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THE MEASUREMENT OF ECONOMIC VARIABILITY WITH POOLED DATA:
CONCEPTUAL AND METHODOLOGICAL ISSUES

John M. Antle*

Prices, quantities and other variables are often represe
nted as

random variables In economic theory. When researchers translate

theoretical propositions into testable hypotheses they ne
ed to devise

empirical characterizations of the distributions of economic var
iables.

There are many ways to do this, but the usual method is t
o describe

distributions using the means, variances, covariances, and possi
bly

higher order moments. The objective of this paper is to discuss some of

the concpetual and methodological issues that arise in quantifying these

higher central moments of economic random variables.

One might well ask why estimation of higher moments is any different

than estimation of the mean of a random variable. Indeed, from the point

of view of general estimation theory there is no difference. For

example, the maximum likelihood approach produces estimates of
 every

characteristic of a distribution. But as a practical matter, applied

econometrics has focused much more on the estimation of the condit
ional

mean (as in least squares estimation) than on the estimation of higher

moments. Moreover, when standard econometrics has been concerned with

estimation of higher moments, the objective was to obtain more efficient

estimates of the conditional mean (as in the estimation of a covar
iance

matrix for a feasible generalized least squares estimator)., It has only

been since theory has shown that higher moments matter for analysis of

behavior and policy that econometricians have become concerned with

estimation of higher moments on an equal basis with conditional means.

Another reason to focus on the measurement of variability is that a

variety of ad hoc methods have been used to measure variability, and

often these methods have not been critically assessed. For example, a

researcher may need an estimate of a price covariance matrix to use a

risk programming model of a farm's cropping decisions. The available

data may be time series at the county or state level. The researcher may

therefore compute sample variances and covariances from the aggregate

data. Or a policy maker may need to evaluate national policies over time

using data from a large number of heterogeneous regions, and may use

sample variances and covariances across regions.

Figure 1 classifies policy and data by level of aggregation. The

cells in Figure 1 can be classified into three types. The cells FF and

AA along the main diagonal represent those cases in which data are

available at the same level of aggregation that is used in analysis. In

this case the measurement of variability with pooled data can be

addressed with a set of established estimation prodcedures. However, it

must be emphasized that different kinds of variability are being measured

at each level. At the farm level, pooled data capture variation withing

*John M. Antle is an associate professor of agricultural economics,

Montana State University.
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the farm population across farms and over time; at the aggregate level,
pooled data represent variation across regions and over time. The cell
AF below the diagonal represents the "aggregation problem" in which data
are available at a disaggregate level but analysis is desired at the
aggregate level. The cell FA above the diagonal represents what might be
called the "disaggregation problem," as it involves the use of aggregate
data to undertake economic analysis at a disaggregate level.

After presenting a stylized production model to be used in the
analysis, the paper overviews some issues in the measurement of economic
variability with pooled data for cases in which aggregation (or
disaggregation) is not an issue (the cases on the diagonal of Figure 1).
The remainder of the paper briefly addresses the additional problems
posed by aggregation and disaggregation.

A Production Model and the Policy Problem

Variability is defined as the properties of the covariance matrix of
a random vector. The definitional issues that arise in the debate over
how "risk" should be measured are not addressed. Generalizations to
other higher moments, and to mean-, variance-, and nth-moment-preserving
spreads are possible, but will not be discussed.

The problem addressed in this paper may be stated in relation to a
disaggregate and a more aggregate level of data and analysis. For
purposes of discussion, the disaggregate level is the individual decision
maker, the farm, and the aggregate level is the region. At the farm
level there are 1=1,...,N, units in region r, and there are r=1,...,R
regions. Associated with each farm is a quantity of output y, input x,
and acreage n. Each unit of land has associated with it an environmental
attribute a.

The model of individual economic agents is based on the optimal
allocation of land and other inputs into production as functions of
prices, policies, technology, and other farm charcteristics (capital
stocks, risk attitudes, etc.). Define p as the vector of output and
input prices, 0 as a vector of policy parameters, and w a vector of farm
characteristics (if prices are unknown at the time decisions are made,
then interpret p as a vector of price distribution parameters and
Interpret output as revenue). Define xi  as the input allocation of
farmer i to acre j, xi as the vector of the xii, ail as the environmental
attribute of acre j managed by farmer i, and al as the vector of ajl.
Define the indicator function 6il such that

- t 1 if acre j is in production

0 otherwise,

and let 61 = Oil). Also define the vector of attributes of land in
production on farm i as a(51) = (a1i61i,a2i521,...).

The ith farmer's decision problem is

max J(xi,a(Oi) P,O,(01)
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where J is the farmer's objective function and wl is a vector of the

ith farm's characteristics, including the production technology and

the farmer's behavioral attributes. In addition to setting prices,

policy may impose a set of inequality constraints on land use. For

example, the total acreage in production on farm i is n1 = Ejojl, and

a diversion requirement for participation in commodity programs

imposes a constraint on nl. The solution to the above maximization

problem generates the demand functions xjl = x(p,0,(0,aj) and öjl =

o(P,O,w ,aj).

Define yield on acre j of farm i as yjl = y(xjl,ajl,ejl), where

ejl Is a random variable representing weather, etc. The vector wl of

farm characteristics and the vector el of production shocks can be

interpreted as random variables in the farmer population defined by a

parameter vector 0. The parameter vector 0 will change over time as

farmers adopt new technology, make capital investments, and enter and

exit the industry. Thus, while the distribution of w is exogenous in

the current decision period, in the longer run it may be endogenous to

prices and policy parameters. The distribution of the random

variables w and s induce a joint distribution for output, input, land

use, and environmental attributes of land. Let this distribution

function be

Policy analysis can be conducted at the level of the indivdual

firm or at a more aggregate level. Analysis of the welfare effects at

the farm level of policy changes or other exogenous changes can be

conducted using the firm's objective function. Substituting the

optimal levels of x and 6 into the objective function

J(x1,a(P)1p,O,w1) gives the function J*(p,O,w1). The effects of

changes in policy parameters on farm-level welfare can be evaluated

using this function.

For analysis of welfare at the regional level, suppose that

policy makers define aggregate welfare as a function of the population

mean outputs and inputs and the variances and covariances of those

variables. Define the column vector v as the stacked vector

containing y, x, n, and a. Viewing v as a random vector in the

population of farms in a region in each production period,

E(v;p,0,0) = f v d0(y,x,n,alp,0,0)

Var(v1p,0,0) = f (v - E(v))(v E(v))' d0(y,x,n,alp,0,0)

are the mean vector and covariance matrix associated with these

variables in the region at a point in time. These means, variances,

and covariances are defined conditionally on the prevailing prices,

policy parameters, and characteristics of the producer population.

Assuming policy is concerned with the means, variances and

coavariances, the policy problem can be defined as:

(1) max w[E(v1p,0,61),Var(v113,0,0)].
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For example, in setting pesticide policy, policy makers could be trading
off mean productivity and variance of productivity against environmental
quality.

Alternatively, policy analysis can be conducted using aggregates of
outputs, inputs, and other variables. Define Y, X, L, and A as
aggregates of output, input, acreage, and environmental attributes, and
define the vector V composed of the aggregates. These aggregates can be
viewed as random variables with mean E(V) = M and variance ENV M)(V -
M)'] - Var(V). If policy makers base policy decisions
on aggregates, the policy problem can be defined as:

(2) max W[E(V:0),Var(V10)]
(ft

It is important to distinguish the policy problems in (1) and (2).
The former problem requires information about the variability within the
population at a given point in time and over time. Such information can
be obtained from cross-sectional or pooled farm level data. The latter
problem requires information about the variability in the aggregates.
Variability in aggregates is measured across regions and over time, and
can be obtained from pooled aggregate data. In general, the measures of
variability obtained at one level of aggregation will not correspond to
those obtained at another level of aggregation.

Measuring Economic Variability: Basic Issues

A set of basic issues arise in the measurement of economic
variability. For simplicity, the general problem is reduced to that of
estimating the covariance matrix of a single variable, say y„, r=1,...,R
and t=1,...,T, with covariance matrix 0. A series of issues arise in
estimation of this matrix with pooled data.
Dimensionality and Degrees of Freedom

Let the random variables y„ be arranged in a (RTx1) vector y =
(yi where y, is the (T x 1) vector of time series
observations from region r. Thus E(yy') = 0 = [01i] where Oli =
E(yiyi'), i,j = I,...,R. 0 is the (RTxRT) matrix made up of the (TxT)
submatrices 0. Alternatively, we can arrange the variables so that y =
(yi',y,',...,y,')', where the y, are the (R x 1) vectors of cross-section
observations from all R regions in period t. In this case we can define

E(y.y,'), s,t j= 1,...,T and set 0 = [0.,]. In either case, by the
symmetry of 0 there are a total of (R2T2 +RT)/2 - 1 distinct parameters
in 0 (one parameter is an arbitrary scale factor). Since there are only
RT observations on the y„ in a pooled data set, it is obvious that it is
impossible to estimate a fully general covariance matrix, because the
number of parameters exceeds the number of observations and increases
with the number of observations. For example, if R=20 and T=I0, RT=200
but there are 20,100 distinct parameters in the full covariance matrix.
Clearly, some simplifying assumptions are needed to make the estimation
of 0 possible.

In general, the dimensionality problem can be stated as follows. To
define a covariance matrix one needs the means, variances, and
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covarainces for every random variable. The total number of parameters to

be estimated must not exceed the number of observations, so there must be
less than RT parameters involved in defining the means, variances, and
covariances.

Thus with pooled data it is possible to estimate a covariance matrix

only if the heterogeneity and dependence of the random variables are

restricted. It is possible to allow some limited degree of herogeneity

or dependence in either the time dimension or the cross section
dimension. Note that each block Olj contains (T2+T)/2 distinct elements

and each block 0., contains (R2+R)/2 distinct elements. Thus, even under

extreme simplifying assumptions, such as Oii = O.. for all i and j, there

are still likely to be a large number of parameters to be estimated,
possibly more parameters than there are observations.

The above example suggests that one way to make estimation of a

covariance matrix possible is to impose enough structure on it to reduce

the number of free parameters. An alternative approach, used in the
literature on heteroscedatic regression models, is to assume that

elements of the covariance matrix are functions of a set of observable

exogenous variables. If the model is linear, this assumption reduces the

number of parameters to be estimated to the number of explanatory
variables.

Heterovneity and Dependence

Two basic properties of random variables are represented by a

covariance matrix, heterogeneity and dependence. Heterogeneity occurs in
both the time and spatial dimensions, and has to do with changes in the
distributions defining the random variables. Dependence refers to the
degree of relationship among random variables in either time or spatial
dimensions.

Heterogeneity in the time dimension is known as the stationarity
property of a time series. The sequence of random variables y„,
t=1,....T is said to be stationary if its joint probability distribution
function is time invariant; it is said to be weakly stationary if the

mean is constant and the autocovariance between yr. and y„ is a function

of It-s:. This discussion considers only the covariance matric so weak

stationarity suffices.

The above discussion of dimensionality suggests why stationarity is

important to time series analysis. If a stochastic process is weakly

stationary, then there is one covariance matrix defining the
"variability" of the process through all points in time. In the notation
introduced above, the covariance matrix 0„ would be the same for all t,

for example, greatly reducing the dimensionality of the estimation

problem.

The difficulty with economic time series is that they tend to be

nonstationary. For example, productivity changes over time with the

Introduction of new technology, so output or yield distributions are
often nonstationary. How then do we deal with nonstationary series? We
find some way to transform a nonstationary series into a stationary one.

Time series analysts are fond of detrending and differencing data, for
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example (the latter procedure leads to processes that are "integrated" in
time series parlance). Adding time trends to econometric production
models is another method to transform a nonstationary series into a
stationary one. The problem with using such ad hoc, and one might say
simplistic, techniques, is that they are not likely to capture the shifts
in the conditional distribution caused by events such as technological
change or policy change that do not typically occur uniformly over time.
The consequence of working with nonstationary series is that estimates
are biased.

Heterogeneity in variability in the cross-sectional dimension is
heteroskedasticity. Conceptually, of course, one could define
nonstationarity in the spatial as well as the time dimension. However,
the case of heteroskedasticity usually refers to a situation wherein
means (or conditional means) are constant but there are different
variances (or, more generally, different covariance matrixes). Thus
heteroskedasticity can be thought of as a case in which a random variable
is nonstationary but only in the variance dimension.

Dependence in data means that there are nonzero off-diagonal
elements in the covariance matrix (but note that the converse is not
necessarily true). If we refer back to our example above with 0
i,j 1,...,R, then the off-diagonal elements of the 01.1 matrixes
represent the covariances over time in a given region, and the off-
diagonal elements of the Oli, io-j are the covariances between time
periods and regions. The diagonal elements in these matrixes measure the
covariances between regions at the same points in time.

Dependence is important from an estimation point of view for at
least two reasons. First, as we discussed above, it is not possible to
estimate a covariance matrix without imposing structure on it, and one
way to do so is by making assumptions about the form of dependence. The
strongest assumption is that random variables are independent; a weaker
assumption is that there is first-order autocorrelation in the time or
spatial dimensions; a still weaker assumption is higher order
autocorrelation. Such assumptions greatly reduce the dimensionality
problem by substituting one or a few autocovariance parameters for a
large number of covariances.

A second reason why dependence is important has to do with large
sample properties of estimators. Asymtotically, the property of
statistical indpendence has been generalized to the concept of
ergodicity. In hueristic terms, two random variables are ergodic if they
become "less dependent" as they get farther apart in time (or space) so
that they are independent in the limit. It can be shown that ergodicity
is necessary for general versions of central limit theorems to hold (see
White). For this reason dependence plays a central role in large sample
estimation theory.

Thus it can be concluded that it is necessary both for
dimensionality reasons and for estimation purposes to impose restrictions
on the forms of dependence in economic data.

Estimation Methods



55

There are two basic approaches to estimation of the moments of

random variables. One is to estimate the moments directly, the other is

to estimate the probability distribution function and then compute the

moments of that distribution.
Method  of Moments. The most obvious way to estimate population moments

is to use the corresponding sample moments. This is the classical

"method of moments" and under certain circumstances can be used to obtain

estimates with desirable properties. The sample moments, scaled for

degrees of freedom, are unbiased estimators. In some cases they

correspond to maximum likelihood estimates and are therefore also

efficient (Kendall and Stuart).

The disadvantage of the method of moments is that only a small

number of the elements of a general covariance matrix can be estimated,

and the estimated variances and covariances must be assumed to be

constant across individuals and time. Consider, for example, a sample of

observations on the variable y„. Defining y, as the (T x 1) column

vector of the y„ for each region, a mean can be computed for each

region. Using these means, sample variances and covariances sij =

yl'ATyj can be computed for each region, where A, = IT - (1/T-1)JT, with

IT the T--dimensional identity matrix and J, the T-dimensional matrix

containing 1 in each cell. Thus, for the covariance structure with Olj =

aijIT, alj a scalar, an estimate of the covariance matrix 0 = [uii] a I

can be written as S - [sij] gi IT. Note, however, that this estimate of 0

may not positive definite. The rank of AT is (T71), so the rank of the

(R x R) matrix [sij] cannot exceed the minimum of R and (T-1). Thus if R

> (T-I), [sij] is a singular matrix with rank (T-1) and thus S is

singular with rank T(T - 1). In other words, it is possible to obtain a

positive definite estimate of the covariance matrix 0 = R IT only

if the number of regions does not exceed the number of observations over

time less one.
Least Squares Estimates of Moments. The least squares estimate of a model

of the form y = pi(X,Oi) + u can be interpreted as an estimate of the

conditional mean of y given X. Since it follows that E(0) is the ith

central moment of y, one can posit the model ul = gi(X,01) + ul, E(u1) =

0, and estimate this model by replacing u with the residual from the mean

regression. The same principle can be employed to obtain estimates of

covariances. This is the kind of procedure suggested in the literature

on heteroscedasticity for variance estimation (see Judge et al.) and

generalized by Antle (1983) to higher moments and covariances.

There are several advantages to this kind of procedure. First, the

functional relationships between moments and exogenous variables can be

directly estimated as part of the model. Second, as noted above, this

approach reduces the number of parameters to be estimated and thus helps

solve the degrees-of-freedom problem. Third, the estimates can be shown

to have desirable large sample properties (consistency, asymptotic

normality). The disadvantage of this approach is that these estimates of

variances, covariances, and other higher moments can be shown to be

biased in small samples.

The degrees of freedom issue also arises with this type of model.

In the covariance structure 0 = [aii] a IT, if there are ki parameters in

the mean function for each region, then the number of regions R must be

less than or equal to (T-k1) for the matrix [ali] to be nonsingular.
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A more general case is where 0 = [01.1] and the blocks Olj are
diagonal heteroskedastic, with the variances specified as a function of
exogenous variables with k2 parameters, and that the covariances
specified as a function of k. parameters. For the estimate of 0 to be
nonsingular it is necessary that k.+k. 4 R(T-k1).
The Autoregressive Conditionally Heteroskedastic (ARCH) Model. Engle has
extended the heteroskedastic model to model time series so that the
conditional variance of the series depends on past realizations.
Suppose for example that y, is distributed N(x,0,h„), where

ht. - AO 4. All7T-'12

Thus the variance of the process evolves over time as a function of past
realizations of y,. Engle shows that this type of model can be estimated
using simple regression methods but the estimates are inefficient;
efficient estimates can be obtained using maximum likelihood procedures.
For pooled data the linear ARCH model could be extended by defining y, as
a vector of cross-sectional observations y„ such that y, is distributed
N(x,P,H,), where the (R x R) matrix H. has elements

= gr.° nr.avt-117.t-i.

Parametric and Nonparametric Distribution Estimation. Another approach is
to fit a parametric distribution to data, using one of many possible
methods, and to then use the estimated distribution function to
numerically compute variances and covariances. For example, maximum
likelihood methods can be used to fit general classes of distributions,
such as the Pearson system (Kendall and Stuart). It is also possible to
fit a function as an approximation to an unspecified distribution
function (Taylor). There are also a variety of methods being developed
that fit empirical distributions without maintaining any distributional
assumptions known in statistics as distribution-free or nonparametric
methods. These methods have the advantage of not requiring that any
parametric restrictions be imposed on the form of the distributions being
estimated. However, they have several disadvantages. First, they are
generally computationally burdensome, especially if multivariate
distributions are involved. Second, these methods are not well suited
for estimating conditional distributions of the type that economic random
variables usually involve.

An Example Using Variance Components

Consider the following example from Antle (1989). The model takes
the form

where

Dljt

E.J, E 61.it Dijt,
1=2

E(slit) = 0.



57

The first equation represents a model of the conditional mean of a random

variable which is a function of variables Dij,, with E(u3 ) = 0

With pooled data it is possible to estimate several block covariance

structures, although it is not possible to estimate a full (unrestricted)

covariance matrix because of the dimensionality constraints discussed

above. it. is possible, for example, to estimate a model which has a

block-wise heteroskedastic structure with nonzero off-diagonal terms in

each block. Each block can refer either to a time period or to an

individual. For example, it could be assumed that each observation is

correlated across time but independently distributed across individuals.

Thus, each block in the covariance matrix refers to an individual, and

covariances within each block are between observations over time for that

Individual.

Let model (3) be specified with Oot = Poo 001dt, where d, is a

vector of time dummy variables to measure year-specific changes in the

intercept. Defining piEl in equation (1), the model can be written in
the vector form as

= D2j13 + uj, j=1,.. ,

where Dij is a (T x 1) vector, D2j is a (T x g) matrix of the -Dijt for

farm j, is the corresponding (g x 1) vector of parameters, and uj is

the (T x 1) vector of the uj,. Stacking the Dij and the uj into (NT x 1)

vectors D1 and u, and the D2j into an (NT x g) matrix D2, the model can

be written

D1 = D.13 + u.

The covariance matrix of u is E[uu'] = 0, an (NT x NT) matrix.

Following the assumption that observations are independent across

Individuals but correlated over time, 0 has the block diagonal structure

0 - diag[01,...,0N] where 0j is a (T x T) matrix. In order to estimate a

distinct term for each element of these blocks, it can be assumed that

each variance and covariance term can be decomposed into an overall

effect, a time effect, and a farm effect. That is, defining the (t,u)

element of the jth block as Ojt,„, it was assumed that Ojtu = V + rtu +

rj, where r is a scalar parameter measuring the overall effect, .r.„i is a

scalar parameter representing the time effect, and rj is a scalar

representing the farm effect. Note that since each block Oj is a

symmetric (T x T) matrix, there are (T2+T)/2-1 distinct time effects but

just N-1 distinct farm effects.

To estimate and test the block covariance structure, a consistent

estimate of the error vector u can be computed from a consistent

estimator Oc as lir' = D1 - D20, where pc is obtained from a procedure
such as least squares regression. Taking products of the residuals

corresponding to the nonzero terms in the covariance matrix 0, regressing

them on a constant term, a set of time dummy variables, and a set of farm

dummy variables, yields consistent estimates of the parameters r, rt„.,

and rj, and hence of the elements 0, of the covariance matrix. To test

the validity of the specification, Wald tests for the significance of the

time effects (all r=0), of the farm effects (all v=0), and both time

and farm effects, can be constructed. Note that when neither farm nor
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time effects is significant, the data do not support the block
heteroskedastic covariance specification.

If the covariance matrix is not block heteroskedastic, it may be
diagonal heteroskedascic. A test of this specification can be derived
from the equation below (3). Squaring uj, and taking its expectation,

where

E(11.1.,2) = uoit
M M

aokit Dkiv, E alkit pljtpkjt
k=2 1=2 k=2

E(elitakit) = alkit.

Several assumptions need to be made to facilitate estimation: aokit = 0;

the intercept crojt=00, can be assumed to vary with time by including an

intercept and Lime dummies in the equation; and it can be assumed that the

covariances alkj, are equal across individuals, hence alkjt = ask.

Regressing squared residuals ej,' on an intercept, time dummies, and terms

Dij,Dkj,, i,k = 2,...,m, yields consistent estimates of the parameters of

the above equation under these assumptions. Fitted values of this

regression are thus consistent estimates of the diagonal terms in the

covariance matrix 0 under the hypothesis that it is diagonal

heteroskedastic. This hypothesis can be evaluated with a Wald test for

the significance of the regression's slope coefficients.

Aggregation and Disaggregation

Following Stoker (1982), aggregation can be defined as the 'adding
up' of attributes of individuals in the population to obtain summary
statistics for the population which can not be differentiated by the
individual outcomes that are aggregated. Following Antle (1986), it is
shown in this section that aggregate measures of variability can be
derived that are analogous to their microeconomic counterparts. The
aggregate functions depend on the parameters defining the distribution of
individual attributes in ,the population of producers. An implication of
this analysis is that the aggregate relationships will change when the
producer population's attributes change, just as their disaggregate
counterparts do.

Despite these similarities between the general structure of the
disaggregate and aggregate models, direct connections between the farm
level and aggregate variability can be established only under stringent
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conditions. For example, if linear aggregation is possible, the

aggregate variables are constructed io that they behave asymptotically

like sample means. A central limit argument can then be used to relate

variances and covariances of individuals to those of the aggregates.

Letting Y be aggregate output, and if x and a,' are the population mean

and variance of farm-level output, then the distribution of Y has mean X

and variance a,'/N, where N is the population size. In general, however,

this kind of relationship between the two levels of aggregation does not

exist.

A
Define the distribution of farm characteristics in the population as

10), so that the mean of w is

fwdA(w)0) = b(0).

Recall that the joint distribution of yield (y), input (x), acreage (n),

and environmental attributes (a) is given by 0(y,x,n,alp,0,0). The

expected farm output, input, acreage, and environmental attributes in the

population are therefore

x - f nY (10(Y,x,n,alp,0,0)

f nx d0(y,x,n,alp,O,0)

2 - f n dO(y,x,n,alp,0,0)

a = f a d0(y,x,n,alp,O,0).

Recall that the aggregates of output, input, acreage, and environmental

attributes are Y, X, L and A, and that V is a vector of these aggregates.

The aggregate variables are assumed to be functions of the firm-level

quantities y, x, n and a. Therefore,

E(V1p,0,0) = f V (10(y,x,n,alp,0,0) E Wp,0,0).

By the same logic,

ENV-M)(V-M)'] = f (V-M)(V-M)' d0(y,x,n,alp,0,0)

The previous two equations demonstrate that the aggregate means and

covariance matrix can be expressed as functions of the vectors of prices,

policy parameters, and firm characteristics. Thus, in general, changes

in any of these vectors induce changes not only in the means but also in

the elements of the aggregate covariance matrix.

Assume the aggregate data satisfy

plim Q x, plim X plim L - 2, plim A = a, plim Z =

where Z is a vector of aggregate firm characteristics. Also define a

sample estimator of S such that plim S = E, and assume further that the

function b(0) is invertible such that the function 0 = h() exists. Then

using the above results, aggregate functions can be defined such that,

for data aggregated over a large number of firms,
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V = M(p,0,0) = M(13,0,h()) = M(13,0,Z)

S np,0,19) = E(P,0,11()) E(p,0,z).

Thus, if aggregates converge to the population means, it is possible to
define aggregate supply and factor demand functions that can be expressed
as functions or price, policy parameters, and observable aggregate
characteristics of the firms in the industry. Similarly, there exists a
covariance matrix of the aggregate variables, and the aggregate variances
and covariances can be expressed as functions of these same variables.

Nonstationarity and Detrending

The discussion of the previous sections established that variability
measures have a similar structure whether they are defined for the
population or for aggregates. The conditional property of distributions
of economic variables means that their variances and covariances
generally are functions of the exogenous "forcing variables" in the
system such as prices and policy parameters. This fact means that
economic random variables are likely to be nonstationary unless their
"conditionality" is modeled correctly.

By way of illustration, suppose that aggregate time series data are
used to estimate the variance of output. A typical procedure (e.g.
Hazell) is to detrend the data and then compute the sample variance from
the detrended data. Recalling from the previous section that Y is a
function of prices, policy variables, and population characteristics, it
can be seen that the Y series is nonstationary. Detrending removes the
nonstationarity if these explanatory variables are all linear functions
of the same trend. If they do not meet this stringent condition there is
a different population mean x, and variance a„2 for each time period,
and the sample variance based on the detrended data is a biased
estimator. Letting Y be the sample mean of the data, the expectation of
the sample variance is:

E[(1/T) E (Ye, Y)2]
t=1

= E[(1/T) E (tYt - xt) + (xt - Y))2]
t=1

- E 0.2/NT + E[(1/T) E {(Y, xt)(x, - I) + (Xt - 2)]
t=1 t=1

The second term on the right hand side of the above equation is generally
nonzero if the detrending does not remove the nonstationarity from the
series. The second term in the summation is positive. The first term in
the summation is nonzero if deviations of Y from its mean are
systematically related to deviations of xt from Y. In many cases there
may be no such relationship and it can be concluded that the sample
variance is a biased estimator for the a„2 and is an upward biased
estimator of the average of the a„2.
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Tills result, and other similar results that can be developed for

covariances, suggests that researchers be cautious in estimating and

interpreting measures of variability in aggregate data.

Conclusions

This paper addresses some of the conceptual and methodological

issues that arise in measuring economic variability with pooled data.

Variability was defined as the covariance matrix of a random vector, and

was assumed to be important to policy analysis through a policy objective

function depending on population means and the covariance matrix of

economic variables. A model of production decision making was used to

illustrate the analysis. This model shows that economic variables are

defined with distribution functions conditioned on vectors of prices,

policy variables, and characteristics of the producer population. The

distinction was drawn between variability within the population and

variability in aggregate data across regions and over time.

Estimation of a covariance matrix was shown to require the

imposition of restrictions on the heterogeneity and dependence of the

random variables, to reduce the dimensionality of the estimation problem

and to achieve estimators with desirable properties. These are standard

statistical results.

Aggregate covariance matrixes were shown to be functions of the

prices, policy parameters, and population characteristics with a

structure similar to their farm-level counterparts. An important

Implication for estimation is that aggregate relationships are likely to

be nonstationary. Unnless care is taken to adequately model the

processes generating aggregate data, biased estimates of variability will

be obtained. It is not likely to be adequate, for example, to simply

detrend data and compute sample variances and covariances as estimates of

variability and covariation.

The conclusion to be drawn from the analysis presented in this paper

is that measurement of variability requires as much attention to

development of a theoretical model and to its empirical implementation as

does the more familiar problem of measuring a conditional mean. The

constraints imposed by the dimensionality problem require that the
researcher carefuly weigh the tradeoffs involved in the modeling

assumptions that are made.
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Policy
Farm level

Aggregate

Data
Farm level Aggregate

FF FA

AF AA

Figure i. Classificalion of Policy and Data by Level of Aggregation
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Summary of Notation

subscript j denotes an acre of land

subscript t denotes time
superscript I denotes a farm in a region

subscript r denotes a region

• yield
x quantity of input

indicator function, 6=1 if acre is in production, 0 otherwise

n number of acres in production
a environmental attribute of an acre

p price vector
0 policy parameter vector
w vector of farm characteristics

• random production disturbance

✓ vector of y,x,n and a
distribution function of v

• policy function defined over moments of v

Y aggregate output
X aggregate input
L aggregate land in production

A aggregate land attribute

✓ vector of Y,X,L and A
• expectation of V
• aggregate policy function

covariance of V
estimate of E

O covariance matrix
a variance or covariance

• random error
pl ith moment

parameter vector
• parameter

expectation of w
expectation of farm output

ji expectation of farm input
A expectation of n
a expectation of a
• sample mean of Y
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