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RISK AVERSION, INPUT USE, AND HETEROSKEDASTIC SUPPLY

H. Alan Love and Steven T. Buccola*

Econometric supply analysis recently has stressed the relation
between a firm’s technology and its response to prices. Assumptions
about technology structure have been tested in the course of supply
estimation or combined with sample data to improve estimation
efficiency. For example, supplies and input demands often are derived
from an indirect profit function using duality theorems. If
sufficiently flexible production functional forms are employed,
production convexity and other properties may be tested in the course of
profit function estimation. The firm’s price responses may, of course,
be linked to its technology using primal methods as well.

Unfortunately, risk and nonneutral risk preferences greatly
complicate the task of developing a correspondence between observed
technology and economic choice. Production relations must be expanded
to include inputs’ effects on the variance and (possibly) higher moments
of yield. Numerous higher moment effects may be involved, depending on
utility form. More importantly, the firm’s objective function cannot be
fully specified a priori because utility shape is one of the unknowns to
be determined. Adequate methods have not yet been found of formulating
and restricting a dual objective function in a manner consistent with
these unknown preferences (Pope 1982b).

Attention therefore has turned to primal -- but piecemeal --
models of positive economic behavior under risk. The present paper
considers afresh the relationship between producer technology and risk
preference estimation. It begins with a brief Took at earlier efforts
in this area, then specializes attention to technologies in which
marginal yield moments are independent. We explore implications of
this technology class for tests of consistency between production
function and input demand parameters and for joint inference of
preferences and technology. Applications are provided to Iowa corn
production and our estimates compared with those in earlier studies.

Results show that joint estimation of utility and production
function parameters is indeed feasible using primal methods. Insofar as
it provides more efficient parameter estimates, such inference would be
preferred to isolated inspection of a utility or production function.
Parameters estimated jointly are in some cases significantly different
from those derived from the production function alone.

*H. Alan Love is an assistant professor and Steven T. Buccola a
professor in the Department of Agricultural and Resource Economics,
Oregon State University. The authors wish to thank Heung-Dong Lee for
research assistance, David Birkes of the Statistics Department at Oregon
State University for a review of some statistical issues, and Eirik
Romstad for help with figures.




Earlier Literature

Estimation of stochastic production functions received a stimulus
a decade ago when Just and Pope showed that standard methods of
heteroskedasticity correction could be used to draw inferences about
input-risk relations (Harvey). A key element of their approach was to
assume a normal yield distribution and to permit an input’s effect on
yield risk to be independent of its effect on yield mean. The procedure
involved initially estimating the mean portion of the production
surface, fitting the risk portion through a regression of the log
absolute residuals, then improving efficiency of the mean estimates
through Aitken-type weighting. Buccola and McCarl showed that for small
samples these estimates are biased and inefficient and that performance
can be improved through repeated iteration.

Nelson and Preckel considered instead a beta yield distribution,
which may be substantially skewed. They used maximum 1ikelihood methods
to estimate marginal impacts of selected farm inputs on the beta’s
parameters. Such impacts were used to derive an input’s influence on
successive yield moments. Although a beta’s moments are not independent
of one another, some separation was achieved in an input’s effects on ‘
yield mean and variance by permitting the input to have independent
effects on the beta distribution’s parameters. A result is that
fertilizer use, say, might increase yield mean but reduce yield
variance.

A number of studies have estimated risk preference parameters by

fitting input demands, constrained by an exogenously estimated
production surface, to a sample of economic behavior (Pope 1982a).
Wiens, Paris, and Brink and McCarl used mathematical programming
frameworks to solve for optimal input allocations subject to
restrictions involving absolute aversion. Once the stochastically
efficient input combinations were known, Wiens and Paris substituted
actual producer input usages into the restrictions to derive an estimate
of the average risk aversion coefficient. Brink and McCarl chose the
risk aversion coefficient minimizing the distance between actual and
programmed allocations.

Antle imposed on a set of input demands prior parameter estimates
of his moment-based stochastic production function, then used the
constrained demands to fit parameters of the population distribution of
risk attitudes. His approach preserves the independence of marginal
yield moments implicit in Just and Pope’s model; but the yield
distribution may be flexibly nonnormal. Both Antle and the authors of
mathematical programming models treat absolute risk aversion as
essentially constant over wealth.

Loehman and Vandeveer lately have returned to a production
specification violating the independence of marginal yield moments.
They show that an interactive biological growth model requires choice
variables fixed early in a production process to interact with random
events occurring later. Marginal mean and marginal variance of yield
become interdependent. The authors use prior estimates of the
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production function to simulate a parameter partially reflecting risk
preference. Unfortunately this parameter reflects, in an
indistinguishable way, both profit moment and risk preference factors.

The order of more known to Tess known in the mathematical
programming, Antle, and Loehman and Vandeveer studies might well have
been reversed. Prior estimates of risk preference factors (from, say,
farmer interviews) could have been used together with first order
conditions to estimate production function parameters. A difficulty of
treating either set of parameters as prior and exogenous to the input
demands is that the imposed parameters may be inconsistent with the ones
input users actually had in mind. If the imposed values ill-reflect
decision maker assumptions, parameters residually estimated also will
i11-reflect their assumptions. A way around this dilemma is to estimate
preference and technology parameters jointly when the input demands are
fitted. Feasibility of doing so depends upon whether all parameters are
jdentified and whether the criterion surface is well behaved.

Issues in Joint Estimation

Prospects for joint estimation are influenced by utility
functional form, yield distribution form, and assumptions about the
independence of marginal yield moments. For instance, considering
marginal yield moments interdependent as in Loehman and Vandeveer
implies the general production function form

Y = £ (X)h(W,u) ' (1)

where Y is output, X a vector of nonstochastic inputs, W a vector of
stochastic inputs such as rainfall, and u a random error. At planting
time, when many inputs X are committed, h(wlu) may be considered part of
the risk and the farmer faces simply Y = f(X)e, in which f(X) =

E[f (X)h(W,u)] and in which € = f (X)f '(X)h(W,u) has unit mean. Just
and Pope’s criticism of this form is well known. In addition, to avoid
large chances of negative yields, € must have positive skew. An
indeterminately large number of marginal yield moments thus enter the

input demands and prospects for joint preference-technology estimation
fade rapidly.

Enforcing independence between marginal mean and variance implies
Y = f,"(X) + fo(W) + h(X)e. (2)

Prior to W’s occurrence, (2) has the Just-Pope form
Y = f(X) + h(X)e (2")

where f(X) = f,"(X) + E[f,(W)] and € ~ N(0, 1). Despite its
inconsistency with dynamic growth models and with skewed yield
distributions, this form is popular and seems to hold the best potential
for mutual inference of preferences and technology. We therefore
concentrate on Just-Pope form (2’) and, to permit tractable results,
assume negative exponential utility U(m) = -exp(-An) where 7 is net
return and X is absolute risk aversion. Comparative statics of (2’) in
conjunction with nonincreasing risk aversion have been investigated by




Pope and Kramer. Babcock, Chalfant, and Collender used a moment
generating function to derive more specific input demands in the case of
(2") and exponential utility.

Optimality Conditions

Optimal input levels for producers facing (2’) are found by
Max E[U(7)] = Max EU[Pf(X) + Ph(X) - r’x] (3)
X X

where P and r are (assumed known) output price and input price vector,
respectively. For the sake of minimizing the number of estimable
parameters, we employ multiplicative forms of f and h, which in the two-
variable-input case reduce (2’) to

Y = AX,21,%2 4 BX,P1x,P2 ¢ (4)
where A, a;, a,, B, by, b, are parameters and ¢ ~ N(0, 1). Substituting
(4) into (3) and deriving first-order conditions gives

ECU’ (n) [PAa,X, 21"} bi-ly B2 1) = 0

- - (5)
ECU’ (1) [PAa,X, 21X, 2 b-le _v1y = 0.

X,"2 + PBb,X,
1+ peb,x,Pix,
Taking expectations and dividing through by E[U'(n)],

a1-1y 32, pgp,x,01°1
-1

Xzbzt =T
by-1

PAa1X1

PAX, 21,22 + pBbyX, D12t -,

where t = E[U’(n)e]/E[U’ (n)].

Parameter t is, 1ike Loehman and Vandeveer’s Y, a function of both
risk and risk aversion. If profit is expressed as 7 = B+ o€ in which p
is profit’s mean and o is its standard deviation, then under
exponential utility t’s denominator is E[U’(n)] = AE[exp(-An)] = ;
AE[exp(-Ap - Ao€)], that is, X times the expectation of a lognormally
distributed variate with parameters -\, A20°. As Johnson and Kotz
show, the latter expectation is just E[exp(-Ap - Xoe€)] =
exp(-\p + M0%/2). t’s numerator similarly may be expressed as
E[U (m)e] = AE[exp(-Ag - Ao€)e] = [exp(-Ap)] Eiexp -\o€)e] =
[Xexp(-2p)] [-Aoexp(\°0%/2)] = -)oexp(-\u + A%0%/2)." Dividing
numerator and denominator gives t = E[U’(7)e]/E[U’(n)] = - Ag. The fact
that absolute risk aversion X appears in (6) only as a multiple of -

'The fact that E[exp(-Aoe)e] = -Aoexp(kzoﬁ/Z) can be proven by
noting that the moment generating function of € is m(-Ao) = E[exp(-\o€)]
= exp(\°0%/2). Differentiating with respect to -\ gives m’ (-\g) =
E[exp(-)o€)e] = -Aoexp(7\%6°/2). An alternative, but lengthier, proof is
to write out the density function for ¢ and complete the square in the
exponent as Freund does in a related derivation.
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profit risk o implies the two terms never can be separately identified
in the input demands without introducing information from production
function (6) itself.

1
From (2’) and (4), profit standard deviation o = P[Var(Y)]1 =
PBX,‘XZbZ. Substituting the latter into (6) and combining terms gives

2y-1, 202 _ (6'2)

2byy 2b,-1

PAa X, 1X,22 - P2AB?D,X,

PAa X 21%,22 L - P2ABZD,X, =1y (6'b)

which differ from the Babcock-Chalfant-Collender input demands only in

suppressing acreage terms. Inasmuch as \o%/2 = szBzx12b‘X22b2 is the
producer’s risk premium, marginal risk premia (MRP) are 8RP/6X; =

PZABZb1X12b1 1X22b2, precisely the second RHS terms in (6’). Pope and
Kramer and MacMinn and Holtmann show that the risk averter’s optimal use
of both inputs exceeds (falls short of) that in the riskless or risk
neutral case if the inputs are complementary and if &h/6X,, &h/8X; < 0
(> 0). For production form (4), these conditions are satisfied if by,
b, < 0 (> 0), that is if yield is heteroskedastic such that yield
variance decreases (increases) in the inputs. Clearly input demands
need not undergo parallel shifts when X\ changes; in fact, the demands
may become positively sloped if risk aversion is very high (Pope and
Kramer, pp. 495-6).°

Input Demand-Production System

A11 parameters in (6’) are in principle separately identifiable.
Feasibility of estimating any parameter, including product ABZ, on the
basis of just (6’) depends on the associated error structure.
Unfortunately, no error structure in the first order conditions can be
determined from (4). A complicating factor is that no closed-form
expression for the optimal inputs exists. Solving (6’) as far as
possible for the optimal variable factors gives

X, = [rv/(PRagK, 22 - PABD,X,201731x,2P2) 11/ (21" 1)
Xe = [ra/ (Phagk,®" - PEAB2D,X, 01y, 202 22) 1/ (32 1)

2pope and Kramer (pp. 492-3) argue that second-order conditions
corresponding to (2’) are satisfied given risk aversion and concavity of
Y = f(X) + h(X)e. However, their assumption that E[U“(Su/sxi)z] < 0 for
risk averters appears incorrectly to suppose that §n/6X; is
nonstochastic. Our own formulation of the Hessian for (6’) shows second
order conditions could be violated if the b; are large and prices are
inappropriately scaled.




so that optimal factors only can be determined simultaneously.
Heuristically, the reason for the simultaneity is that relative factor
levels affect yield variance differently from the way they affect yield
mean and each effect must be taken into account when determining the
optimal allocation. A1l information about the optimal level of a given
factor cannot be determined from the price Tevels alone.

Simultaneity in (7) makes clear that, even if optimization errors
are specified additively, each error generally is correlated with both
input choices. Rather than arbitrarily add errors to (7), we suppose
that optimization mistakes occur in the form of random failure to
satisfy first order conditions (6'). Assuming choices are optimal on
average, errors V3, Vp are added to (6’a) and (6’b) such that vy ~ N(O,

2
54 )9 vV ~ N(09 SZ)'

There are several reasons why production function (4) should be
estimated as a system along with (6). First, this would allow one to
test whether technology parameters in (6”) differ from those in (4),
that is, whether parameters which producers assume in the course of
optimization differ from those in the input-output relation itself.
Second, combining (4) with (6’) includes information about actual yield
levels and so potentially improves estimation efficiency over the use of
(6”) alone. Third, including 54) is necessary -- and sufficient -- for
separately identifying A and B in (6").

To make clear how (4) may be used for these purposes, observe that
the heteroskedasticity in its error can be removed by dividing each term

by X,b’Xzbz. The result is
vX, P, 702 oy BPiy 2ehe | g (4’)

with homoskedastic error Be ~ N(0,B?). Equations (4’) and (6’) now may
be fitted jointly once an error covariance structure for the errors
(v1,v2, Be) has been specified. Tests of the implied restrictions that
the a;, b; are not different across equations then may be conducted. If
the null hypothesis is not rejected, combining (4’) with (6’) improves
efficiency. Relation (4’) also serves to distinguish risk aversion
coefficient X from risk parameter BZ. Substituting into (4’) consistent
estimates of A, aj, b; that were derived from simultaneously fitting
(4"), (6’) gives Be', a consistent estimate of the sample p oduction
errors. Log absolute value of Be™ is In TBe | =InB+ 1In e |, the
expectation of which is In B+ E Tn |¢"| = In B - 0.6352. Adding 0.6352
and exponentiating gives a consistent estimate of B, which when squared
and divided into the consistent estimate of AB® from (4’), (6") gives a
consistent estimate of absolute risk aversion ).

It is useful to note that, inasmuch as inputs X; in (4’) are
endogenous, fitting (4’) along with (6”) equivalently estimates the risk
averse firm’s per-acre supply function

Y' = F(X") + h(X")e : (8)
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where X" are the optimal input levels. Since, through (6’), X" depends
on prices P and r, supply must be heteroskedastic in the prices whenever
yield is heteroskedastic in inputs.

Procedures

In this paper, we fit a multivariate extension of system (4'),
(6’) to corn-soybean farm data in Iowa. Production function estimates
are compared with (a) those derived with the method of Just and Pope and
(b) those estimated by Nelson and Preckel with the use of the
conditional beta distribution. We contrast risk averse with risk
neutral supply and input demands and discuss implications for supply
heteroskedasticity.

The data include farm-level information on per-acre corn yield;
nitrogen, phosphorus, and potassium application; soil slope and clay
content; and two dummy variables indicating respectively whether a
legume preceded the corn crop by one or two years. Information from
1964 through 1969 was taken from farms in Fayette, Linn, and Muscatine
County, Iowa. Iowa input prices were drawn from annual issues of
USDA’s Agricultural Prices and Agricultural Resources: Situation and
Outlook Report. Corn price was the average of high and Tow March
closing prices of the Chicago corn futures contract maturing the
following September. A1l prices were deflated with the CPI.

Nitrogen, phosphorus, and potassium were assumed to be the only
purchased inputs, so equations (6’) were extended to accommodate three
input demands. Soil slope and clay and the two dummy variables were
included as exogenous factors, along with prices P, r, in all equations.
These variables along with the expected price of soybeans were used as
instrumental variables for first stage estimation. Expected soybean
price was calculated to parallel the expected corn price variable. This
extended version of (4’), (6’) was estimated with nonlinear 3SLS
combining the indicated cross-equation restrictions on parameters and
holding AB? fixed at trial values. gTSP Version 4.1B). A grid search
then was conducted on alternative AB° values and the parameter set
selected which minimized system sum square errors. Substituting optimal
A, a;, b; estimates back into (4’) gave consistent estimates oijeI,
the adjusted mean log of which provided a consistent estimate of B and,
through the NL3SLS estimate of AB%, a consistent estimate of A\. The
NL3SLS estimator provides consistent and sometimes asymptotically
efficient estimates of the parameters. Further, it is generally more
robust against nonnormality of errors than are maximum 1ikelihood

estimators (Jorgenson and Laffont, Gallant, Amemiya).

3These data, collected by the Iowa Agricultural Experiment Station,
are described in more detail in Nelson and Preckel. We wish to thank
Carl Nelson for kindly furnishing the data to us.




Just-Pope-type estimates of (4) were derived by applying NLS to
obtain stage 1 estimates of A and the a;’s. Logs of absolute values of

residuals u = BX,b'XZ 2,..€ then were regressed against 1n|BX1b‘X2b2...el
to derive stage 1 estimates of B and the b;’s. A stage 2 estimate of
and a; was obtained by applying NLS to the weighted regression (4’) and
a stage 2 estimate of B and b; was derived by repeating the log Tlinear
regression on residuals.* A Just-Pope-type routine provides not only a
point of comparison for the NL3SLS system estimates, but a useful set of
starting values for these estimates as well.

Results

Results of the systems estimates for Linn, Muscatine, and Fayette
Counties are shown in the right column of tables 1-3, alongside the
Nelson-Preckel and Just-Pope-type estimates in the left and center
columns. Dummies signifying previous legume crops were not significant
in_any of the regressions and were dropped. A wide range of values for
AB? were tried for each county (Appendix figure). In all cases, the
optimal value of AB? fell in the positive range, although for Fayette
County this might have been only a local minimum. NL3SLS estimates of
the technology parameters, A, a; and b; were only modestly sensitive to
parameterized AB? levels.

Parameter Estimates

The system estimates suggest that in each county one fertilizer
type or another most significantly affects mean corn yield. In Linn
County, phosphorus has the greatest influence on mean yield, followed by
potassium. In Muscatine County, nitrogen is the most influential, while
in Fayette County the dominant positive effect is from phosphorus,
followed closely by nitrogen. Interestingly, in Fayette County
potassium appears to have a fairly large negative effect on mean yield.
A ten percent increase in potassium application results in a 24 percent
decrease in expected yield in that county. Without exception, the
effect on mean yield of soil slope is small. Clay content appears to
play a more significant role in determining acreage yield, with an
elasticity of 0.21 for Linn County and 0.30 for Muscatine. Clay does
not significantly affect mean yield in Fayette County.

Mean effects estimated from the primal systems closely resemble
those from Just-Pope-type estimation. A notable exception occurs in
Fayette County, where all three estimators produce fairly divergent
results. In general, the system and Just-Pope estimators suggest more

“With small samples, this last log-linear regression likely
improves bias in B estimates and efficiency in a; estimates (Buccola and
McCarl, pp. 735-7). Ln (B) also was adjusted by +0.63ST To account for

€

residual asymptotic bias resulting from the fact that E = -0.6352 in

each log-linear regression.




Table 1. Elasticity of Corn Yield Mean and Standard Deviation withg/
Respect to Selected Inputs, Linn County, Iowa, 1964-1969.

- Conditional Beta b/ Just-Pope
Input (Nelson and Preckel) Method

- - Yield Mean - -

ae/ 48.85 .36
(3.89) 19)

Nitrogen (N) 0.46 0.05 .02
(2.40) .41)

Phosphorus (P) -0.35 -0.01 .07
(-1.61) .05)

Potassium (K) 0.13 0.05 .03
(0.91) .90)

0.04 .07
(1.14) .97)

Clay 0.99 0.18 .21
(2.87) .20)

Slope -0.06

- - Yield Standard Deviation - -

</ 4.87 .21

Nitrogen (N) . 0.06 .09
(0.59) .64)

Phosphorus (P) . 0.56 .80
(1.71) (6.67)

Potassium (K) -0.22 0.35
(-0.84) (4.12)

Numbers in parentheses are t-values. Sample size is 103.

Values for the mean were derived from Nelson and Preckel’s table 3.
Values for the standard deviation are one-half of Nelson and
Preckel’s table 5 figures.

Yields are measured in bushels per acre, fertilizers in 1bs per
acre.

Sample means were N = 83.1, P = 50.1, K = 48.8, Slope = 3.3, Clay =
22.1, Yield = 122.7.




Table 2. Elasticity of Corn Yield Mean and Standard Deviation with
Respect to_;e]ected Inputs, Muscatine County, Iowa,
1964-1969.2

Conditional Beta b/ Just-Pope Primal
(Nelson and Preckel)~  Method System

- - Yield Mean - -

A/ | .90 .32
-54) .97)

Nitrogen (N) 1 0.38 .10 .12
173) .68)

Phosphorus (P) 0.10 .0003 .05
.003) .56)

Potassium (K) -0.03 .01 .01
.164) .24)

Slope : -0.27 .09 .06
.41) .40)

Clay 1.22 .20 .30
.63) .18)

- - Yield Standard Deviation - -

B/ .40 1.35
.36)

Nitrogen (N) .26 0.44
.01) (5.33)

Phosphorus (P) . .16 , 0.15
.36) (1.70)

Potassium (K) . .56 0.01
.83) (0.48)

Numbers in parentheses are t-values. Sample size is 55.

Values for the mean were derived from Nelson and Preckel’s table 3.
Values for the standard deviation are one-half of Nelson and
Preckel’s table 5 figures.

Yields are measured in bushels per acre, fertilizers in 1bs per
acre.

Sample means were N = 98.5, P = 43,5, K = 34.2, Slope = 3.5, Clay =
23.4, Yield = 126.2.




Table 3. Elasticity of Corn Yield Mean and Standard Deviation with
Respect to_?e]ected Inputs, Fayette County, Iowa,
1964-1969.2

Conditional Beta b/ Just-Pope Primal
(Nelson and Preckel) Method System

- - Yield Mean - -

.32 )
.45) .89)

Nitrogen (N) 0.93 .10 .23
.70) .65)

Phosphorus (P) 0.12 .07 .27
.14) .92)

Potassium (K) 0.05 .07 .24
.66) .19)

Slope 0.02 .03 .07
.21) .56)

Clay 0.12 ' .20 .01

.40) .14)
- - Yield Standard Deviation - -

S/ 61.97 .03

Nitrogen (N) , . -0.16 0.41
(-1.40) (3.38)

Phosphorus (P) . -0.86 0.23
(-2.56) (2.36)

Potassium (K) 0.72 0.06
(2.64) (0.36)

Numbers in parentheses are t-values. Sample size is 106.

Values for the mean were derived from Nelson and Preckel’s table 3.
Values for the standard deviation are one-half of Nelson and
Preckel’s table 5 figures. .

‘Yields are measured in bushels per acre, fertilizers in 1bs per
acre.

Sample means were N = 76.7, P = 52.1, K = 57.5, Slope = 4.2, Clay =
21.4, Yield = 113.3. :




sharply diminishing expected returns to scale than do the parameter
estimates from Nelson and Preckel’s conditional beta.

The greatest differences among estimators is in their variance
effects. In some cases the system estimator produces results contrary
to both Nelson-Preckel and Just-Pope. For Linn County, Nelson-Preckel
and Just-Pope-type estimates indicate that potassium has a negative
effect on yield risk while the system estimator indicates it has a
substantial positive effect. For Muscatine County, the system estimate
implies, contrary to the Nelson-Preckel and Just-Pope models, that
nitrogen application increases yield risk. On the other hand, our model
agrees with Nelson and Preckel’s in showing a modest positive yield risk
influence for phosphate and potassium in Muscatine County. In Linn
County, our model most closely agrees with Just and Pope’s in showing a
positive yield risk influence for nitrogen and phosphate. Like the
estimated mean yield effects, estimated variance effects for Fayette
County vary widely across the three estimators.

Two tests were performed to determine significance of differences
between the Just-Pope estimates and those obtained using NL3SLS. The
null hypothesis that the mean-yield elasticities obtained from the two
estimators are the same was rejected at the 0.05 Tevel for all counties.
Calculated test statistics were 1199.91, 28.51, and 31.81 for Linn,
Muscatine, and Fayette County, respectively, compared to a tabled Chi-
square value of 7.81 for a 5% test level with three degrees of freedom.
The null hypothesis that variance-of-yield elasticities were the same
between the two estimators also was rejected at the 0.05 level for all
counties. Calculated statistics were 1365.24, 286.55, and 9547.33 for
the three counties compared to a tabled Chi-square value of 12.59 in a
5% test level with six degrees of freedom. It should be noted, however,
that the absolute magnitudes of the differences in mean-yield effects
are small, while the absolute magnitudes of the differences in the
variance-of-yield effects are large.

Substituting the elasticities in tables 1-3, column (3), back into
(4’) and adding 0.6352 to the mean log of Bel gave B estimates of
.20884, 1.35260, and 2.03086 for Linn, Muscatine, and Fayette County,
respectively. Combining these consistent estimates of B with our
estimates of AB? from NL3SLS allowed us to calculate coefficients of
absolute risk aversion, X, for each county. Our estimates of )\ are
0.016 for Linn, 0.538 for Muscatine, and 0.140 for Fayette County (1967
dollars per acre basis). This is consistent with the common assumption
that producers tend to be risk averse.

Per-Acre Supply and Input Demands

System estimates of Linn County’s production function and risk
aversion parameters were substituted into (6’) and per-acre fertilizer
demand quantities calculated at alternative price levels. Fertilizer
quantities demanded then were substituted into (8) along with parameter
estimates to determine, for each price combination, means and standard
deviations of per-acre corn quantity supplied. Since (6’) cannot be
expressed in explicit form, MathCAD 2.0 was used to find iterative
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solution values for the optimal inputs given a set of starting values.
Responses to nitrogen price changes are shown in table 4 and responses
to expected corn price changes in table 5. Each table shows the optimal
responses assuming (a) risk neutrality, and (b) the estimated absolute
risk aversion of 0.016.

The risk-neutral nitrogen demand function (figure 1) is negatively
sloped and strongly elastic (-2.02 near sample price means). Under risk
aversion the demand shifts left and steepens, although elasticity at
sample price means remains about the same. Despite appearances of both
curves, elasticity is lower at low nitrogen prices than at high prices.
Both demand curves pass to the left of the sample mean nitrogen use rate
of 83 1bs per acre.

Phosphate and potash demand (figures 2 and 3) follow the same
general pattern as that of the nitrogen demand. The risk averters’
demand is steeper and to the left of the risk neutral demand. With
these two fertilizers, however, risk neutral demands are well above
sample mean use rates (50.1 1bs per acre for phosphorus and 48.8 1bs per
acre for potash) whereas the risk averse demands approximate these use
Tevels quite well. Inelasticity of risk averters’ phosphorus and potash
demands follows from the rather high coefficients on P ‘and K in the risk
portion of Linn County’s production function (table 1). Increased
fertilizer use in response to fertilizer price declines is mitigated by
the positive effect of fertilizer use on yield risk.

For both risk neutral and risk averse farmers, nitrogen use
responds positively to increases in the expected corn price (figure 4).

The risk averters’ demand again is lower than that of the risk neutral
farmer. Demand also is less elastic: risk neutral elasticity is
roughly constant near 1.00, while the risk averter’s elasticity is about
0.48 near the sample mean. The steeper slope of the risk averter’s
response reflects the fact that profit risk rises with corn price
increases. Inasmuch as nitrogen use moderately increases risk as well,
the farmer optimally limits additional nitrogen use more than he would
if he were risk neutral.

As one would expect from the relatively large marginal risk
effects of phosphorus and potassium, demands for these fertilizers are
even less positively responsive to corn price than is the demand for
nitrogen (figures 5 and 6). Phosphate demand is virtually inelastic and
potash demand responds slightly negatively to corn price increases.
Possible backbending of the input demand-output price relationship is
one reason why comparative statics of the risk averse firm are so
difficult to generalize (Pope and Kramer).

Tables 4 and 5 make clear that, for both risk averse and risk
neutral farmers, expected yield is quite insensitive to fertilizer or
corn price. Part of this insensitivity results from some net
substitutability in fertilizers. That is, phosphorus and potassium
demand rises slightly with increased nitrogen prices. But most of the
insensitivity comes from the low coefficients on N, P, and K in the
expected-yield portion of Linn County’s production function, in turn
probably reflecting high fertilizer use rates in that county.




Figure 1

Nitrogen Demand
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Figure.Z

Phosphate Demand
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Figure 3

Potash Demand
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Figure 4

Change in Nitrogen Use in ‘Response to Corn Price
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Figure 5

Change in Phosphate Use in Response to Corn Price
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Figure 6

Change in Potash Use in Response to Corn Price
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Table 4. Nitrogen Demand and Expected Per-Acre Corn Yield at
Alternative Nitrogen Prices.é/

Nitrogen Price Nitrogen Demandedb/ Expected Corn Sunn]vg/

(1967 cents/1b) A =0 A =0.016 A=0 A = 0.016

3.3 63.0 32.1 123.5
4.8 43.7 22.2 123.2
6.5 32.2 16.5 123.0
7.0 26.7 13.8 122.9
9.3 , 22.4 11.6 122.8

Corn price, phosphorus price, and potassium price are held fixed
at $1.30 per bushel, 10.6 cents per 1b, and 4.4 cents per 1b,
respectively (1967 dollar basis).

Nitrogen figures are in 1bs per acre.

Corn supply figures are in bushels per acre.
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Table 5. Nitrogen, Phosphorus, and Potassium Demanded and Expected
Per-Acre Corn Supply at Alternative Corn Prices.g/

Corn Price Nitrogen Phosphorus Potassium Expected
b

b/ b/ </
(1967 Demanded Demanded Demanded Corn Supply

$/
bushel) A =0 ) =0.016 A =0 =0.016 A=0)=0.016 A=0)=0.016

0.70 16.4 12.2 60.1 39.3 54.2 32.7 128.5 122.6
1.00 24.4 14.8 89.7 41.7 80.8 31.4 134.4 123.2
1.30 34.2 17.2 125.6  41.8 113.2  27.2 139.3 123.8
1.60 41.4 18.8 152.0 41.6 137.0 23.9 142.2 122.6
1.90 50.3 20.8 184.4  41.5 166.2 20.2 145.2 122.2

Nitrogen, phosphorus, and potassium prices are held fixed at
6.4 cents, 10.6 cents and 4.4 cents per 1b, respectively

(1967 dollar basis).
Fertilizer demanded is in 1bs per acre.

Corn supply figures are in bushels per acre.




Figure 7 gives expected per-acre corn supply at various levels of
expected corn price. The risk neutral grower’s somewhat elastic
fertilizer demands result in a slight increase in per-acre expected
supply as corn price rises. In contrast, the risk averse farmers’
somewhat inelastic fertilizer demands combine with low mean-yield
coefficients to produce relatively inelastic corn price-corn supply
relations. The risk averter’s per-acre supply, in fact, backbends
slightly, reflecting greater risk exposure at higher corn prices and
positive marginal risk premia for all fertilizers. Just and Zilberman
also have shown that negative supply elasticities reasonably can occur
under constant absolute risk aversion, even when partial risk aversion
is as Tow as 0.60. Partial risk aversion for Linn County is 2.34 at
sample means.

The dotted Tines in figure 7 indicate the extent to which yield
heteroskedasticity in inputs leads to supply heteroskedasticity in
price. (Inner dotted lines signify one-standard-deviation confidence
intervals for the risk averse farmer and outer dotted lines signify one-
standard-deviation intervals for a risk-neutral farmer.) Risk averters’
steep input demands mean that corn price changes will 1little affect
yield risk. For these farmers, yield variance is sTightly lower at high
corn prices than at Tow corn prices because input use is slightly Tower
at these prices as well. Risk neutrality, on the other hand, encourages
greater input demand response and hence a per-acre supply variability
that responds more strongly to output prices.

Conclusions

Adding risk and risk aversion to a farmer’s input choice problem
greatly complicates economic analysis. Applied economists’ response to
the increased complexity has been to separate risk measurement from risk
preference assessment. Such separation raises practical difficulties
about sample comparability and fails to take maximum advantage of '
available information. We have shown that a primal system of input
demands and the production function may indeed be specified through
which risk and risk preference can jointly be estimated. Assumptions
employed for this purpose -- that production be additive in mean and
variance and that risk aversion be constant in income -- are not more
restrictive than used in many other applied studies.

An advantage of the system approach is that it enables one to
assess farmers’ revealed opinions about production function
relationships, including inputs’ marginal impacts on yield risk.
Further, it can be used to derive utility or risk preference estimates
that are mutually consistent with these revealed opinions. The approach
is not without its cost. Extending such a system to a case of
nonnormally distributed errors or nonconstant risk aversion would not be
straightforward. Incorporating nonnormal distributions into a system
context probably would require using a particular nonnormal family along
the lines of Nelson and Preckel.




Figure 7
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Elasticities of yield mean estimated with the system approach
closely approximated those derived with a Just-Pope-type estimator.
However, elasticities with respect to yield variance often differed
substantially from the Just-Pope-type estimates, falling in several
cases closer to the Nelson-Preckel figures. Our estimate of Linn County
farmers’ mean risk aversion is moderate, although corresponding
estimates for Fayette and Muscatine Counties appeared unrealistically
high. Our production function specification may be improvable. We plan
to test the model with additional data in Iowa and Oregon, to
investigate the use of linear-quadratic rather than multiplicative
functional forms, and to include weather data both as regressors and as
instruments.

An important lesson from this research is that commonplace
elasticities of yield mean and variance easily lead to relatively
inelastic per-acre supplies and input demands even when risk aversion is
moderate. This does not imply that total supply and input demand would
be inelastic as well, since acreage may remain significantly elastic.

In any event, the often-mentioned farm practice of maintaining fixed
input proportions over time may well be a rational response to positive
marginal risks rather than a demonstration of rule-of-thumb behavior.
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Appendix Figure

Criterion for Estimating Lambda
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