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SPECIFICATION OF FIRM LEVEL RISK BEHAVIOR MODELS: 

ANOTHER LOOK AT THE ALTERNATIVES 

Roger Selley 

Members of this committee will recall the report presented by Douglas Young 
at our last meeting (Young, et. al.). The papers that followed and the subsequent 
discussion suggested.a number of topics that could be usefully considered in more 
detail. This paper will discuss several questions that frequently must be answered 
when developing an approach to risk in firm level research and extension appli
cations. An attempt is made to identify and evaluate the alternatives based upon 
the current state of knowledge. This discussion will be limited to the static 
models of portfolio selection. 

It will be useful to restate the traditional decision model. Let Aj represent 
the jth course of action and Si the occurrence of the ith state. Let Cii represent 
the consequence when selection of the jth action is followed by the occutrence of 
the ith state. This model is represented in matrix form in Figure 1. 

Actions 

~ A2 Aj A 
J 

sl c11 c12 clj clJ' 

s2 c21 c22 c2j c2J 
States 

Si c:1.1 ci2 cij ciJ 

SI Cil CI2 Cij CIJ 

Figure 1 The traditional decision model where the Cij's are the consequences. 

This decision model can be used as a starting paint a) in studying actual 
behavior, b) in determining how a decision maker ought to behave, c) in helping 
a decision maker select among possible actions or d) in predicting behavior. 
However, utilization of the decision model framework requires answers to most if 
not all of the following: 

1. What criteria are to be assumed in evaluating actions? 
2. What is the action set? 
3. Row is the action set reduced to a manageable set? 
4. How are the possible states and consequences determined? 
5. How is a preferred action selected? 

Particular focus will be given here to the first three of these questions. 

Roger Selley is Assistant Professor in the Department of Agricultural Economics, 
University of Arizona, Tucson. 
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The Criterion Function 

The maximum expected utility criterion is widely accepted as a normative 
basis for decision making (Whitmore and Findley, p. 14). However, alternatives / 
have been proposed that consider, for example, a trade off between mean and 
variance of returns without being particularly concerned about motivating the 
preference ordering from expected utility theory. In addition there are various 
safety-first and related chance constrained formulations of the problem that have 
been proposed. See for example the works reproduced in Ziemba and Vickson, 
pp. 203-330. 
/ The expected utility hypothesis assumes the criterion function: 

where 

Pr(Si) = probability of the ith state, Si, and 

U[Cij] = utility of the consequence Cij• 

The mean-variance, E-V,approach on the other hand assumes that the consequences 
of an action are described sufficiently by knowing the mean and the variance of 
those consequences. AB a result, the decision maker can limit consideration to 
those actions that are E-V efficient, e.g., those actions where no other action 
exists that has the same mean and a lower variance. It has been shown that when 
U is quadratic the expected utility criterion results in selecting from the E-V 
efficiency set (Lintner). 

The E-V approach results in positive and negative deviations about the mean 
being equally weighted. If the decision maker is more sensitive to deviations 
below the mean, a semivariance approach which gives weight only to negative 
deviations about the mean may be desirable. The mean-semivariance, E-SV, approach 
when semivariance is calculated around a fixed point has been shown to result in 
an efficiency set that f7 a subset set of the second degree stochastic dominance 
efficiency set (Porter)-. This same result can not be shown for the E-V efficiency 
set unless the consequences are normally distributed, in fact, Porter and Carey 
found in a study of common stocks that the E-V efficiency set inc~yded a stock 
that was inefficient based upon first order stochastic dominance.- This result 
is expected in theory since a quadratic utility function is not monotone increasing. 

The safety-first models have also been motivated from a belief that decision 
makers are more sensitive to deviations below the mean. Those models have been 
reviewed in detail by Pyle and Turnovsky! The Telser version of the safety-first 
principle, for example, assumes a criterion function where the objective is: 

(2) Max E (Cij) subject to Pr (Cij~ d) .::_ a 
j 

where 

E (Cij) = Ii Pr(Si) cij 
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The probability a that the consequences of selecting action A1 are less than or 
equal to the disaster level dare assumed to be set~ priori tly the decision 
maker. Pyle and Turnovsky show that the safety-first criteria result in linear 
indifference curves in mean-standard deviation space. Therefore, if the mean
standard deviation efficiency set is strictly donvex there is a unique safety
first indifference curve that is tangent to the efficiency set. Hence the same 
results can be obtained from applying the safety-first ctiterion and the E-V 
approach where the efficiency set is a strict~y convex E-V efficiency set. This 
correspondence breaks down, however, when there is a risk free asset. It remains 
to oetermine which approach is to be faulted for this lack of correspondence, 
however. Also the performance of the safety-first criterion where distributions 
contain more than two parameters has yet to be investigated. 

It is of interest to note that the safety-first approaches have at times 
been characterized as departures from the expected utility framework (Pyle and 
Turnovsky, p. 75). The following utility function will be considered in more 
detail below: 

(3) U [Cij] = Cij + G [Cij'T] 
where 

T = target income, 

G [Cij'T] = 0 if cij < T and 

G [Cij'T] =a> 0 if cij ~ T. 

If expected utility is maximized for Eq.(3) the following criterion function 
results. 

where 

a = Pr(Cij < T) 

It can be shown that a parametric solution of the Telser problem, Eq.(2), where 
d = T results in the E-T (mean-target) efficiency set for the criterion function 
in Eq.(4) and that a unique solution will exist if the efficiency set is strictly 
concave. Hence under specific conditionc~ the safety-first framework can be 
generated from the expected utility hypothesis. The correspondence with sto-
chastic dominance has yet to be explored. ; 

Another alternative to the E-V approach is to consider additional moments. 
A Taylor series expansion of U[Cij] can be used. This alternative will be 
discussed further below. ' 

The expected utility hypothesis is based upon a set of axioms that have been 
studied in considerable detail. There have been concerns reported in the litera
ture that the independence axiom is frequently violated by decision makers. 
Machina has recently shown that the expected utility hypothesis is a specific 
case of a more general hypothesis, however, that does not require the independence 
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axiom. Most of the results derived from expected utility maximization assuming 
concave utility functions, however, are still valid in the more general case. 

A further comment on ranking alternatives according to risk is perhaps· 
appropriate at this pmint. In an E-V framework, for example, the more risk 
averse decision makers will tend to select actions from the E-V efficiency 
frontier that have a lower variance. It may be useful to label as riskier those 

, alternatives that would be selected by a less risk averse decision maker when 
· maximizing expected utility. The use of the coefficient of variation is of 

particular interest here since it is a frequently used measure of dispersion and 
:ts often considered to be a measure of risk. To illustrate the problem involved 
in using the coefficient of variation as a measure of risk refer to Figure 2 below. 

C 

Figure 2 A mean-standard deviation efficiency frontier 

The mean-variance efficiency frontier is represented in Figure 2 in mean-standard 
deviation space since the coefficient of variation is defined as the standard 
deviation divided by the mean, a/µ. Let AB represent the µ-a efficiency frontier. 
The coefficient of variation is constant along the ray OC hence the coefficient of 
variation is the same for an action characterized by point D and an action 
characterized by point E. Clearly points D and E are not equally risky, however, 
in that it would require a less risk averse decision maker to select E when 

/ 



58 

maximizing expected utility. The coefficient of variation can be used in a 
mean-variance framework to rank actions that have the same mean. It cannot in 
general be used to rank altematives according to risk that have different means. 

The Action Set 

The production, marketing, and financing altematives to be incorporated in 
the action set are in part a function of the imagination of the researcher, the 
extension worker or the decision maker, but are ultimately limited by the princi-
ple of bounded rationality. · 

The term bounded rationality is frequently used to describe the 
limited ability of a person to formulate decision problems in their 
totality. People have neither the time, the energy, nor the interest 
to search out all the possible courses of action on a decision 
problem. They consider the more obvious and potentially attractive 
altematives and ignore the rest. (Whitmore and Findlay, p.6} 

The various algorithms that have been applied in decision analysis have success
fully expanded our ability to generate and evaluate actions.- Although there is 
algorithm that wili tell us that we should consider growing sunflowers, for 
example, if. if hasnrt-afready·b-een provid-ed as -input:. to -tb.e algcir:tthm, ·most of the 
algorithms can be used to generate combinations of production, marketing, and 
finance altematives that might not otherwise have been identified. The algorithms 
that have been developed to apply the stochastic dominance, SD, criteria can not 
generate combinations of altematives, however. Furthermore, 

There does not and may never exist an algorithm for developing 
weighted combinations of risky assets that are efficient by any 
of the stochastic dominance rules. (Richard Burgess in Whitmore 
and Findlay, p.165} 

The approach that can be used in reducing the action set using SD is to 
develop an algorithm that will generate feasible actions and then apply the SD 
algorithms to reduce the action set to a manageable size. The algorithms developed 
by Porter, Wart and Ferguson can be used to apply the SD rules although some 
errors have been detected in the algorithms since tlieir publication cf. Whitmore 
and Findlay, p. 79. An algorithm for SD is also given in Anderson, pp. 312-318. 

Since the E~SV efficiency set for a fixed point is a subset of the second 
order SD efficiency set and Hogan and Warren have developed an efficient algo
rithm to find the E-SV efficiency set, for many purposes finding the E-SV 
efficiency set will be the approach to use. Further, Whitmore and Findlay 
(p. 367} have suggested that parametric solution on the fixed point for the 
E-SV efficiency set may result in the entire second order SD efficiency set, 
although this result has not yet been demonstrated. 

The mean absolute deviation or MOTAD approach develops an efficiency set 
using linear programming, LP, that simultaneously approximates the E-V and the 
E-SV efficiency sets where the semivariance is calculated using the mean (Hazell). 
In contrast to calculating semivariance around a fixed point, however, calculating 

' 
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semivariance around the mean results in actions in the E-SV efficiency set ·that 
are second order SD inefficient (Porter). This suggests a need to revise the 
M0TAD models to calculate the semivariance around a fixed point. 

Another altemative is to use a Taylor series expansion of a utility function 
to define a nonlinear programming problem. For example, a third order approxima
tion results in a criterion function that has the mean, variance and the third 
moment about the mean as arguments. Nonlinear programming algorithms are not as 
generally available, however. Also the correspondence between the efficiency set 
derived from the use of higher moments and SD efficiency has yet to be investigated. 
In the limit, parametric solutions to a nonlinear programming problem using higher 
order moments in developing an efficiency set where appropriate constraints have 
been placed upon the parameters in the criterion function so that the utility 
fun~tion is everywhere increasing, for example, must result in a first order 
SD efficiency set. Rulon Pope is currently investigating the use of a nonlinear 
algorithm to derive an efficiency set where the third moment is included, but 
he has indicated having problems where the utility function is convex at low levels 
of income and concave at higher levels of income. 

The use of chance constrained programming, CCP, models to solve saf~ty first 
problems provides another altemative for generating and evaluating actions. 
Specifying a problem in terms of a discrete probability distribution makes it 
possible to solve CCP models using a LP algorithm. Consider, for example, the 
following safety first problem: 

(5) Max E(C'X) 
X 

subject to 
AX<b, X>0 

and 
Pr(C'X<T,) < a 

which for a discrete probability distribution can be represented as: 

(6) Max E(C'X) 
k,X 

subject to 
A X<b, 

and 
X>0 

i € k 
where 

Ci X>T, 

Ci= column vector of the net 

k = a subset of the I states 

prices in the ith state 

where LPr(Si)~ 1-a 
i € k 

In other words, solving a LP problem where profits are maximized subject to the 
usual:;constraints plus a set of constraints that require profits to equal or 
exceed a target (1 - a) X 100% of the time results in one way in which the 
target can be achieved or exceeded (1 - a) X 100% of the time, i.e. for each k, 
the maximum profit level where Pr(C'X<T)<a is the maximum profit achieved over 
all k. For any I, a small a requires that a relatively small number of LP 
problems be solved. For example, where 20 different states, I= 20, are 
used and Pr(Si) = .05 for all i•l, I, an a= .05 would require 20 separate LP 
solutions. 
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Possible States and the Consequences 

Douglas Young has addressed the problem of how to best use historical data 
to determine possible states and the consequences. In many cases, however, 
historical data may provide· ·a poor representation. of expectations. No attempt 
will be made here to review th~ literature concerning the formulation of 
expectations. Although formulating expected yields is not without its problems, 
the formulation of expected prices is considerably more complex. This very im-
portant problem is left for treatment elsewhere. ~ 

We have so far ignored the details of the mathematics of risk analysis, 
except for pointing out the limitations in the use of the coefficient of variation. 
However, since most of the models discussed involve the calculation of summary 
statistics, a comment is perhaps 1n order on how to calculate these summary 
statistics. This discussion is taken up here because the relationship between 
the possible states and the consequences determine the method required in cal
culating the summary statistics. This point will be illustrated for the cal
culation of expected profits. 

Consider, for example, the production of a crop such as lettuce. Revenue is 
determined by the acres harvested, the crates harvested per acre and price per 
crate. Production costs depend upon the acres planted, the inputs required to 
grow the crop and the harvesting costs. Consider the following profit equation: 

P = ¾ Y Py - AP P~ X - C[¾, Y] 
where 

P = profits, 

¾=acres harvested, 

Y • crates harvested per acre, 

p = sales price per crate, y 

A = acres planted, p 
p = column vector of input prices, 

X 

X = column vector of inputs used to grow an acre and 

C [¾, Y] = harvesting costs, 

Assuming acres planted and growing costs are known, expected profits become: 

E(P) = E(A. Y P) - A P' X - E(C[A., Y]) -n y p x -n 
It is often the case for lettuce that the acres harvested and the crates harvested 
per acre pepend upon market conditions and the specific price received depends 
upon the quality of the crates which depends upon the intensity of harvesting 
and the number of crates harvested from each ac:ce., Then expected revenues are 
an expectation of a product and E(¾ Y P ) ,; E(Ar_) E(Y) E(P ) • Also since acres 
harvested and crates harvested per acre Ire stocilastic, hariesting costs are 
stochastic and expected harvesting costs are likely to be the expectation of a 
nonlinear function of the stochastic variables so that E(C[Aii, Y]) ~ C[E(Aii), E(Y)]. 

,; 
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The lettuce example illustrates a situation where even the expected profit 
maximizer, the risk neutral decision maker, is sensitive to price and yield risk. 
Although this example is not typical, it does help emphasize the need to be clear 
about the assumptions that are needed to be able to calculate expected profits 
(the consequences) from expected yields and expected prices. 

Selection of a Preferred Action 

Selection of an action by a decision maker can be greatly facilitated by 
reducing the action set to a manageable set and clearly representing the relevant 
characteristics of those actions. Providing the decision maker with a systematic 
approach that is consistent with an agreed upon set of axioms (rules) will also 
be useful. 

This group is familiar with the elicitation of utility functions. The work 
of Machina provides an approach that does not use the independence axiom so that 
models for eliciting or estimating preferences need not be restricted to the 
traditional expected utility maximization hypothesis. A potentially fruitful 
alternative approach to eliciting utility functions that has seldom been mentioned 
in the literature is what Whitmore and Findlay call the revealed preference 
method. Consider, for example, the use of the E-SV approach where sufficient 
information is collected to determine the expected value and semivariance for the 
action taken in a particular year and the relevant decision maker's characteris
tics are also collected for a sample of firms. With proper specification of a 
model, it would be possible to estimate a utility functfon that is dependent upon 
the characteristics of the decision maker. Pope has considered this approach 
where both the production function and the utility function are estimated. Jebuni 
has applied the revealed preference method by estimating a quadratic utility 
function using the first order conditions for maximizing expected utility. The 
revealed preference approach is ex post where the elicitation of utility functions 
is ex ante. On the other hand, the elicitation of utility functions is usually 
based upon hypothetical data where the revealed preference approach is not. A 
comparison of these approaches would be of considerable interest. 

Finally a word about presenting an efficiency set as an aid to decision 
makers. A model can be quite complex for research purposes, but extension 
applications require some care in the selection of approaches. As an illustration 
of what can be done, consider the efficiency set from the E-T model discussed 
earlier. See Figure 3. 
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E(c'x) 

a= .I 

a=O 

0 T* T 

Figure 3 A representative efficiency set for the~~! 

Referring to Figure 3, the target T* can be achieved ninety percent of the 
time, a= 0.1 or (1-a) = 0.9, and the mean profit would be E, the maximum 
possible profit. Alternatively, the same target, T*, could ~e achieved 95 
percent of the time and mean profits would be E2 or T* could be achieved 100 
percent of the time and mean profits would be E1• These results can likely be 
made understandable to a large audience of decision makers. The findings of this 
paper suggest that it would be desirable to be able to present the results of 
the E-SV model at least as effectively. 

Conclusion 

A review of the theoretical work on treatment of risk at the firm level 
suggests that a mean-semivariance approach is most consistent with current 
theory if the semivariance measure is calculated using a fixed point. For those 
that find a safety-first approach appealing, this mean-semivariance measure may 
be attractive where the fixed point is interpreted as a target or disaster level 
and the semivariance is the mean of the squared deviations below the target. A 
probability of achieving the target (or exceeding the disaster level) is not 
directly involved in the mean-semivariance approach, however. An algorithm is 
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available for applying the mean-semivariance approach using a fixed point 
(Hogan and Warren). Also a MOTAD model revised to use a fixed point is possible. 

Another possible·approach that has been shown here to be consistent nth the 
expected utility hypothesis is a modified version of the safety-first model. A 
linear programming approach to deriving an efficiency set has also been suggested. 
The correspondence of this model with stochastic dominance efficiency sets has 
yet to be investigated. 

Footnotes 

1. The second degree stochastic dominance efficiency set results from eliminating 
all actions that would be eliminated by any expected utility maximizer that 
has a utility function that is monotonically increasing and strictly concave 
i.e. with diminishing marginal utility to the consequences (returns). 
(Anderson pp. 284-288) 

2. The first degree stochastic dominance efficiency set results from eliminating 
all actions that would be eliminated by any expected utility maximizer that 
has a utility function that is monotonically increasing, i.e. a comparatively 
weak dondition. (Anderson, pp. 282-284) 
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