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Predicting Tourist Demand for Beach Days 
in the Two-Constraint Recreation Demand Model 

Abstract 

A recreation model where days onsite and trips to a site are chosen jointly, given time and money 

constraints, is developed. Relative time-intensities of activities are important determinants of choice; 

given recent empirical estimates the model shows unambiguously that tourists travelling great distances 

take fewer trips of longer duration. 
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Predicting Tourist Demand for Beach Days 
in the Two-Constraint Recreation Model 

In the study of recreation demand, a question of some enduring interest has been the response of length 

of stay onsite at a recreation destination to differences in the cost and other parameters a recreationist 

faces. Most state-of-the-art models of recreation demand (e.g., McConnell; McConnell and Strand; 

Bockstael et al.) presume that an individual chooses to take recreation trips of fixed, predetermined 

length, more as a concession to the difficulty of modelling the length of stay choice jointly with trips 

than as a reflection of reality. As McConnell points out, if the quantity choice in a recreation demand 

model is the number of trips taken to a destination, the relevant price is the marginal cost of a trip. 

Thus, most contemporary recreation demand models are of the "travel cost" variety, relating the trip 

cost (price) and other shifters to the number of trips taken (quantity). 

The choice of length of stay has received some attention in the literature, however. In one of the 

earliest treatments of the subject, Edwards et al. showed that in a model where an individual chooses 

the length of a single trip taken, an increase in the on-site price reduces the individual's length of stay 

while an increase in travel cost increases the length of stay. Smith and Kopp argued that the 

assumption of homogeneous trip length imposes spatial limits on the travel cost model, since visitors 

who come long distances are often observed to stay longer at their destinations. 

Bell and Leeworthy have sounded a similar theme, noting several more recent papers in which 

travel cost positively affects the length of stay onsite. They propose a model which attempts to 

provide the theoretical foundation for the intuitively-sensible and often observed phenomenon of 

increasing on-site time as travel cost increases. Comments on this work indicate both the keen interest 

in this important· dimension of recreation choice and the fact that the issue of incorporating length of 

stay onsite into recreational choice models is far from satisfactorily resolved. Shaw takes issue with a 

number of modelling decisions made by Bell and Leeworthy in their empirical application, noting that 

the decision process behind their model is not fully or clearly specified. Hof and King interpret their 

model as an "onsite-cost model," illustrating a method of welfare measurement provided a suitable 

version of weak complementarity holds, and demonstrating that the model may be more difficult to 

implement in practice than the standard travel cost model. 

While the Bell-Leeworthy paper represents a very useful attempt to model recreation choices that 

involve both trips taken to and length of stay (or, equivalently, the total days of recreation) at a 

distant site, one of the fundamental difficulties with their model has gone as yet unnoticed. The 

difficulty arises because the notion of recreation quantity is treated too simply, which leads to an 

inconsistency between the visual and intuitive description of the tradeoffs an individual makes and the 

mathematical model used to motivate it. 1 The blurring of the distinction between separate quantity 

choices (of trips and of days) and their respective marginal prices also leads to erroneous interpretations 
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of the response of recreation days to changes in travel cost as own price responses. 

The purpose of this paper is to introduce and analyze a model of joint quantity choices by a 

recreationist facing time and money constraints, as it can clarify issues raised in the papers just 

mentioned and aid in the analysis of the comparative statics of recreation choices. The model 

postulates that individuals value both days at a site and trips taken; the former because recreation at 

the site yields utility, and the latter because trips themselves yield utility. Trips can yield utility either 

because travel time itself is enjoyable, or because changing the number of trips to accomodate a given 

total number of days onsite affects the duration of trips, i.e., the average length of stay onsite. 

The model of joint quantity choices addresses some of the most troublesome issues in 

contemporary recreation demand analysis, including making the choice of time onsite endogenous and 

allowing for travel time to have a non-zero marginal utility. The joint recreation choices of days and 

trips, and the comparative statics of parameter changes, can be analyzed conveniently in two-space by 

conditioning the constraints on the choice of all other goods and using the likely substitution 

relationship between recreation and other goods. Relative time-intensities of different activities, such 

as spending time onsite, travelling, and in consuming other goods, play a major role in determining the 

effects of parameter changes on trips and days taken for recreation at a given site. Given the relative 

time-intensities likely to be encountered in practice, the model shows that the effect of increasing 

distance on length of stay per trip is unambiguously positive, which provides the formal answer to the 

speculations of Bell-Leeworthy and others: It also can be used to gain insight into the comparative 

statics of other parameter changes, which can be notoriously difficult in two-constraint models because 

the smallest Hessian to be evaluated in a meaningful choice problem is five by five and many terms of 

potentially conflicting sign must be evaluated. 

The Two-Constraint, Joint Recreation Choice Model 

Consider an individual who allocates scarce time and money income in choosing consumption of three 

goods: total recreation days d at a distant site, number of trips r to take to the site, and all other goods 

z, in order to maximize the utility function u(d,r,z). Each good has both a time price and a money 

price of consumption. The money cost of travel to the site is , · n, where I is the money cost per mile 

(fixed for a given individual but possibly varying across individuals) and n is the number of miles 

travelled; while the time cost of travel is a· n, with a representing the time cost per mile (i.e., the 

inverse of miles per hour), which is similarly exogenous to the individual. The money cost per unit of 

time onsite (e.g., per day) is o, while the time price of time spent onsite is /3; often /3 will be taken to 

be fixed at 1.0, meaning an hour spent onsite costs an hour of time. 2 ·The time price of consuming the 

composite good z is tz, while the money price of consuming z is taken to be unity, since money prices 

~ I 
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are normalized over the price of z. 

A point to emphasize is that the model being developed is a two-constraint model; by definition, 

the individual cannot trade time for money at an observable marginal wage rate, since that 

opportunity allows the two constraint model to be collapsed into a standard single constraint choice 

problem subject to full income and prices (Becker; Bockstael et al.). Thus, the problem can be thought 

of as one involving an individual's allocation of fixed money income M and discretionary time T 

among competing recreation and other activities, with both M and T varying across individuals and 

determined largely (or perhaps completely) by an exogenous labor-leisure choice and other institutional 

constraints. 

The two budget constraints the individual faces can therefore be written as 

(1) M = 1n · r + 8d + z (money) 

(2) (time) 

The choice of r is assumed continuous for simplicity in exposition of the model; one could make the 

trips choice discrete at the cost of somewhat greater complexity, without substantially affecting the 

results. Both constraints are assumed to bind throughout the analysis. 

Two clarifying comments concerning the arguments of the preference function are in order. First, 

. in addition to days onsite, which is the quantity of recreation consumed, the number of trips taken is 

valued by the individual. A change in the number of trips, ceteris paribus, potentially affects utility in 

two ways: through its effect on total time spent travelling, which is a source of (dis)utility directly, and 

through its effect on trip length, changing the utility derived from a given number of total days onsite. 

Second, the utility arguments themselves are defined in time units; d is the total time spent on site, 

while r implies a time expenditure of an· r units of time in travel, and z is the time spent in consuming 

other goods. Note that ·both z, the time spent in consuming all other goods, and the constant time 

price of all other goods, t z• can be determined from the constraints given knowledge of the individual's 

optimal choice of days and trips and their prices; letting d* and r* denote these optimal choices, the 

optimal time spent consuming other goods, z*, is z*=M - ,nr* - od* from (1), while tz= 

[T - anr* - ,Bd*]/[M - ,nr* - od*], from (1) and (2). 

(3) 

The choice problem for the individual is, therefore, 

max u(d,r,z) 
d,r,z 

s.t. (1), (2) 

which yields (Marshallian) demands of the form d*=d(¢), r*=r(¢), z*=z(¢), where for notational 

convenience ¢ is the vector of all parameters of the problem: ¢=(a,,B1 ,8,n,tz,M,T). From here on, d, 
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r, and z will be taken to be chosen optimally and the asterisks suppressed for brevity. 

At this point the nature of the relationship between travel {money) cost, ,, and days onsite d 

becomes clearer. (This was a point of speculation in the Bell-Leeworthy paper.) For the choice of days 

onsite ( d) in the joint quantity, two-constraint model, own prices are 8 (money cost per day onsite) and 

fl (time cost per day onsite), whereas for the choice of trips, the own prices are ,n (money cost of 

travel per trip) and an (time cost of travel per trip). Travel cost per trip, ,n, is a cross-price 

{substitute or complement) in the days onsite demand equation, as is travel time an. Similarly, 8 and 

fJ are cross-prices in the trips demand function. This contrasts with the Bell-Leeworthy interpretation 

of onsite price as an own price of trips, and their assertions that the "traditional hypothesis" is that the 

effect of travel cost on beach days is negative. In fact, interpreting travel cost as a substitute price 

leads to the opposite conclusion: that its influence on beach days is positive, as their ( and one of their 

reviewers') empirical work demonstrates.3 

To get a visual fix on the comparative statics of days, trips, and average length of stay (the ratio 

d/r of total days to total trips), consider an equivalent, indirect representation of the problem which 

first optimizes out the consumption of good z and then considers the remaining choice of d and r given 

the (prior) choice of optimal z. This version of the problem is useful because, by properly accounting 

for how the optimal choice of z conditions the feasible choice set for d and r, the optimal choices of d 

and r are apparent immediately in d-r space from the intersection of the two conditional constraints. 

This simplifies the visual understanding of relationships between goods in the two-constraint model, 

and allows one to develop comparative statics results based on relative prices and knowledge of 

Sl!-bstitution relationships, without direct reference to the preference map. 

Substituting z{ef>) obtained from {3) above into the preference function, and noting that the time 

and money available for choice of d and r are reduced because of the choice of z, the choice problem 

can also be written as 

(4) max u(d,r,z(ef>)) subject to the conditional budgets 
d,r 

(5) Mdr= M-z=(,n)r+8d ( conditional money budget) 

(6) (conditional time budget). 

Because the constraints are independent, a single d-r combination solves the conditional problem { 4) 

since there are two unknowns and two equalities 

solution to this problem yields conditional demands of the form 

(7) 

(8) 

to be satisfied. The 

" . 
. . 
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which are identical to the unconditional demands that solve (3). That is, the same first order 

conditions hold for the conditional choice functions cl(·) and r( ·) in (7) and (8) and for the 

unconditional d(ef,) and r(ef,) that solve (3).4 However, by solving the conditional budget constraints for 

cl( ·) and r( · ), a convenient visual depiction of comparative statics results. 

Figure 1 gives the visual setup for analyzing the comparative statics of changes in days and trips. 

The two conditional budget constraints, Mar and Tdr• represent possible allocations of money and time 

expenditure between days onsite (d) and trips (r), conditional on the optimal choice of the composite 

good, z. The optimal choices of days and trips, d0 and r0, are identified by the intersection of the two 

conditional constraints; there is no need to introduce the preference map to find them. As opposed to 

the standard analysis, though, both conditional budgets depend on all parameters of the problem, so 

each will shift when any parameter changes. 

The effect of parameter changes on average length of stay is also easy in principle to identify from 

Figure 1, since it is simply the slope of the chord from the origin to the intersection of the conditional 

constraints at (d0,r0). Algebraically, it is simply the ratio of equations (7) and (8); for small changes 

in an exogenous parameter the sign of the change in average length of stay with a parameter is simply 

the difference in percentage changes of days and of trips. 

Defining Relative Time Intensities 

As a preliminary to comparative statics, some relationships that prove important to the analysis of the 

two-constraint model are defined and explained. The first set of relationships concerns relative time

intensity of goods, which is determined by the relative slopes of the time and money budget llnes for 

pairs of goods. Days onsite (good d) is time-intensive relative to trips (good r) if the ratio of its time 

to money price is higher; i.e., if? > ~' a day onsite is relatively more time-intensive than a day spent 

in travel. 5 Figure 1 is _drawn so that d is time-intensive relative to r, in keeping with both intuition 

and the empirical evidence in Bell and Leeworthy, and in Hof and King. 

The relative time-intensities of travel versus days onsite in the study by Hof and King are 

reported in their Table 1 (page 287). The time intensity of travel is o:/,=(74.8 hours/trip)/($131/trip) 

= (3.12 days/trip)/($131/trip) = .024 days/$, whereas the time intensity of days onsite is {3/8 = 

(lday/day)/($3.74/day) = .267 days/$. In this case study, days onsite is more time-intensive than 

trips; i.e., [3/8 > o:I,. 

The relative time and money prices of days onsite and trips can also be inferred, approximately, 

from the information Bell and Leeworthy report. Two travel modes are discussed: flying, with a dollar 

cost per mile of $.135, and driving, with a dollar cost per mile of $.08. A rough idea of the time 

intensity of each of these travel modes can be gotten by dividing the inverse of these costs per mile by 

the rate of speed for each mode, approximated as 400 miles per hour for flying and 40 miles per hour 
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by car; these result in time intensities of travel of roughly .0005 days/$ for air travel and .0116 days/$ 

for car travel. In contrast, it can be inferred from the regression coefficient, reported elasticity, .and the 

mean number of beach days that the money cost onsite is approximately 6 = $21/day; thus the time 

intensity of days onsite in this study is /3/6 =(lday/lday)/($21/day) = .048 days/$. Once again, /3/6 

> o:/1 : days onsite is relatively more time-intensive than trips. 

In light of this empirical evidence about days onsite being more time-intensive than trips, and the 

intuition that recreation generally is a more time-intensive activity than consumption of other goods, 

the analysis will focus on the case where 

(9) 

i.e., days onsite, travel, all activities, and· non-recreation activites rank from highest to lowest in time

intensiveness. The analysis is easily modified to account for other cases with different orderings of 

time-intensities, as demonstrated later. 

Two other characteristics of the time-intensive (d) and money-intensive (r) goods can oe noted 

from Figure 1. Days onsite can also be termed time-constrained, because 

(10) Mdr Tdr 
-6-> pi 

that is, the maximal days onsite feasible under the ( c~nditional) time budget is less than under the 

money budget, given the relative money ( 6) and time (/3) prices of d. Similarly, trips can be termed 

money-constrained because 

(11) 

and the conditional money budget relative to money price is more binding on maximum trips than is 

the conditional time budget. These both follow from (9), and are consistent with the way that Figure 

1 is drawn. 

Comparative Statics of the Two-Constraint Model 

By solving the two constraints (5) and (6), the conditional demands d and r can be written as 

functions of relative time-intensities and the conditional budgets, viz., 

- f 
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(12) 

and 

(13) 

where the pre-conditioned· optimal consumption of z enters through the conditional budgets 

Mdr = M - z and Tdr = T- tzz. Equations (9)-(11) imply that the numerators and denominators in 

(12) and (13) are all positive; thus the analysis focuses on interior solutions where d and r are strictly 

positive. 

For comparative statics, it is more useful to make' the (optimal choice of the) composite good z 

explicit. Substituting for Mdr and Tdr in (12) and (13) and gathering terms, the conditional demands 

for days and trips can be written parametrically in terms of z as 

(14) 

{+} 
and 

{+} {+} 

(15) 
{¥-~ - H-,}z 

r= 'Y ' 
n(i-}) 

{+} 

where the signs above and below the individual terms follow from (9). 

Parameter changes will induce both a direct response in the conditional demands, as consumption 

of other goods (z) is held constant; and an indirect effect, with parameters at their new values, as z 

adjusts and both constraints adjust simultaneously (since z is an argument of both). They are easily 

analyzed algebraically, using (14) and (15), and graphically, using the conditional budget constraint 

approach. This is illustrated by considering the question of trip lengths for tourists versus locals. 

Tourist Demand For Beach Days 

The effect of increasing distance from a site oil an individual's choice of how long to stay, on 
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average, can be evaluated by determining the comparative statics of miles travelled, n, on both trips 

and days. 

Consider first the effect of a change in miles travelled on total days taken. From (14), the direct 

effect is zero, since n is not an argument of (14) outside z(tp). That is, 

Defining Dd = (/3/o:- 8/,)>0 as the denominator of (14) to simplify notation, the indirect effect of the 

change in n, through z, is 

(od. oz) oz on 
{l_ tz}oz 

'Y o: on 
Dd > 0, 

from the signs in (14) and given the fact that all other goods z is a substitute for recreation trips. The 

increase in miles travelled leads to increases in both travel time and travel cost, and the rise in the cost 

of recreation trips leads to an increase in consumption of z (i.e., oz/on > 0). Thus, an increase in n 

leads to an increase in total days onsite. 

Now consider the effect of increasing distance on trips taken. The direct effect, from (15), is 

while the indirect effect is 

(or. oz) _ oz on - < 0, 

where Dr = n(, / 8 - a/ /3)>0 is the denominator of (15); so the effect of increasing distance is to reduce 

the number of trips taken, an intuitively sensible result since travel time and travel cost are own prices 

for trips taken. 

Note that the effect of increasing distance on average length of stay is unambiguous: the 

individual takes longer trips, but fewer of them, for a net increase in days onsite. This result is shown 

graphically in Figure 2. The individual is initially taking r0 trips, consuming d0 days onsite, and· 

staying an average of d0/ r0 days per trip. A person who is otherwise identical, but who lives farther 

away from the site, faces both higher travel time and travel cost, as indicated by the clockwise 

rotations of both the time and money budget constraints, from M~r and T~r to MJr and TJr· The 

direct effect of the increase in n leaves the individual consuming fewer trips (r' instead of r0) but the 

same number of days onsite, d0• 

The indirect effect of the change in n can be represented in Figure 2 by noting that the 

. ' 
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adjustment in z as n changes is a simultaneous realignment of both conditional budget constraints, 

since z enters both Mdr and Tdr· The response of z to a parameter change induces an adjustment locus 

of intersections of the conditional time and money constraints. The slope of this adjustment locus in d

r space can be determined from the parametric representation of the conditional demands in (14) and 

(15): as z increases, it can be seen that d increases and r decreases. That is, 

ad 
or = ad/oz 

or/oz 
H-~}1{:-4} 
-{¼- :;}/n(t-~) 

{a-,t} = -n /3-ot; < 0 

after gathering terms and simplifying.· The adjustment locus is drawn as the heavy dark line through 

(d0,r') and extending northwest in Figure 2, because z increases as miles travelled increases (since 

oz/an > O); the final equilibrium consumption of days, d1, and trips, r1, is a point on this locus.6 It is 

not possible to tell where exactly on the adjustment locus (d1,r1) is without consulting the preference 

map, but it is clear from the fact that z increases that average length of stay increases, to difr1 from 

do/ro. 

It is important to emphasize that this is due to a substitution relationship between days onsite 

and travel to the site. Because days and trips are substitutes, an increase in the price of trips increases 

the quantity of onsite days taken. This relationship would be reversed (days and trips would be 

cqmplementary) if, in equation (9), travel were less time-intensive than all other goods (i.e, if /3/6 > · 

tz > a/,, in which case it would have to be true that T/M> a/,). In this situation, both trips and 

days onsite would drop as travel cost increased, and an increase in average length of stay would remain 

likely ( due to the direct effect on trips) but not be assured. 

One of the criteria for judging a model useful is the extent to which it provides testable 

hypotheses about behavior .. The two-constraint model is rich in testable hypotheses about price and 

income effects on both .recreation quantities, in addition to the question of differing choices by tourists 

versus locals. Space constraints prevent development of these here, but they are contained in a working 

paper by the authors. 

Conclusions 

This paper has introduced a simple graphical and algebraic framework for analyzing the 

comparative statics of two-constraint models. The two-constraint framework is well-suited to 

recreation choice problems, because consumption of recreation goods can require substantial amounts of 
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time, and the presence of a binding time constraint in addition to a binding money constraint is very 

plausible. 

By letting both days at the distant site and trips to the site enter the preference function, distinct 

motivations for choosing both the total days of recreation to consume during a time period, and the 

number of trips to take are introduced. The motivation for taking an additional day onsite is the extra 

enjoyment that marginal day brings, while the marginal trip can be taken either because the marginal 

utility of travel is high or because of its beneficial effect on trip length. 

This model explicitly allows the marginal utility of travel time to be nonzero; even when travel to . 

a site is distasteful and yields negative marginal utility, there may be good reason to take an additional 

trip in order to best enjoy the optimal number of total days onsite which are demanded. The model 

also provides a natural way to model endogenous onsite time, determined implicitly as the ratio of two 

goods which are direct sources of value to the consumer. Many comparative statics results can be 

obtained without recourse to the preference map, given observable information about the relative time

intensities of the different consumption goods and the likely _substitution relationship between 

recreation and all other goods. 

The model is first applied to the question, of continuing interest in the recreation· demand 

literature, of how increasing (time and money) costs of travel affect the duration of a recreation trip. 

Under what appears to be the most plausible ordering of relative time-intensities of the different 

consumption goods, the effect of increasing distance on trip length is unambiguously positive, while the 

number of trips taken decreases, confirming speculations of a number of authors. The two-constraint 

model provides the formal framework within which such results can be derived. · 

Some limitations of the present formulation should be noted. The assumption of continuously 

binding time and money constraints, which seems quite plausible in many recreation contexts, may not 

always hold in practice. In particular, there may be situations where the wage rate serves as an 

observable parameter that identifies the scarcity value of time (e.g., following Bockstael et al.), so that 

the two constraints are. linearly dependent and the constraints can be collapsed, as suggested originally 

by Becker. However, this requires an assumption that the marginal utility of work time is zero, which 

seems unlikely (see, e.g., Chiswick and Johnson), and the present approach avoids that requirement. 

Also, substitute sites are not explicitly incorporated into the notation and analysis (they are implicitly 

in z), but making their presence explicit does not greatly complicate matters or alter the analysis 

significantly. 

Perhaps the most important contribution of the paper is to show how testable hypotheses about 

the structure of recreation demand with two constraints can be generated. While clearly many types of 

qualitative results are possible depending on relative time-intensities and, for example, the 

appropriateness of the separability assumption, the two-constraint model provides a structure for 

evaluating the adequacy of the assumptions made or, if appropriate, imposing it in estimation. 
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Footnotes 

1. Given that the individual values "beach days" (the product of trips and average days per trip), and 

faces a constant price per beach day and a constant travel cost per trip, the optimal solution is 

to take only one trip; there is no interior solution in the individual's tradeoff between trips and 

length of stay, contrary to Bell-Leeworthy's Figure 2. A secondary problem is that the budget 

constraint in their Fig. 2 is not linear: a change in average days onsite by one day is a change 

in beach days of r, at a cost of r8, where r is the number of trips taken and 8 is the constant 

price per beach day. As r varies at each point along the constraint, it is nonlinear. 

2. The unitary onsite time price means that all time spent onsite yields utility. This needn't always 

be the case: onsite time price could be higher than unity if there was a difference between the 

total time spent onsite and the amount of that time which was actually spent in the utility

yielding activity cl. An example would be having to wait in line for an hour in order to take a 

two-hour boat cruise; the onsite time price is 1.5 hours per hour of cl, which is the total 

amount of onsite time required to yield an hour's worth of utility. 

3. One could also argue for a complementarity relationship between trips and days onsite, which would 

imply a negative cross-price effect. Some evidence for this relationship between trips and days 

is provided by Hof and King. As shown later, it is possible for the trips-days relationships to 

simultaneously exhibit both Marshallian complementarity and substitution. 

4. If there were degrees of freedom for choosing d and r (as would be the case, for example, if there 

were only one constraint instead of two), they would also depend on z directly as it affects the 

shape of the preference map, in addition to its indirect effect through Mdr and Tdri that is, cl 

= d(a,,8,y,8,n,z,Mdr•Tdr) and r = r(a,,8,1 ,8,n,z,Mdr•Tdr). However, by design the conditional 

budgets solve directly for 6 and r, so is no opportunity for variations in z to affect the choice of 

cl and r when the conditional budgets are fixed. 

5. Using the same logic to define the notion of relatively money-intensive, it follows immediately 

that if d is time-intensive relative to r, r is money-intensive relative to d, since the relationship 

can also be written as 1/a > 8/,8. 

6. From equatio~ (9) tz varies from O to al, <,8/8, which means the slope of the adjustment locus 

ranges from O to - na/ ,8, where the latter is the slope of the time constraint. Thus, the 

adjustment locus in Figure 2 is drawn with a flatter slope than the time constraint. 
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