parameters of which are choice variables within the model, make forward 
contractfng decision over a nine-month period dependent upon price expecta­
tions, price movements, and the degree to which the crop production plan 
has been successfully implemented. The GREMP model is also currently being 
used in a study concerned with investment and disinvestme.nt decisions by 
electric utilities: Two possible future applications are in the areas of 

. integrated pest management and on-farm water management. In the pest manage­
ment study, the GREMP mode 1 wi 11 be used to i den ti fy fl exi b 1 e weed contra 1 
strategies for two cropping systems in Colorado and to determine the value 
of weed infestation predictions based on weed seed counts m~de prior to 
planting. In the irrigation study, it will be used to evaluate alternative 
cropping and irrigation strategies for Egyptian farmers. In both of these 
studies it is hoped that interval preference measurements can be made for 
representative samples of decision makers. · 

• 
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