

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

RISK MANAGEMENT STRATEGIES USED BY RANGE LIVESTOCK PRODUCERS

Car1 E. Olson and Martin J. Owens

Much work has been completed or is currently in progress dealing with market risks faced by agricultural producers. The work includes several simulation routines constructed to identify optimum risk management strategies for given situations. Econometric models have been developed to estimate welfare functions in terms of risk management. E-V frontiers have been estimated for given situations showing the trade-off between "risk" and "income" for different enterprises and there has been work to identify optimal financial management strategies to deal with market risk (5). Almost without exception, though, risk management research has dealt with intensive agriculture. Limited research in market risk analysis for extensive agriculture or range livestock operations has been conducted recently.

In this paper an attempt is made to identify the physical limitations that range livestock producers face and the marketrisks with which they must deal. Organizational and operational strategies for dealing with market risk are identified and evaluated as to their potential for reducing market risks faced by producers.

Twenty range livestock producers were interviewed to gain insights as to what risk management strategies they are currently using and why they are being used. 1/ The producers were also asked their opinions about selected market risk management strategies. The results of the interviews gave direction to the analysis.

The Western Range Livestock Area

The western range livestock industry is a unique part of agriculture. This uniqueness is derived from the fact that there are limited uses for most of its available land resources. The limitations on alternative agricultural uses of the land resources stem from climatic factors and soil characteristics. Despite the limitations, this industry makes an important contribution to our natural food and fiber supply. Livestock are able to convert native grasses into usable agricultural products--meat and wool.

The general climate of the western range is arid to semi-arid. There is insufficient precipitation in much of the area to produce traditional agricultural crops. Often precipitation does not fall when crops need it. Thus the timing and the amount of precipitation are limitations on producer's crop selection.

As a result, there is considerable need for irrigation throughout the western livestock area. In some areas, where water and length of growing season are sufficient, cash crops are grown. The irrigated areas are limited, however, by economically feasible water supplies. Further limitation is imposed by the region's soils which are in many places very shallow and may easily be made alkali through irrigation.

[^0]Temperature and growing seasons are other climatic factors limiting what the land resource can produce. Much of the western range lands are located at fairly high elevations resulting in short growing seasons. Killing frost for most crops can occur from late summer and early fall to late spring and early summer in a large part of the western range area. In areas where frost is not a problem, high temperatures coupled with limited or sporadic rainfall limit what can be grown. Thus, most of the land resources available to the western range livestock producer can be used only to graze native grasses for forage. The producer has few alternatives in terms of land use.

The climate, soils, and water for irrigation dictate how the land resources can be utilized by agriculture. The range livestock producer does not have the flexibility nor the opportunity to diversify to the extent available to the crop farmer. The range livestock producer therefore faces somewhat different market risks than do agricultural producers in areas of intensive farming.

Risk

The range livestock operator faces both market risks and non-market risks, as do all agricultural producers. The most potentially hazardous form of risk which must be managed by range livestock producers is market risk. This is the risk of economic loss due to price fluctuation and may occur in both input and output markets. The degree of market risk faced by individual producers may be most directly viewed through examination of the sets of prices paid and received by those producers over time. The authors feel, however, that perhaps a more indicative measure of risk faced by the range livestock producer is the magnitude of relative price changes between years.

Omaha prices for the livestock classes and sale months indicated in Table 4 were obtained for the years 1946-1976. Percentage price changes between years for the sale months were calculated, and from these a histogram of the aggregated tabulation was constructed (see Figure 1). The histogram indicated that the distribution of percentage price changes over time is characteristically normal and therefore conducive to the use of standard normal measures of dispersion. The results indicate an average change in price of approximately 5 percent between years (see Appendix A). .This upward trend most likely reflects inflation and, as such, was anticipated. A 90 percent confidence interval constructed about the percen-tage-change means, however, failed to indicate the direction of price movement. These results suggest that this type of analysis is not suited to forecasting. A number of other methods may providebetter forecasting results (1,7).

Cattle prices are historically cyclical and display seasonality; however, "... the usual irregularities in a particular year make the use of historical seasonal price patterns for forecasting the future a very risky business" (15). The value of this brief price analysis, then, lies in a descriptive framework. It exemplifies the extreme fluctuations in price to which range livestock producers are subject. It is these fluctuations that are primarily responsible for the wide range of incomes displayed in Table 5 which summarizes part of the following analysis.

Figure 1. Percentage Price Change, Relative Frequency, Aggregate of all Livestock Classes considered in study, Monthly Average Prices, Omaha, 1946-1976. a

The non-market risks facing the range livestock producer can be attributed to weather, health, and societal interactions. Adverse weather conditions can cause unusually high death loss and health problems. Drought conditions create forage shortages, both in the range and hay crops, which may force the operator to reduce his livestock inventory or purchase costly hay. Disease and health problems are controllable to a certain extent with management, but there remains a large element of risk associated with them. The third general area of non-market risk can be thought of as a societal orinstitutional risk. These are risks generated by social and/or political action, such as changes in the grazing policies of the Bureau of Land Management or the U.S. Forest Service (11,12). All agricultural producers face institutional risks at one time or another.

Organizational Strategies

There are three basic ranch organizations that range livestock producers commonly adopt. The first is the cow-calf operation. Cows are bred to calve in late winter and early spring, with calves ready for sale usually in October and November. Some operations with proper facilities will calve year-round and sell 350 to 450 pound calves all year.

The second type of organization is the cow-yearling operation. Again, cows are usually bred to calve in late winter and early spring. The calves are held to approximately 18 months of age and sold in September and October at weights ranging from 650 to 750 pounds. The cow-yearling operation will have fewer cows than a cow-calf operation using the same land resources. Thus, the cow-yearling operation will require less labor as there are fewer cows calving each year.

The third major organization available to rangelivestock producers is the stocker operation. The producer buys 350 to 400 pound calves in October and November and carries them 10 to 12 months for sale in September and October. These yearlings are sold at weights of approximately 700 pounds.

With all three organizations, the ranch is marketing forage in some form. An alternative for the ranch operator is to rent his rangeland and sell the hay he harvests, as opposed to marketing the forage as livestock. Some operators are doing this with part or all of their land resources; however, the practice is not common.

It is possible for the range livestock operator to change his basic organization; however, such a major change in operation may take considerable time to complete. Also, the operator would most likely need additional financing to complete the change from oneorganization to another. Another constraint on organizational change is the balance of the unit. By balancing the unit, we mean having sufficient forage available throughout the year from all sources to feed or carry the entire livestock inventory. Ranchers located in the colder parts of the area need to provide supplemental hay to their livestock during the winter months. The length of the feeding period depends on the severity of the winter and the availability of forage. A given set of range resources may "fit" one organization much better than another.

Analysis of a "Typical" Cattle Ranch in the Western Plains

The following is an analysis of how a typical cattle ranch in the central plains area of Wyoming would perform utilizing each of the three basic organizational forms previously described. The effectiveness of the alternative organizations considered is measured in net incomes generated. Net income as used in this study is what the operator and his family have available for living expenses. It is assumed that the operator will want the highest possible income subject to his willingness to accept risk (i.e., income variation). Normally, higher incomes are achieved through the acceptance of higher degrees of income variation.

The perceived land, buildings and equipment inventory with valuation and carrying capacity for the typical western ranch unit are shown in Table 1. The livestock inventories that the land resources can carry and values for the three basic organizations are shown in Table 2. These inventories utilize fully the forage available on the unit in a "normal" year.

A ranch of this size is normally a two man operation. The two men, usually an operator and a hired man, provide most of the labor needed. It is assumed that the operator's family and sometimes the family of the hired man provide extra labor when it is needed.

The area in which the typical unit is located is one with "open" winters. That is, the livestock graze year-round with supplemental hay feedings for only limited periods immediately following snow storms or periods of extended snow cover. The ranches in this area of Wyoming typically do not harvest hay. Thus no haying equipment is shown in the equipment inventory. If they do harvest hay, it is from areas along creek and stream bottoms that are subirrigated. The equipment used is normally old and has little inventory value.

The operating costs of the three basic organizations are summarized in Table 3. The explanatory footnotes for Table 3 are in Appendix B.

Returns from Alternative Marketing Methods

Included in the operating expenses shown in Table 3 are costs of three general methods of cattle marketing commonly practiced by Wyoming cattle producers. These include (A) sale at auction, (B) direct sale with no pencil shrink, and (c) direct sale with 3 percent pencil shrink. The method of marketing substantially affects costs as is indicated in Table 3.

The gross returns for the three ranch organizations depend on the products being sold and the prices received. Table 4 shows the pounds of beef sold in a normal year by weight of animal and time of sale, and the gross returns based on 1976 Omaha prices for the three basic organizations.

The 1967-1976 net returns to operator's labor and management for the three organizations are given in Table 5. The cost allowances for operator's labor given in Table 3 are included in the net returns shown in Table 5. Total costs are adjusted to the appropriate year using the U.S.D.A. cost of production index with 1976 as the base year, with the exception of inventory purchases which were estimated using the Omaha prices for the appropriate years. The returns for the various organizations in a given year were determined by using the Omaha prices andthe livestock sales and weights shown in Table 4.

The income figures presented in Table 5 were derived using the assumption of marketing costs A in Table 3. The assumption of sale at auction, it was felt, was most justifiable for use with the Omaha prices. The prices received by ranchers through direct sale treaties are dependent on the terms agreed to by the bargaining parties. 2/ The price a rancher may receive at his location is usually less than he would receive at auction in reflection of the marketing charges, transportation charges, and possibly shrinkage costs that he would be avoiding.

The procedure used assumes that the ranch unit sells the same number of cattle at the same weight each year. Such an assumption removes any effect of adverse weather conditions on the number of livestock marketed and their marketing weights. The adjustment to adverse weather conditions that a particular operator makes depends on many factors which create problems in this type of analysis. Under adverse weather, sale weights are lower and breeding herds are often reduced which reduces the number of feeder animals that can be sold. When range conditions improve to "normal," the operator will increase his inventory which again reduces sales for a short period of time. The time involved in such adjustments depends on the severity of the adverse conditions and the stocking rates used by the operator.

The stocker operations show the highest returns to operator's labor and management under the three situations examined in nine of the ten years. In the tenth year the stocker operation has losses ranging from $\$ 145,000$ to $\$ 160,000$, depending on the marketing method. It is doubtful that many operators could survive such a loss. A major problem with the stocker operation is the questionable availability of calves. If a large number of operators in an area shift from a breeding operation to a stocker operation, the number of calves available may decline. Calf prices will be bid up, reducing the potential for large returns shown in Table 5. Also, with higher calf prices, returns from a cow-calf operation are increased making it a more attractive alternative. The attractiveness of the stocker form of organization varies with individual preferences and attitudes toward risk. It may have a great deal of appeal to an individual who favors the challenge inherent in this form.

The cow-yearling operation appears desirable for the resources and the feeding conditions found in the study area. The organization has consistently higher returns to operator's labor and management than does the cow-calf operation. Thus, given the assumptions used and the geographic area considered, the cow-yearling operation may be the best strategy under the variation in market prices from 1967 through 1976. Interviews with producers in the central plains area of Wyoming confirm this conclusion.

Conclusion

An important part of the research effort was interviews with livestock producers to obtain their views on risk management. The preceding analysis was based to a large extent on the interview results. Many of the risk management practices thought to be beneficial to producers were, in fact, not being used. Very few producers of feeder animals, calves and yearlings, were using futures markets. The producers did not use forward contracting nor did they seem interested in retaining ownership through the feed yard.
, 2/ For a more explanatory description of cattle marketing in Wyoming see reference no. 13.

There were many reasons given for not following these practices. The main reason given was that it worked against them in their efforts to increase income and/or reduce market risks. Operators were reluctant to follow a risk management strategy if they did not fully understand how the strategy operated. Work being done at the Wyoming Agricultural Experiment Station with livestock futures markets should be useful to these range livestock producers.

The results of our research point out that the market risk management strategies followed by range livestock operators are dependent upon several factors that vary from one operation to another. The age of the operator is important, as is his equity position. The location of the operation enters in as the operator strives to balance his unit with the resources available. The variability in the productivity of the land resources in small areas may result in two adjoining livestock operators with similar equity positions and risk preferences having completely different ranch organizations. The operation must fit the land resources available. The lack of homogeneity in land resources throughout the range livestock area makes it difficult to say any one organization and set of operational strategies are "best" for dealing with market risk. The strategies must fit each individual situation.

References

1. Brown, Robert A. and Wayne D. Purcell. Price Prediction Models and Related Hedging Programs for Feeder Cattle. Bulletin B-734. Agricultural Experiment Station, Oklahoma State University, Stillwater. January, 1978.
2. Carver, Robert F. and Bruce West. Wyoming Agricultural Statistics-1977. Wyoming Crop and Livestock Reporting Service.
3. Conklin, Neilson C. 'The Impact of Energy Development on Wyoming Cattle Producers with References to Cost and Availability of Labor." Unpublished master's thesis, University of Wyoming. July, 1966.
4. Eikenberry, F. William. 'An Economic Analysis of Stocker Operations in Wyoming." Unpublished master's thesis, Division of Agricultural Economics, University of Wyoming. July, 1966.
5. Kearl, W. Gordon. Economic Comparisons of the Cow-Ca1f and Cow-Yearling Systems for Northern Plains Cattle Ranching. Research Journal 67. Agricultural Experiment Station, University of Wyoming, Laramie. December, 1972.
6. Market Risks in Agriculture: Concepts, Methods and Policy Issues. Departmental Technical Report No. 78-1. Department of Agricultural Economics, The Texas Agricultural Experiment Station, College Station. 1978.
7. Menkhaus, Dale J. Forecasting Trends: An Application of Discriminant Analysis. Unpublished manuscript, Division of Agricultural Economics, University of Wyoming, Laramie.
8. Morrison, Frank B. Feeds and Feeding. Morrison Publishing Company, Claremont. Ninth Edition. 1961.
9. O1son, Car1 E. Costs of Producing Crops in the Lyman-Mountain View Area of Wyoming. Agricultural Economic Report AE 77-05. Division of Agricultural Economics, University of Wyoming, Laramie. July, 1977.
10. Olson, Carl E. and Neilson C. Conklin. Cost of Producing Crops in the North Platte River Ranching Area of Central Wyoming, 1976. Agricultural Economics Report AE 77-06. Division of Agricultural Economics, University of Wyoming, Laramie. September, 1977.
11. Olson, Car1 E. and John W. Jackson. The Impact of Changes in Federal Grazing Policies on South Central Wyoming Mountain Valley Cattle Ranches. Research Journal 96. Agricultural Experiment Station, University of Wyoming, Laramie. November, 1975.
12. Peryam, J. Stephen and Car1 E. 01son. Impact of Potential Changes in BLM Grazing Policies on West-Central Wyoming Cattle Ranches. Research Journal 87. Agricultural Experiment Station, University of Wyoming, Laramie. April, 1975.
13. St. Clair, James S. Marketing Alternatives and Costs for Wyoming Cattle. Research Journal 108. Agricultural Experiment Station, University of Wyoming, Laramie. November 1976.
14. Stephenson, James L. and Dale J. Menkhaus. Marketing Wyoming Feeder Cattle - A descriptive analysis of alternative market outlets. Research Journal 118. Agricultural Experiment Station, University of Wyoming, Laramie. December, 1977.
15. Tomek, William D. and Kenneth L. Robinson. Agricultural Product Prices. Cornell University Press, 1972.

Table 1. Central Wyoming Plains Ranch Land, Buildings and Equipment Inventory and Value, and Carrying Capacity, 1976.

				Value
Land	Acres	Yield		
Owned: range	24,480	4A/AUM	\$60/A	\$1,468,800
subirr. pasture	- 320	. $75 \mathrm{~A} / \mathrm{AUM}$	\$200/A	64,000
Leased: range	19,200	6A/AUM		
Total	44,000			$\overline{\$ 1,532,800}$
Capacity				
Year-round grazing		9,320 AUM's		
Pasture		427 AUM's		
Total		9,747 AUM's		
Improvements				
Main House				\$36,000
Labor House				25,000
Shop				11,000
Barn \& sheds				40,000
Corrals				3,000
Total				\$115,000
Equipment				
Pickup, 3/4T, 4WD				\$6,000
Pickup, 3/4T, 4WD				3,000
Stock trailer				3,000
Shop \& vet equipment				500
Feeding equipment				1,000
Portable corrals				2,500
Total				\$16,000
Total Value				\$1,663,800

Table 2. Central Wyoming Plains Ranch Livestock Inventories (January 1), 1976 Valuation.

	Number	Average Weight	1976 Ave. Price	Value
		(Lbs.)	(\$)	(\$)
Cow/Calf				
Bulls	22	1,250	31.45	8,648.75
Cows	540	1,000	25.70	138,780.00
Heifer calves	130	400	35.64	18,532.80
Rep1: heifers	130	800	34.65	36,036.00
				\$201,997.55
Cow/Year1ing				
Bulls	20	1,250	31.45	7,862.50
Cows	450	1,000	25.70	115,650.00
Steer calves	191	420	41.09	32,962.40
Heifer calves	190	400	35.64.	27,086.40
Rep1. heifers	100	800	34.65	32,872.00
				\$221,433.30
Stocker				
Steer calves	947	420	41.09	163,431.37
Heifer calves	445	400	35.64	63,439.20
				\$226,870.57

Table 3. Central Wyoming Plains Ranch (9,743 AUM's), Operating Costs, 1976.

Expense Items	Cow/Calf	Cow/Yearling	Stocker
	(\$)	(\$)	(\$)
Variable Costs			
Operator's 1abor ${ }^{1}$	15,800	17,800	16,360
Hired labor ${ }^{2}$	7,200	7,200	7,200
Purchased feed ${ }^{3}$	18,065	18,605	17,960
Horse maintenance ${ }^{4}$	1,065	1,120	1,065
Veterinary expenses ${ }^{5}$	1,560	1,755	1,655
Motor supplies ${ }^{6}$	4,090	4,090	4,090
Utilities 7	1,460	1,460	1,460
Repairs ${ }^{8}$	2,340	2,340	2,340
Inventory purchases, inc. transportation ${ }^{9}$	560	56	185,580
Miscellaneous ${ }^{10} 11$	1,560	1,560	1,560
Interest on livestock inventory 12	8,325	8,780	16,700
Interest on inventory purchases	2,-790	2,245	16,700 2,345
Depreciation on bulls 14	550	500	--
A Marketing costs ${ }_{15}^{15}$	3,805	4,320	17,190
B Marketing costs ${ }_{15}$	65	55	275
C Marketing costs ${ }^{15}$	1,455	2,005	9,815
A Total Variable Costs	68,210	65,775	275,505
Total Variable Costs	64,470	61,510	258,590
C Total Variable Costs	65,860	63,460	268,130
Fixed Costs			
Rent on operator's land ${ }^{16}$	29,240	29,240	29,240
Depreciation on buildings \& equipment ${ }^{17}$	2,740	2,740	2,740
Grazing fees ${ }^{18}$	4,830	4,830	4,830
Insurance ${ }^{19} 20$	1,805	1,805	1,805
Property taxes ${ }^{20}$	11,160	11,160	11,160
Total Fixed Costs	49,775	49,775	49,775
Total 1976 Cost Estimate	117,985	115,550	325,280
Total 1976 Cost Estimate	114,245	111,285	308,365
C Total 1976 Cost Estimate	115,635	113,235	317,905

See Appendix B for footnotes.

Table 4. Central Wyoming Plains Ranch, Annual Sales, 1976 Valuation.

Category	Sale Month	Number Head	Ave. Weight	Lbs. Sold	$\begin{gathered} 1976 \\ \text { Price } \end{gathered}$	Contribution to Gross Revenue
			(lbs.)	(1bs.)	(\$/cwt)	(\$)
Cow/Calf						
Steer calves	Nov.	230	393	90,390	38.21	34,538.02
Heifer calves	Nov.	99	372	36,828	32.16	11,843.88
Repl. heifers	March	22	1800	17,600	32.18	5,663.68
Cull cows	March	54	1,000	54,000	27.88	15,055.20
Cull cows	Oct.	54	1,000	54,000	23.03	12,436.20
Totals		$\overline{459}$		$\overline{252,818}$		\$79,536.98
Cow/Yearling						
Yearling steers	Oct.	190	693	131,670	35.44	46,633.85
Yearling heifers	Oct.	90	631	56,790	32.18	18,275.02
Repl. heifers	March	10	800	8,000	32,18	2,574.40
Cull cows	March	45	1,000	45,000	27.88	12,546.00
Cull cows	Oct.	45	1,000	45,000	23.03	10,363.50
Totals		380		286,460		\$90,422.77
Stocker						
Yearling steers	Oct.	932	693	645,876	35.44	228,898.45
Yearling heifers	Oct.	439	631	277,009	32.18	89, 141.50
Totals		1,371		922,885		\$318,039.95

Table 5. Central Wyoming Plains Ranch Gross Revenue, Total Expenses and Net Revenue for Sales at Auction, 1967-1976.

Year	Gross Revenue			Total Expenses			Net Revenue		
	$\begin{aligned} & \hline \text { Cow/ } \\ & \text { Calf } \end{aligned}$	$\begin{gathered} \text { Cow/ } \\ \text { Yearling } \end{gathered}$	Stocker	$\begin{aligned} & \text { Cow/ } \\ & \text { Ca1f } \end{aligned}$		Stocker	$\begin{aligned} & \text { Cow/ } \\ & \text { Calf } \end{aligned}$	$\begin{gathered} \text { Cow/ } \\ \text { Yearling } \\ \hline \end{gathered}$	Stocker
1967	56,885	65,040	233,040	53,345	51,340	216,330	3,540	13,700	16,710
1968	55,705	66,785	238,330	53,535	51,475	213,870	2,170	15,310	24,460
1969	66,615	76,575	276,770	56,190	53,935	219,150	10,425	22,640	57,620
1970	71,400	81,635	292,615	58,425	56,245	246,605	12,975	25,390	46,010
1971	73,840	83,330	299,915	60,915	58,695	260,745	12,925	24,635	39,170
1972	90,340	102,085	375,555	65,900	63,370	274,760	24,440	38,715	100,795
1973	114,395	129,270	468,340	80,405	77,325	344,505	33,990	51,945	123,835
1974	68,955	79,510	259,345	87,555	84,950	418,390	$(18,600)$	$(5,440)$	$(159,045)$
1975	72,085	88,930	329,545	93,875	89,495	255,805	(21,790)	(565)	73,740
1976	79,535	90,605	318,040	101,475	96,950	308,185	$(21,940)$	$(6,345)$	9,855

Appendix A. Percentage Price Changes, Measures of Dispersion, Omaha, 1946-76.

Product	Market month	\% change mean $_{1}$	\% change standard deviation 2		
				Low	High
Steer Calves	Nov.	4.98	20.75	-1.27	11.23
Heifer calves	Nov.	5.31	22.75	-1.54	12.16
Yearling steers	Oct.	4.34	19.19	-1.44	10.12
Yearling heifers	Oct.	4.68	20.15	-1.39	10.75
Cul1 cows	Mar.	2.25	20.55	-4.53	9.03
Cull cows	Oct.	1.47	19.01	-4.80	7.74
${ }^{1}$ Simple average of percentage changes in price for the classes and months identified from year n to year $\mathrm{n}+1$, 1946-1976. ${ }^{2}$ Standard deviations in terms of percentage changes in price about the respective means. 3 Expressed in terms of percentage change in price from the current price.					

Appendix B. Explanations and Assumptions, Source References, Central Wyoming Plains Ranch Operating Costs, 1976.

1. Operator's labor: Estimate of 4,748 hours labor needed to manage a 425-cow cow-calf operation, obtained from "Cost of Producing Crops in the North Platte River Ranching Area of Central Wyoming, 1976," AE 77-06, Division of Agricultural Economics, University of Wyoming, p. 6.

Extrapolating from 425 cows to 540 cows, a man-hour requirement of 6,032.75 hours is obtained. Extrapolation to 450 cows for the cow/yearling operation yields a requirement of 5,027.29 man-hours. Eliminating man-hours used in calving and extrapolating from the 783 head model, an estimate of $6,167.97$ hours is reached. Reducing these requirements by 2,080 hours provided by hired labor, the operator labor requirements become:

	Hours	Wage	Annual Charge
Cow/ca1f	3,950	$\$ 4.00 /$ hour	
Cow/yearling	2,950	$\$ 4.00 /$ hour	$\$ 15,800$
Stocker	4,090	$\$ 4.00 /$ hour	$\$ 16,360$

2. Hired labor: Subjective assumption of one full-time person receiving a wage of $\$ 600 /$ month, plus housing, for 2,080 hours per year.
3. Purchased feed:

Protein cake-an estimate of .47/AUM for 1975 was taken from "Impact of Potential Changes in BLM Grazing Policies on West-Central Wyoming Cattle Ranches," RJ 87, Agricultural Experiment Station, University of Wyoming, 1975, p. 6. Adjusted to .55/AUM for 1976 by the USDA Index of Prices Paid by Farmers for Commodities.

Supplemental hay--needed one month per year, from Feeds and Feeding, Morrison, 1961, Appendix Table VII, approximately 20 lbs. of good quality hay per day per AUM are needed to full feed wintering cattle. From "Wyoming Agricultural Statistics, 1977," the 1976 average price for all hay was $\$ 56 /$ ton.

Annual cattle AUM's
Protein cake costs*

Cow/calf	Cow/yearling	Stocker
-9,721	9,721	9,721
\$5,345	\$5,350	\$5,345
757	789	751
454,200	473,400	450,600
\$13,776	\$15,975	\$12,615
\$19,121	\$21,325	\$17,960

*Rounded to nearest \$5.
4. Horse maintenance: 6 horses, 90 AUM's per year
3.3 AUM's/ton of hay, $\$ 56 /$ ton.

	Cow/calf		Cow/yearling	
	26		24	
Available range, AUM's	64		66	26
AUM's of hay fed	19		20	64
Tons of hay fed*	$\$ 1,064$		$\$ 1,120$	$\$ 1,064$

. *Rounded to nearest ton.
5. Veterinary expenses: Estimates for cow/calf and cow/yearling from "Economic Comparisons of the Cow-calf and Cow-yearling Systems for Northern Plains Cattle Ranching," RJ 67, Agricultural Experiment Station, University of Wyoming. Adjusted by the USDA Index of Prices Paid by Farmers for All Commodities. Stocker estimate from "An Economic Analysis of Stocker Operations in Wyoming," unpublished thesis by F. W. Eikenberry, Division of Agricultural Economics, University of Wyoming, 1966, p. 22.
Cost per AUM
Total veterinary expenses*

$$
\begin{array}{ccc}
\frac{\text { Cow/calf }}{.16} & \text { Cow/yearling } & \text { Stocker } \\
\$ 1,560 & \$ 1,755 & \$ 1,655
\end{array}
$$

*Rounded to nearest $\$ 5$.
6. Motor supplies: Estimates from RJ 67 (above), adjusted by USDA Index of Prices Paid by Farmers for farm and motor supplies. Stocker cost assumed equal to cow/yearling.

Cost per AUM	$\frac{\text { Cow/calf }}{.42}$		Cow/year1ing
Total motor supply cost	$\$ 4,090$		$\frac{\text { Stocker }}{.42}$
$\$ 4,090$	$\$ 4,090$		

7. Utilities: Estimate from RJ 87 (above) adjusted by USDA Index of Prices Paid by Farmers for fuels and energy.

$$
.15 / \mathrm{AUM}=\$ 1,460.00
$$

8. Repairs: Estimate from RJ 87 (above) adjusted by USDA Index of Prices Paid by Farmers for building and fencing materials.
9. Inventory purchases:

$$
\begin{array}{llr}
\text { Stocker: } & \text { Buy November calves } & \\
& 949393-1 \mathrm{~b} \text {. steer calves @ } \$ 35.79 & \$ 133,480 \\
& 446 \text { 372-1b. heifer calves @ } \$ 30.20 & 50,105 \\
& \text { (Good \& Choice average monthly price, } & \$ 183,585 \\
& \text { Omaha) } & \\
& & \\
& \text { Transportation--90-100 mi, } \$.37 / \mathrm{cwt.} & \\
& \text { (From Marketing Alternatives and Costs } \\
& \text { for Wyoming Cattle, RJ 108, Agricul- } & \\
& \text { tural Experiment Station, University of } & \\
& \text { Wyoming, 1976) } & \$ 1,995 \\
& & \$ 185,580
\end{array}
$$

10. Miscellaneous: Estimate from RJ 87 (above), adjusted by USDA Index of Prices Paid by Farmers for All Commodities.

$$
.16 / \mathrm{AUM}=\$ 1,560.00
$$

11. Interest on breeding herd: Subjective estimate for 1976 of 6%. Bulls are depreciated. Cow values of $\$ 257$ from 1976 Omaha, Nebraska prices.

Cow/calf:	540 cows		$\$ 8,325$
Cow/yearling:	450 cows	$\$ 6,940$	
	280 yearlings (10 mos.)	1,840	
	Total cow/yearling		$\$ 8,780$

12. Interest on inventory purchases: $9 \%=\$ 16,700$
13. Interest on operating costs: Assumes a 9% interest rate and costs incurred evenly over the one-year period.

	Operating Costs		Interest
Cow/calf	$\$ 53,139$	$\$ 2,390$	
Cow/yearling	$\$ 49,930$	$\$ 2,245$	
Stocker	$\$ 52,129$	$\$ 2,345$	

14. Depreciation on bulls: Value of $\$ 365 /$ head from Billings, Montana, prices for 1976. Assuming a five-year useful life, $\$ 250$ salvage value, straightline depreciation $=\$ 25 /$ head $/$ year .

	Number of bulls	Annual Depreciation
$/$ calf	22	$\$ 550$
Cow/yearling	20	$\$ 500$

15. Marketing costs: Three alternative assumptions: A) sale at auction; B) direct sale, no cutback; and C) direct sale, 3% pencil shrink.
A. Auction

Marketing charges:
calves, .96/cwt 1,220 yearlings, .70/cwt
2-year heifers, .62/cwt
cull cows, .44/cwt
Total
Transportation:
truck, $90-100 \mathrm{mi}, .37 / \mathrm{cwt}$
Shrinkage, 35\% fillback, 2. 3\% net
Total marketing costs
Cow/calf Cow/yearling Stocker
sale, no cutback
brand inspection, . $20 / \mathrm{hd}$
65
55
275
C. Direct sale, 3% pencil shrink
pencil shrink
1,455
2,005
9,815
References: "Marketing Costs and Alternatives for Wyoming Cattle," RJ 108, Agricultural Experiment Station, University of Wyoming, 1976.
"Marketing Wyoming Feeder Cattle--A Descriptive Analysis of Alternative Market Outlets," RJ 118, Agricultural Experiment Station,
16. Rent on operator's land: Subjective assumption of a $\$ 3 /$ AUM fee $=\$ 29,241$
17. Depreciation on buildings and equipment: Subjective assumptions of
buildings--50-year 1ife, no salvage equipment--10-year life, 10% salvage straight-line method
18. Grazing fees: Quoted from BLM, Rawlings, Wyoming. Assumes all leased land is leased from the BLM @ $\$ 1.51 /$ AUM $=\$ 4,830$
19. Insurance: Estimate from RJ 87 (above), adjusted by USDA Index of Prices Paid by Farmers for interest.

$$
.185 / \mathrm{AUM}=\$ 1,805
$$

20. Property taxes: From "Wyoming Agricultural Statistics, 1977"

$$
.45 / \mathrm{A}=\$ 11,160
$$

[^0]: Carl E. Olson is Professor and Martin J. Owens is Graduate Research Assistant, Division of Agricultural Economics, University of Wyoming.

 1/ Extrapolation to the population of range livestock producers is not feasible from this sample size, but it was sufficient for the intended purpose of gaining insights.

