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This paper is concerned with pricing problems that arise when a service and the capacity 

to consume that service are jointly sold to consumers with random demand. It builds on 

the work of Oren, Smith & Wilson (1985) and Panzar & Sibley (1978). We show that 

profit maximizing firms that can use fully nonlinear prices will satisfy the usual right end 

point condition: the last unit sold to the largest consumer will be marginally priced at 

marginal cost. We also provide conditions under which marginal prices exceed marginal 

cost. When the firm is restricted to using a partly nonlinear price structure, selling 

capacity at a linear price and the service itself at a nonlinear price, we show that marginal 

prices will generally lie below marginal cost over some portion of their domain. The 

intuition underlying this result can be found in the loss leader problem first studied by 

Allen. 
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INTRODUCTION 

This paper is concerned with questions raised by the simultaneous consideration 
of two important issues in public utility economics: nonlinear price structures and 
capacity constraints. There is now a large literature on each of these issues. I A recent 
paper by Oren, Smith & Wilson (1985) brings these two strands of the literature on 
public utility pricing together. They obtain some very interesting results on the 
relationship between prices and costs. In particular, they show that, for a class of 
examples, capacity will be priced below cost by profit maximizing firms. In this paper 
we are concerned generally with the relationship between prices and costs and more 
specifically with the conditions under which prices will be below costs when capacity 
constraints are important and prices are nonlinear . 

. Our work is related to the work of Oren, Smith & Wilson and that of Panzar & 
Sibley (1978). Panzar & Sibley have provided a feasible, practical and efficient solution 
to the problem of public utility pricing under risk. The central construct introduced and 
analyzed by them is the notion of self- rationing. Briefly, a self-rationing scheme is one 
which requires consumers to subscribe to capacity. In the context of the market for 
electricity, a self-rationing scheme can be implemented through devices such as fuses or 
circuit barbreakers, which place an upper bound on how much electricity a consumer can 
use at any point in time. In a self-rationing scheme, consumers are required to purchase a 
fuse (as large as they desire, with larger fuses costing more) before the random factors 
affecting demand are observed. The utility then installs capacity equal to the total fuse 
sizes purchased by all consumers. No consumer can express a demand greater than his 
fuse size, so that demand fluctuations are no longer a reason for the utility to consider 
rationing schemes; Self-rationing arises naturally in telecommunications markets as 
well. Most business customers select the number of lines connecting their PBXs to the 
central office serving them. Standard tables are used by businesses to determine how 
many lines they need. These tables show the number of lines needed for any given 
combination of peak load and desired blocking probability. Residential customers make 
a similar, but coarser, choices in determining how many lines to order, and whether or 
not to subscribe to Call Waiting. 

Panzar & Sibley showed that the welfare maximizing prices are equal to the 
appropriate marginal costs: the price of electricity is equal to the marginal operating cost 
and the price of a unit fuse is equal to the marginal capacity cost. If, as they assumed, 
each of these costs is constant, the utility breaks even. Moreover, as the utility does not 
ration consumers it does not need to design a revelation mechanism that reveals the 
personalized information that is required to implement the efficient rationing scheme: the 
one that allocates capacity to those with the highest willingness to pay. A final- bonus: 
separability of the demand functions guarantees that the self- rationing scheme will 
generate the highest possible level of welfare, equal to that generated by the efficient 
rationing rule. 

Oren, Smith and Wilson (1985) argue that many other services (such as electronic 
mail and computer services) share the essential characteristics of the public utility model 
described above. The costs of the seller and the benefits to the buyer do not depend only · 
on the quantity produced and sold; other factors such as timing in the peak load context, 
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speed of delivery in the electronic mail context, and capacity in the electricity context 
(size of fuse) or telecommunications context (size of switchboard or number of lines) are 
relevant. These related issues are treated by them under the combined heading of 
"Capacity Pricing". They introduce a novel framework that allows them to treat these 
issues as a nonlinear pricing problem, and derive the result that the profit maximizing 
utility will, for one class of examples, set the price of capacity below its cost. 

The underlying intuition for this result is not developed in their paper. It is not 
clear whether the differences between their result and that of Panzar & Sibley depend on 
the technical details of their model, or on the assumed objective of the firm, or on some 
other distinguishing feature of the two approaches. One objective of our paper is to 
clarify the conditions under which utilities will price below cost and to look at 
determinants of the direction of the cross subsidy. 

In this paper, we use the assumptions of the Panzar-Sibley model on details of 
demand and costs, and differ from them in two important dimensions. First, we will look 
at the price structure that results from profit maximization, rather than welfare 
maximization as they did. Practical concern is the primary motivation for this 
assumption. Most public utilities in the U.S. are privately owned and profit 
maximization may be a better description of their behavior than welfare maximization. 
Also, the profit maximizing model can be more readily adapted to accommodate 
regulation. Second, we look at nonlinear price structures, rather than the linear price 
structures they did. Once again, we are motivated by the observation that most public 
utilities, which provide services that are hard to resell, use nonlinear prices. In these last 
two particulars, our model conforms to that of Oren, Smith & Vfilson. We differ from 
them, however, in our description of preferences, costs and admissible price structures; 
on these matters our formulation is that of the standard public utility model. 

Section 1 introduces the assumptions and models the behavior of the consumer. 
Section 2 looks at the problem of the firm and derives results on a fully nonlinear pricing 
structure. Our approach in these two sections differs in some details from earlier work in 
this area. Whereas the earlier literature used the dual approach pioneered by Mirrlees 
(1971), we develop a primal approach which is a variant of the more recent work by 
Goldman, Leland & Sibley (1984). The benefits and limitations of this framework are 
briefly discussed. Section 2 also establishes a standard right end point condition on the 
price structure and presents sufficient conditions for marginal prices to be greater than or 
equal to marginal costs. Section 3 looks at a mixed linear- nonlinear pricing problem and 
provides a range of cases for which marginal prices will lie below marginal cost. It 
appears that the basic mechanism at work is a modified form of Allen's (1971) loss 
leader strategy. Section 4 concludes with some remarks on possible generalizations. 

1. THE CONSUMER'S PROBLEM 

Following Panzar & Sibley, we assume that the market contains a continuum of 
consumers indexed by a variable 0 that takes on values in the interval @,8] according to 
a continuous density function g (0). G (0) is the associated distribution function. 
Demand is affected by a random variable, called temperature, indexed by a variable t 
which takes on values in the interval Ii J] according to the density function f (t ). F (t) is 
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the associated distribution function. 

It is assumed that there are no income effects and that preferences can be fully 
represented by an inverse demand or willingness-to-pay function, W (q ,t ,8). W 
represents the amount that consumer 8 will pay for another unit of the good at 
temperature t, given that he is already consuming q units of electricity. It is assumed 
that Wq <0 and that W1,W e>0. The latter monotonicity assumptions are crucial to all 
nonlinear pricing problems. 

The consumer faces a two stage decision problem. Before t is observed he must 
decide on a fuse size, A , which will then bound his ability to consume electricity during 
the period. After t is observed he must decide on how much electricity to consume, 
subject to the constraint imposed by his preselected fuse size. The most general price 
structure in this context would make the consumer's total payment an arbitrary function 
of his consumption.bundle, T(q ,A). This problem is hard to solve. Considerable insight 
into the price cost relationship can be obtained by looking at simpler problems. We look 
at two special cases. In the first case, which we develop in this' section, the marginal price 
schedule for electricity (fuses) is not a function of the fuse size (amount of electricity) 
bought by the consumer. We restrict our attention to additively separable total outlay 
functions, T (q .A ). In the second simplific~tion, developed in Section 3, we look at the 
still more special case in which fuses are sold at a fixed (linear) price while electricity is 
sold according to a nonlinear price schedule. · 

For the first case, it is easiest to solve the problem recursively by considering the 
ex post problem first. Let P ( q) be the marginal price of electricity. The consumer's ex 
post demand for electricity is the solution of the following progra,m: 

q* 

max f [W (q ,t ,8)-P (q )]dq 
q* 0 

In general, this problem may not be well-behaved and its solution will be hard to 
characterize using standard programming techniques. We reduce the problem to 
manageable size by restricting our attention to a class of price schedules for which the 
consumer's problem is well-behaved; that is, the global optimum is fully identified by the 
first order conditions for the problem. 

Specifically, we restrict our attention to price schedules that are continuous and 
single crossing. This allows us to use the first-order approach; see Rogerson (1985) and · 
Brown & Sibley (1986), pp. 208-215. Under these conditions the set of global optima for 
the consumer's problem is the same as the set of solutions to his first barorder 
conditions. The Kuhn-Tucker condition for the consumer's ex post problem is: 

W (q* ,t ,8)-P (q* ):s;0,q* ~0,(W -P )·q* =O. (1) 

Figure 1 illustrates interior and corner solutions to the problem. It is clear that the second 
order condition Wq-P q :s;o will be satisfied automatically for all single crossing 
schedules. Therefore, equation 1 implicitly defines the ex post demand functional for 
electricity, q* (t ,8,P ). 
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For an arbitrary fuse of size A , the demand functional can be used to define the 
rationing temperature, f, as follows: q* (8,f ,P )-A =O, or equivalently, 
W (A ,f ,8)-P (A )=O. The functional f(8,A ,P) defines the lowest temperature at which 8 
will be rationed, given the price schedule, if he had a fuse of size A . The expected 
consumer surplus of 8 can now be defined as: 

fq* TA A 

ECS =f f [W (q ,t ,8)-P (q )]dqdF +J j[W (q ,t ,8)-P (q )]dqdF-f R (a )da. (2) 
1.0 (0 0 

where R (.) is the (nonlinear) marginal price schedule for fuses. We assume that R is 
single crossing with respect to the ex ante demand curve for fuses, which is given by the 
first two expressions in equation 2. Once again, this assumption allows us to fully 
characterize the demap.d for fuses by the Kuhn-Tucker condition for the. ex ante problem: 

r 

maxECS (8,R ,P ,A). 
A~ 

The first order condition for interior solutions reduces to: 

j[W(A* ,t ,8)-P(A*)]dF-R(A*)=O. 
( 

(3) 

The first term in (3) is the demand price (or marginal value) of fuses: it represents the 
additional ( expected) value of electricity in those states of nature where the consumer's 
ex ante capacity choice prevents him from purchasing electricity. Consumer 9 · buys 
capacity to the point where its expected benefit is equal to its marginal price, and, with a 
single crossing price schedule, his choice is uniquely determined by this first order 
condition. The demand functional for fuses, A* (9,P ,R ), is implicitly defined by 
equation (3). As with any option demand it is derived from the underlying demand for 
the good, W (q ,t ,8). 

A useful property of the functional f can now be established. Given a positive 
marginal price of fuses, consumers will choose to· ration themselves. We state this 
formally as: 

PROPOSITION 1 : If R (A) is positive then f(9,A ,P )<t. 
Proof: Suppose not Then f = t. By (3), aECS 1aA =-R (A* )<0. The Kuhn-Tucker 
condition then requires A* = 0, which contradicts f =t. 

1.1 PROPERTIES OF DEMAND FUNCTIONALS. 

Later when we look at the firm's problem we will need consumer responses to 
changes in the price schedules. We now develop these responses. Given a price 
schedule P(q), construct a new price schedule P(q)+e·11(q) where e, a scalar, and ,i(q) 
are restricted so that P (q )+e·11(q) is also a single crossing schedule. For this new 
schedule the ex post demand for electricity is: 

W (q* ,t ,9)-P (q* )-e·,i(q* )=O. (4) 
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Eventually we will be interested in the demand response evaluated at e=O because we 
will be considering variations around the optimal price schedule. For reference we note 
that 

(5) 

The variational exercise underlying equation 5 highlights the true value of the 
single crossing assumption combined with the assumption of zero income effects. We 
can see that a variation in the schedule limited to an interval dq evokes a demand 
response . only in those consumers whose ex post purchases lie in that dq interval. 
Consumers who buy more or less than this amount are not affected by the variation T}(q) 
because 11(q*) will be zero for them. 

Later notation will be considerably simplified if we define dq* ldP=l/[Wq-Pq], 
so that dq* lde=ll (q* )·dq* /dP . The notation is suggestive; if we treat q* and P as 
variables in equation 4 and differentiate implicitly our result would correspond to the 
definition given above. Needless to say, this latter procedure is meaningless in the 
context of the problem solved by the consumer because changing the price schedule at a 
single point has no effect on the integral representing consumer surplus, and hence no 
effect on demand. However, the notational convenience is useful. Additionally, the 
expression denoted by dq* ldP captures that part of the demand response that is common 
to all variations in the price schedule, while T](q) captures that portion of the demand 
response that is due to the particular variation under consideration. 

Standard application of the Implicit Function Theorem to equation 4 yields: 
clq* ldt=-W, l[Wq-P q] ; dq* ld0=-W ef[Wq-P q ]. The second order condition for the 
consumer's problem guarantees that q* will~ monotone increasing int and 0. 

The properties of the demand for fuses can be derived in a similar way. Once 
again, begin with a perturbed price schedule P (q )+e·T](q ). The first order condition for 
choice of fuse size is: 

r 
f [W(A* ,t ,0)-P (A* )-e·T](A* )]dF-R (A* )=0. 

f(9.A* ,P+e·11) 

Implicit differentiation yields: 

r 
f T](A* )dF +[W(A* ,f,0)-P (A* )-E·Tl(A* )]f (f)·clflcle 

cM* /cle=--_r ____________________ _ 
r 
f [Wq-P q-e·'llq ]dF-RA -[W (A* ,f ,0)-P (A* )-e·T](A * )]f (f)·clf/cle 
f 
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T}(A* )[1-F (f)] 
r 
j[Wq-P q-e·T}q]dF-RA 
( 

because W (A* ,f ,0)-P (A* )-E·T} (A*) = 0 by definition of f. Evaluate at e=O to obtain: 

cM*lcklE=()= _TI(A*)[l-F(f)] =T}(A*)-aA*laP. (6) 
t 

j[W q-P q ]dF-RA 
f 

where dA* ldP is defined and interpreted exactly as aq* 1aP was. As before it is clear 
that if P (q) is perturbed in a small interval, dq, then only those consumers whose 
purchased fuse sizes fall in that dq interval will change their demand for fuses. This is 
abundantly clear froni (6): T}(A * )=0 outside the dq interval under consideration. 

The response of demand for capacity to changes in R (A ), the marginal price 
schedule for capacity, can be similarly derived. Begin with the price schedule 
R (A )+µ·'\jl(A) and the associated first order condition: 

r 
J [W (A* ,t ,0)-P (A* )]dF-R (A* )-µ·'\jl(A*) = 0. 

f(0,A* .P) 

Implicit differentiation yields 

dA* Idµ= _____ ......,'V-=-(A_*-=-) ___ _ 
t 

j[Wq-P q ]dF-R' (A )-µ·'\jl'(A) 
f 

which can be rewritten as 

r 
aA * Idµ I µ=0='\jl(A * )· [J [Wq -P q ]dF -R'] = '\jl(A * )-aA * 1aR 

( 

where dA * ldR is defined and interpreted as dq* ldP and dA * ldP were. 

Finally, another implicit differentiation yields: 
r 

aA* 1ae 
}WadF 
( 

----->0. r 
j(Wq-Pq)dF 
r 

Larger 0-types buy larger fuses. 

(7) 

(8) 
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2. THE PROBLEM OF THE FIRM. 

We retain the assumptions on costs made by Panzar & Sibley: the firm faces a 
constant average cost, c, of producing electricity and a constant average cost, k, of 
installing capacity. The firm is constrained to instal productive capacity equal to the total 
rated fuse sizes of all customers. Reliability is assumed to be 100%. Finally, we assume 
that the firm maximizes expected profit. 

Our first task is to construct the expression for the expected profit of the firm. 
The key insight, due to Goldman, Leland & Sibley (1984), is to realize that each 
infinitesimal dq segment along the price schedule can be treated as a different good 
whose demand is independent of the price charged for any other dq segment. This 
feature of demand functionals showed up in our comparative static study of demand. 
The natural procedure is to obtain the profit from each dq segment along the price 
schedule and integrate over the domain of the price schedule. 

Consider first the profit obtained from the sale of electricity. Pick a small 
segment (q',q'+dq) along the price schedule, P(q). The market demand for this 
segment will consist of all consumers whose ex post demand for electricity exceeds 
q=q' +dq and whose preselected fuse sizes allow them to purchase at least q units. We 
proceed in two steps: first we obtain the set of potential customers for the dq segment, 
that is, the set of customers whose fuses are big enough to allow the purchase of q units 
of electricity per period. Next, we obtain the actual purchasers of the dq segment at each 
temperature by looking at ex post demand. 

At each q define 0 as the customer whose fuse size permits him to consume no 
more than q units of electricity per period: 

A* (0,P ,R)-q=O. 

Equation (9) defines 0(q ,P ,R ). Implicit differentiation and earlier results yield: 

and 

:::i0-1:::i I oA* 10£ = ri(q)·[I-F(t)] = c )·::ie-i:::ip 
0 oE E=O = cU * lo0 'f T} q O 0 

a01aµ 1 µ=0 = aA * 10µ -
aA* 1ae -

fWetfF 
( 

'VCA) = ae1aR. 
'f 

fw etfF 
r 

(9) 

(10) 

(11) 

It is important to remember that fin these derivatives is evaluated at (0.A* ,P ). Thus we 
are evaluating the expression at the rationing temperature of the consumer whose fuse 
size permits him to consume q units. 

Next define the temperature f at which 0 is exactly rationed by his chosen fuse 
size: 
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W (q ,f,0(q ,P ,R))-P (q )=0. 

Equation (12) implicitly defines f(q ,P ,R ). We note that : 

f(q ,P ,R.) = f(S(q ,P .R ),A* (0,P .R ),P ). 

Differentiation of (12) (rewritten for the price schedule P (q )+n ·11(q )) yields 

ar1ae I e=0 = T1(q)·[l-W 0·a01aP ]IW1··= rt(q )·df!dP 

and 

aoaµ1~= 
'lf(A)-W0 

_ -'Jl(A )-ar,aR. 
l 

. W1 ·fWadF 
r 

(12) 

(13) 

When t >f, individual 0 will purchase exactly q units as he will be constrained by 
his fuse , which, by definition is of size q. All consumers with 0>8 will also purchase 
the dq segment under consideration as A* and q* are increasing functions of 8. All 
consumers with 0<8 will not purchase the qth unit because their fuses are too small: they 
will be effectively rationed out of the market. The contribution of the dq segment to the 
expected profit of the firm in these states is therefore: 

r e 
[P (q)-c]· f dF· f dG dq (14) 

r(q .P ,R) 8(q .P ,R) 

When t <f, fuses play no role in determining purchases of electricity. 0 was just 
rationed at f, at all lower temperatures his ex post demand will be smaller than his fuse 
because aq* 1at is positive. The set of purchasers will be determined only by ex· post 
demand at these low temperatures. Let 0* be the marginal purchaser, defined by 
W (q ,t ,0* )-P (q )=0. This equation defines the functional 0* (q ,t ,P ). Its properties 
include: 

d0* Ide I e=0 = T1(q)/W 8 = T1(q )a8* ldP. 

For t <f, the contribution of the dq segment to expected profit is: 

r(q.P .R) a 
[P(q)-c]· f f dGdF dq 

L 0*(q,t,P) 
(15) 

Strictly speaking, we should limit consideration to those temperatures at which demand 
is positive. This C<!!_l be done by defining t* as the lowest temperature at which the 
largest consumer, 8, will purchase at least q units, W (q ,t* ,8bar )-P (q )=0; and 
restricting the range of integration in (15): 
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f(q,P .R) e 
[P(q)-c]· f f dGdF dq (16) 

t* (q ,P) 8* (q ., ,P) 

Combining (14) and (16) we obtain the following expression for the expected 
profit from the sale of electricity: 

A r e re 
E1t1=f {[P (q)-c ]-[fdFfdG+ ff dGdF]} dq 

0 r e t*8* 

where A =A* (0,P ,R.) is the largest fuse bought by any customer and [0,A] is the relevant 
domain of the price schedule. We have deliberately left out the arguments of the limits 
of integration in order to maintain clarity. Table 1 contains a list of all the relevant 
functionals showing their arguments and the equations defining them. 

Total profit from the sale of fuses can be derived in exactly the same manner. It 
is non-stochastic because all the risk is borne by the consumer: 

A 8 

rr2 = f [R (A )-k ]- J dG dA. (18) 
0 S(A,P.R) 

The expected profit of the firm from all sources is: 

(19) 

The problem facing the firm is to maximize (19) by appropriate choice of P (q) and 
R (A). The rules for optimal pricing are most easily obtained by using the standard 
variational approach. Let P (q) and R (A ) be the profit maximizing choices and let 
P (q }H:·Tt(q) and R (A )+µ·w(A) be (feasible, single crossing) variations around them. 
Let the expected profit associated with the variation be E1t(P+E·T1, R+µ·'Jf). The 
assumed optimality of P and R will require that, for interior solutions: 

aE 1tloE I e=µ=O = dE 1tldµ I t=µ:=O = 0. 

The expression for E 1t(P +E·Tl,R. +µ·'JI), with irrelevant arguments of the limits of 
integration suppressed, is: · 

A f 8 f(E.µ) 8 
E1t(E,µ)=J {[P(q)+E·Tt(q)-c]·[ f dF· f dG+ f f dGdF+ 

Q f(E,µ) 0(E,µ) t* (E) 8* (E) 

8 
[R (q)+µ·'Jf(q)-k]·[ f dG]}dq. 

0(E,µ) 

In writing this expression we have used the fact that q and A are dummy variables of 
integration that have the same range of integration and combined E n1 and n2. The 
necessary conditions for the maximization of E 1t are derived in the Appendix. They are: 
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f 8 re T r 

f dFJ dG+ J J dGdF-[P (q )-c ]-[g (0) fdF ·cJS/cJP +Jg (0* )cJ0* /c)P dF ]-
r e i*e* r 1* 

[R (q )-k ]-[g (8)cJScJP ]=0. 

r e 
[P (q )-c H-JdFg (0)cJS/cJR ]+JdG - [R (q )-k ][g (S)cJS/aR] = 0. 

r a 

3. PRICE COST RELATIONSHIPS 

(20) 

(21) 

The relationships between prices and costs can be examined by analysing the first 
order conditions (20) and (21). These can be treated as two equations in the two 
unknowns (P (q )-c) and (R (q )-k ). We now state and discuss a number of propositions 
on the price-costrelationship. The proofs can be found in Appendix 2. 

PROPOSITION 2: P (q )~c. 

In Appendix 2 we show that (20) & (21) can be solved simultaneously to yield: 

re re 
J JdGdF J f dGdF 
t*e* t*e* P(q)-c =------=-----~0. 

r r 
(22) 

Jg (0* )a0* (i)PdF Jg (0*) W edF 
t* t* 

Equation 22 establishes that electricity will never be marginally priced below cost. 

PROPOSIJION 3 : T~ usual right end point condition for nonlinear price schedules 
holds :P (A )=c and R (A )=k. 

The right end point condition has a long history. The requirement that there be no 
distortion at the top of the schedule has been demonstrated for nonlinear income tax 
models by Mirrlees (1971) and Seade (1977), for models of product quality by Rosen and 
Mussa (1978) and for nonlinear price models by Spence (1977), Goldman, Leland & 
Sibley (1984) and Mirman & Sibley (1980). The result seems to hold in a wide variety 
of settings: in product markets and in labor markets, and for welfare maximizing and 
profit maximizing decision makers. Willig (1979) has shown that in product markets this 
condition is necessary for Pareto optimality. 

By contrast, there have been very few models in which this condition has been 
violated by optimally chosen price structures. Exceptions have been Ordover & Panzar 
(1980 & 1982), Srinagesh (1986 & 1990), Srinagesh and Bradburd (1989), Srinagesh, 
Bradburd & Koo (1990), and Oren, Smith & Wilson (1985). In the first two papers the 
monopolist sells a product that is an input used by other firms, and general equilibrium 
repurcussions in the secondary output market drive a wedge in the usual end point 
condition. In Srinagesh (1986), rate of return regulation distorts the input choice of the 
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firm and creates a wedge between private and social marginal cost. In Srinagesh (1990), 
the distortion arises because the monopolist is constrained to use linear prices on some of 
the goods he sells. The papers by Srinagesh & Bradburd (1989), and Srinagesh, 
Bradburd & Koo (1990) yield nonstandard assumptions because the consumer 
heterogeneity violates the usual monotonicity assumption. In the last paper, no 
explanation is offered for the failure of the right end point condition, but it appears that 
the cross elasticity of demand between output and capacity may have a role to play. We 
return to this point later in our discussion of mixed linear-nonlinear pricing. 

PROPOSITION 4 : If W 81 =O and if 0 is uniformly distributed, then R (A) ~ k. 

We have not been able to rule out completely the possibility that capacity will be 
marginally priced below cost in our model. However, we have established one set of 
conditions under which pricing below cost will be ruled out. While the conditions 
postulated by this proposition may appear somewhat restrictive, it is worth noting that the 
proposition places no (additional) restrictions on any derivatives of W other than W 81 , or 
on f (t ). Furthermore, our conditions are sufficient for prices to exceed cost, they are not 
necessary. 

4. MIXED LINEAR-NONLINEAR PRICING 

In this section we study a special case of the more general nonlinear pricing 
model introduced earlier. In particular, we assume that electricity continues to be sold 
according to a nonlinear price schedule, p (q ), but fuses are now assumed to be sold at 
the linear price, r. This price structure derives its interest not from the observation that 
all price structures are of this particular form, but from the implications of mixed linear­
nonlinear pricing for the relationship between prices and co&ts. Specifically, it will be 
shown that the right end point condition generally fails in this case and that there is 
generally pricing below cost. This suggests that if the possibility of resale or repeat 
purchase for some components of the monopolist's output rules out the use of fully 
nonlinear pricing, then we should expect to find marginal prices below marginal cost. 
Mirrlees (1976) formulated and solved the problem of mixed linear-nonlinear taxation. 
His model was very general and the solution opaque. Our more restrictive assumptions 
allow us to obtain a clearer characterization of the optimal prices. 

The details of the model are fairly similar to those of the more general case 
studied in the first two sections of this paper. Here we present the more interesting 
results and discuss their significance: longer derivations are relegated to Appendix 3. 
The two first order conditions for the firm's problem are: 

- -re ro r r 
aEn:!ap= ff dGdF+ffdGdF-[p (q)-c]·{ f g (0* )a0* 1apdF+fg(S)ae1apdF} 

t*8* ro t* r 

-[r-k 1-ae1ap ·g (8) = 0. (23) 

and 
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A T a 
dE1tldr=J{[p (q)-c ]-[-JdFg (0)ae1ar]-[r-k]·[g (0)ae1ar]+JdG }dq=O. 

o r a 

PROPOSITION 5 : The firm always selects a positive fuse price, r > 0. 

- -
A 8 

Proof: lim aE 1tl"iJr = J[k ·g (0)ae1ar+JdG ]dq which is strictly positive because ae1ar >0 
r~ 0 -

- - - 8 
and 8<8 for all q <A. The Kuhn- Tucker condition for the choice of r requires that 
"iJE 1tldr ~ if the optimal choice of r is zero; hence we can conclude that r is positive. 

Corollary 1: If capacity costs are zero (for example during off peak periods) then 
capacity will be sold. at a profit. If the underlying problem is well-behaved so that the 
solution is continuous in the parameters, then for given values of the other parameters 
there will exist an interval of low capacity costs [0,k '] for which the price charged for a 
unit fuse will exceed the cost of capacity to the firm. The implication of this result for 
pricing below cost is brought out by the next proposition. 

PROPOSITION 6 : If r > k then p (A) < c. 

Proof: Take the limit of (22) as q ~A : 

f f 

-[p (A)-c H 1 g (0)d0* 1ap-dF + i g (S)ae1apdF]-[r-k]·g (0)"iJ0/"iJp=O. 
((8) ((8) 

PropositiQ_nS 1 and 5 guarantee that f(0)<T; and ae* 1ap and ae1ar are both positive. 
Thus, p (A )-c and r-k both have strictly negative coefficients in the above equation and 
they must either be of opposite sign or both be zero. We have shown that when k=O, 
r-k >0. In this case, Proposition 6 guarantees that electricity will be priced marginally 
below cost in a neighborhood of the right end point of the price schedule. More 
generally, when k is sufficiently close to zero we will see electricity priced below cost. 

NothiEg in the model rules out cross-subsidization in the other direction, with 
r <k and p (A )>c. While we have not established sufficient conditions for this form of 
cross subsidy, numerical simulation suggests that as we increase k, holding all other 
parameters fixed, we move to a knife edge where r=k, and then to anot!!_er range of 
parameter values where r<k. In this range Proposition 6 guarantees that P (A )>c. 

The economic intuition underlying our result on pricing below cost can be found 
in the loss leader problem first studied by Allen (1971). An increase in the price of fuses 
induces consumers to install smaller fuses; this reduces their rationing temperature and in 
turn reduces their expected demand for electricity. An increase in the price of electricity 
reduces the option value of the fuse, which depends on the difference between the 
willingness to pay for electricity and its marginal price. Thus, in our model electricity 
and fuses are complementary goods. Allen showed that one of the conditions under 
which a monopolist selling complementary goods would price one below cost was if the 
cross elasticity of demand was large relative to the own elasticities. This is relevant to 
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the range of models we have studied. In the first model where both goods were sold 
according to a nonlinear price, complementarities at the level of the market demand 
curves were not significant. Changing P (q) (R (q )) over an interval dq only affected the 
demand for fuses (electricity) of those consumers whose fuse sizes (ex post demands) 
were in that particular dq inteival. In the mixed linear-nonlinear price model, however, a 
change in the price of fuses affects the ex post demands of all consumers by changing 
their rationing temperature. The complementarities at the level of market demand are 
significantly greater and the loss leader phenomenon appears as a robust characteristic of 
the profit maximizing price structure. Further, Allen argued that the good that would be 
subsidized would be the one that had the relatively smaller volume of sales at perfectly 
competitive prices. Proposition 6 is certainly in agreement with this conclusion: when k 
is low, and the demand for fuses relatively high, the firm will use electricity as the loss 
leader. What is different in our model is that pricing below cost is the norm, whereas in 
the non- discriminating model of Allen the loss leader example was an unexpected 
exception. 

Proposition 6 has a history of sorts. Oi (1971) was the first to show that if 
consumers' demand curves crossed one another the profit maximizing two part tariff may 
require that the service be sold at a loss and profit be taken entirely through the entry fee. 
Ng & Weisser (1974) generalized this result. Littlechild (1975), in his study of two part 
tariffs with consumption externalities, suggested that it sometimes paid the firm to set an 
entry fee below the cost of a connection and to generate profit only on the seivice sold to 
consumers. Schmalensee (1981) refers to these as a policy of "giving away the razor and 
making money on the blades" and based on casual empiricism, suggested that they are 
the norm (p 457). Averch & Johnson (1969) argued that a partially regulated monopolist 
would subsidize his unregulated products and make up the losses on the regulated market 
where an above market rate of return was guaranteed. More recently Sherman and 
Visscher (1982) and Srinagesh (1986) have shown that a monopolist selling a single good 
according to a nonlinear price will select a marginal price less than marginal cost if he 
faces rate of return regulation. Oren, Smith & Wilson suggest that such pricing below 
cost can occur even in the absence of regulation and strategic considerations if the 
description of goods, the economic environment and the pricing structure is made rich 
enough. Furthermore their result is robust in that it holds for a whole class of examples. 
Proposition 6 is robust too; it holds for a range of values of k and does not impose any 
functional restrictions on the demand or density functions. 

While the role of complementarity in the provision of loss leaders has been long 
recognized, its function in the context of nonlinear pricing models is of. more recent 
vintage. Schmalensee was the first to note that the complementarity of the right to buy 
the good and the purchase of the good itself was probably responsible for the widespread 
practice of pricing below cost. The additional insight offered by the results we have 
derived is that the restrictions on the admissible price functions have important 
implications for the degree of complementarity and therefore for pricing below cost. 
What is surprising is that as we go from linear to partly nonlinear prices, pricing below 
cost becomes the norm, but when we move. to more fully nonlinear prices (Section 2) 
pricing below cost disappears. 
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The intuition underlying Oren, Smith & Wilson's result is less clear but seems to 
mesh with our results. The cost function of the seller, the utility function of the 
purchasers and the price function all conform in their model: they are all additive 
measures on the real plane. They point out that this implies that there is a limit to gains 
from substitution and "direct substitution between points differing in both dimensions is 
excluded" (p 552). In light of our results, it seems likely that this fundamental 
complementarity they build into preferences is responsible for pricing below cost. 

5. CONCLUSIONS 

Firms adopt a variety of marketing strategies to influence consumer behavior. 
This paper has been concerned with one such strategy: the use of selective incentives 
embodied in a nonlinear pricing scheme. We have developed a general model of public 
utility pricing under risk in which the price structure is used to sell the good and also 
allocate scarce capacity among consumers. For the more general price structure 
examined by us, we derived the profit maximizing price rule and provided some 
conditions that would result in pricing above cost. For the special case in which capacity 
is priced linearly, we found that pricing below cost was the rule and not the exception. 
We suggested that the underlying complementarity between the service and the derived 
demand for the capacity to consume the service was responsible for thi_s result. Further, 
we have suggested that this complementarity is stronger when the form of the price 
structure is constrained. To the extent that storage or the possibility of resale of some 
components of a monopolist's output constrain his ability to use fully nonlinear prices we 
would expect some real price structures to display prices below cost. 

On the demand side, a necessary extension is to allow for intraperiod variation in 
demand and noncoincident peaks across customers. The current assumption requires that 
network capacity is equal to the sum of all individual demands for capacity. This is 
clearly not required if diffferent individuals use their fuses fully in different intervals. In 
this case, capacity will be more like a quasi-public good, and the optimal pricing rule will 
change. 

On the supply side, the most interesting area for future research would be to 
include a consideration of supply side uncertainties. Black outs, brown outs and 
selective load shedding are rationing strategies that are sometimes triggered by excessive 
demand when all consumers tum on their air conditioners at the same time. Often, 
however, unforeseen accidents (floods, thunderstorms, fire) knock out part of a utility's 
capacity leaving it unable to meet all demand. If we allow for supply side uncertainty of 
this kind, self rationing cannot be used to allocate scarce capacity in all states of nature; it 
must be supplemented by a rationing rule that will be put into effect when a supply shock 
reduces capacity below the rated fuse sizes of _all consumers. The interaction between 
this rationing rule and the self rationing scheme should prove to be a fertile area for 
research. 

Second, It would be useful to extend the analysis of nonlinear prices to oligopoly. 
Many of the services to which nonlinear pricing models are applicable are characterized 
by intense rivalry among a few firms. The market for long distance calls is an example. 
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Oren, Smith & Wilson (1986) have taken some steps in this direction by characterizing 
the Nash equilibria for a variety of strategies allowed the firms. Saidi & Srinagesh 
(1981) provided an example, in the context of trade policy, in which a monopolist (the 
government) sold imports in a domestic market that was also served by a competitive 
fringe of small domestic firms that reacted passively to the government's choice of a 
nonlinear price on imports. Much remains to be done. 

It would also be useful to examine the role of the more common forms of 
regulation on price structures. It is hoped that this paper is a first step towards exploring 
these issues. 
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FOOTNOTES 

1. There is now a large literature on nonlinear pricing. Early work looked at special 
cases such as two block (Gabor 1955) and two part tariffs (Qi 1971), or both (Leland & 
Meyer 1976). Murphy (1977) studied multipart tariffs. Spence (1977) was the first to 
consider price a continuous function of quantity purchased; the technique he used had 
been pioneered by Mirrlees (1971) in his study of optimal taxation. Spence (1980) 
developed an alternative discrete framework for deriving nonlinear prices; the same 
framework was used by Guesnerie & Seade (1982) in their analysis of optimal taxes. 
Goldman, Leland & Sibley (1984) introduced the simplifications that are at the core of 
this paper. A comprehensive list of references can be found in a recent book by Brown 
& Sibley (1986) which surveys this area. There is an overlap between the literatures on 
nonlinear prices, optimal taxes, insurance schemes and the principal agent literature. In 
this paper we do not attempt to develop the most general model that could be 
simultaneously applied to all the above-mentioned fields. Our more narrow focus is on 
the issues of particular interest to public utility pricing. 

The literature on rationing schemes stems from a seminal contribution by Brown 
& Johnson (1969). They considered the joint choice of a welfare maximizing utility that 
chose capacity and price before uncertainty was resolved, given that the good would be 
allocated to those with the highest willingness to pay if random demand exceeded scarce 
capacity. Visscher (1971) examined implications of alternative rationing rules for the 
price- capacity choice. More recently, Panzar & Sibley (1978) have examined the 
properties of self-rationing schemes. 

2. The properties of the price.schedule are endogenous to the model. By restricting our 
attention to a convenient subset of price schedules we may well preclude consideration of 
the true, globally optimal price schedule. The first order approach (discussed in the 
principal agent context by Rogerson (1985)) restricts attention to the price schedules for 
which the consumer's behavior is fully characterized by his first order condition. 
Rogerson provides conditions for this assumption to be innocuous for one kind of 
discrete problem. Goldman, Leland & Sibley show that the restriction is innocuous for 
one kind of nonlinear pricing model. Most other authors note that the exact conditions 
for the restriction to be innocuous are not known, and pass on (e.g. OSW, p 553 and 
Holmstrom (1979) fn 11). We follow the latter route. 

3. We adopt the convention (implicit in Panzar-Sibley) that A and q are measured in 
comparable units. Thus if A is measured in kilowatts and if the period is one week, then 
q is measured in kilowatt weeks. Only then will statements such as Ar q make sense. 
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APPENDIX 1 

In this appendix we present the derivation of the first order conditions to the 
firm's problem. The expression for the firm's expected profit, with irrelevant arguments 
omitted, is: 

X r e r(E.µ) e 
Erc(E,µ) = J {[P (q)+E·T}(q)-c ]·[ J dF J dG+ J J dGdF]+ 

O ((£,µ) 8(£,µ) t* (£) 8* (£) 

8 

[R (q)+µ·\jl(q)-k]- f dG )dq 
8(£,µ) 

Differentiating with respect to E we obtain: 

X r e re 
aErc/ae = f{Tt(q)·[fdFfdG+ ff dGdF]+ 

o ,.. ··- r a t*9* 

e r 
[P (q)-E·T}(q)-c]-{-f (f)df!def dG-g (0)d0!aefdF -

e r 
r a a 
Jg (0* )a0* 1awF- J dGf (t* )dt* tac+ f dGf (t)anaeJ+ 
t* 8* (t*) 9* (f} 

[R (q )+µ-\jl(q )-k ]-[-g (0)d0/dE])}dq 

(A.I) 

-
Considerable simplification is possible. First note that 0* (t* )=0, so that 

9 

J dG=O. Next note that 0* (f)=0 because the smallest consumer whose ex post 
9* (t*) _ 

demand is q at temperature f (i.e. 0* (t )) is also the one whose fuse size is q (by 
definition of f and 8). Therefore the first, fourth and fifth terms in the second square 
bracket drop out. Next evaluate the derivative at E=µ=O, and replace terms such as ae,ae 
with the notationally equivalent T}(q )d0/dE to obtain: 
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X e T re 
dE1tldelE;:µ=0= f11(q){JdGfdF+f f dGdF+ 

o e r ,*a* 
T r 

[P (q )-c] ·[-g (0)d0/dP f dF -f g (0* )a0* taPdF ]+ 
r 1* 

[R (q )-k H-g ce)ae,aP ]}dq. 

A.2 

The optimality of the price structure requires that A.2 be nonpositive for all 
permissible variations in the price schedule. For an interior optimum in the 
neighborhood of the optimal P (q ), this reduces to the requirement that the expression in 
curly brackets be zero. This is the necessary condition reported in the text. 

The single crossing restriction gives rise to the possibility of comer solutions 
which we briefly note. Essentially, single crossing schedules cannot cut any demand 
curve from above, but are allowed to lie along an inverse demand function over a non­
null interval. Over such an interval, upward variations in the price schedule are not 
permitted as they will result in a new price schedule that is not single crossing. If we 
restrict 11(q) to be non-positive in order to stay within the permissible class of variations, 
then it is not necessary that the expression within the curly brackets in A.2 be zero; it can 
be positive while the necessary condition that the change in E 1t be non-positive is 
satisfied. Rosen & Mussa (1979), Goldman, Leland & Sibley (1985) and Brown & 
Sibley (1986) ( pp 209-210) dealt with the discontinuities that arise in this case. We have 
nothing further to add on this score. Dealing with the comer solutions does not seem to 
add much of substantial value to the economic intuition of the problem, its main use is in 
the successful numerical solution of examples. We focus on the interior solution 
described by equation 20. 

The other necessary condition can be derived in the same way. 

X a r e 
aE1t1aµ=f {[P (q)+e·11(q)-c ]-[-/ cnanaµfdG-fdF ·g (S)ae,aµ+ J dGf cnar,aµJ 

o e r 8*({) 
0 

+ 'Jl(q)fdG+[R (q)+µ-'Jf(q)-k]·[-g (0)o0/dµ])dq. 
e 

Use 0* (t)=0 and d0/dµ='Jl(q)-o0!aR to get: 

X r e 
0E1tldµ I £=µ=0=f 'Jl(q){[P (q)-c H-fdFg (S)aStoR ]+fdG+ 

0 r 8 

[R (q )-k ]-[-g (S)anaR ]}dq. 

A.3 

Once again, in order to guarantee the optimality of P and R, we need to ensure that A.3 
is zero for permissible variations. Subject to the caveat noted earlier, this requires that 
the term in curly braces be zero, which is the second necessary condition used in the text 
(equation 21). 
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APPENDIX2 

Proof of Proposition 2: 

Equation 21 can be rewritten: 

0 
_ fdG 
t ~' 

R (q )-k= - [P (q )-c ]·fdF + _8 _ • 
r g (0)·d0/dR 

r 
S b . . (20) ae,aP . rd'F d h u stitute m , use _ J' , an gat er terms to get 

a01aR r 
re 
ff dGdF 

P-c 
t* 8* ·-------~-

( 

f g (0* )d0* !dPdF 
t* 

This establishes Propsition 2. 

Proof of Propostion 3: 
- -

(B.1) 

(B.2) 

P (A ) cannot be directly evaluated by taking the limit of B.2 as q ~ A because the 
numerator and denominator tend to zer~ leaving_us with an indeteQTiinate form. TJ).is 
happens because in the numerator 0* ~ 0 as q ~ A ( only consuJE.er 0 purchases .!_he Ath 
unit), while in the denominator, t* {!he temperature at which 0_ buy~ exactly A units) 
tends to f, the temperature at which 0 is just rationed, because A is 0' s fuse size. We 
resort to L'Hospital's Rule. 

Let N (q) be the numerator of B.2; fully written out it is: 

r(q,P .R) 8 

N(q)= I I dGdF. 
t* (q ,P) 8* (q ,t ,P) 

On differentiation: 

r e s 
dN ldq= f-g (0* (q ,t ,P))d0* !dqdF + f dGf (f)dfldq- f dGf (t* )dt* ld£j. 

t* 8* (q ,r ,P) 8* (q ,t* ,P) 
- - -

Now 0* (q ,t* ,P )=0 j)y definition, 0* (q ,t ,P )~ 0 as q ~ A and t* ~ f as q ~A. Hence 
dN!dq~ 0 as q~ A. 

Let D (q) be the denominator of B.2. Fully written out it is: 

r(q,P,R) 

n (q )= f g (0* (q ,t .P ))o0* 1aP dF. 
t*(q,P) 

On differentiation, we have: 
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r r 
dD /dq = f g '(0* )d 0* /dq ·c)8* /c)PdF + f g (8* )c)28* /c)P c)qdF + 

t* t* 

g (0* (q ,t ,P )c)8* /c)P I ,=rf (f)dfldq-g (8* (q ,t* ,P )08* fc)P I t=t* dt* ldq -f (t* ). 

As q-+ A ,t*-+ f and the first two integrals vanish. We are left with: 

Iim_ dD /dq =g (8* (q ,t ,P )08* /c)P I if (f)·[df!dq-dt* ldq ]. 
q~A 

Now f is implicitly defined by W (q ,f ,0(q ,P ,R ))-P (q )=O, so 
dfldq=-[Wq+W fl/-0/dq-Pq]IW,. On the other hand, t* is defined by 
W(q ,t* ,8)-P (q)=O, so dt* ldq=-[Wq-Pq]IW1 • It follows that 

Iim_dD!dq=- g (8)08*/c)PJ (f(8) 18 {W fl/-8* /dq]/W1}>0. 
q~A 

Therefore, by L 'Hospital's Rule we conclude that P (q )-+ c as q-+ A . 

The proof that R (A )=k now follows in a straightforward fashion by taking the 
limit of B.l as q-+ A. 

Proof of Proposition 4. 

The two first order conditions can be solved for R -k : 

R-k 

e r 
fdGJWedF 
a r 

g(0) 

re r 
ff dGdFfdF 
t*S* r 

r 
f g (8* )c)9* /c)PdF 
t* 

When W 81 =O and g (9) is constant, this simplifies to 

re r 

R-k=[Wefg] 

8 r ff dGdFf dF 

fdGfdF- t*S* r 
- [ 

e r fdF 
t* 

We now use the fact that 0<9*, which follows because 0 is the consumer who is just 
rationed at q and therefore is smaller than any consumer 8* who purchases the qth unit 
at lower temperatures when fuses are not effective constraints. Thus if we replace 8* by 
0, we will decrease the value of the right hand side. Further, 0 is not a function oft and 
can therefore be factored out of the integral. Once we do this we are left with the result 
thatR-k~O. 

The potential for pricing below cost is apparent in B.3. It appears possible that if 
g (0*) is small enough for some dq interval relative to W 8 and g (0), then the second 
term in B.3 will dominate, resulting in R $k. This possibility may not in fact be 
achievable: the second order conditions for the firm's problem and the requirement that 
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the optimal price schedule be single crossing place complex restrictions on the density 
functions and the inverse demand curves. We leave open the question of whether it is 
possible to generate a well behaved example in which fuses are priced below cost. 
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APPENDIX3 

This appendix presents the details of the mixed linear- nonlinear price model of 
Section 3. We retain the earlier notation, with two exceptions: the prices are denoted 
p (q) and r to differentiate them from the more general case studied earlier. The analysis 
of consumer demand is not different in any significant way from the earlier treatment, so 
we move directly to the problem of the firm. Expected profit written in our abbreviated 
notation, is 

X r(e.r) e r e a 
E1t(E,r)=f{[p(q)+E·11(q)-c]·[ f J dGdF+ J dF J dG]+[r-k]· f dG}dq. 

0 t* (£) 8* (£) r(e,r) 8(£,r) 8(e,r) 

On differentiation we have: 

X re ro 
dE1tldE I £=:O=f {11(q)·[f f dGdF +JfdG]+ 

0 t*8* f0 
r a e 

fp (q )-c H- f g (0* )d0* Ide dF + f dGf (f)df!de- f dGf (t* )dt* !dE-
t* 8*(() 8*(t*) 

8 'f 

fdGf (f)dfldE-fdFg (8)d8/dE] - [r-k]-g (8)d0fi3e)dq=O. 
e r 

As we showed earlier, 0* (f)=0, so 

X re r a r r 
f 11(q ){ J f dGdF +fdFf dG-fp-c Hf g (0* )d0* ldpdF +fdFg (0)d0!ap ]-
o t*8* r e t* r 

[r-k ]-g ce)ae,av Jdq =0. 

Interior maxima requre that the expression in curly braces be zero. This is the first 
necessary condition used in the text. 

The other first order condition is obtained by differentiating E 1t with respect to r: 
- - -
A 0 r 0 

aE1tldr=f {fp-c H f dGf (t)df!dr-g (0)ae1arfdF +fdG-[r-k]·g (0)ae1ar }dq=O. 
0 8* (t) r e 

If we substitute 0* (t )=0, we are left with the second necessary condition used in the text. 
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TABLE 1 

The following functionals appear frequently as limits of integration: 

1. t* (q .P ), the lowest temperature at which the qth unit along the price schedule is 
bought by some consumer.It is defined implicitly by: 

-
W (q ,t* ,8)-P (q )=0. 

2. 8* (q ,t .P ), the smallest consumer who purchases at least q units at temperature t. It 
is defined implicitly by: 

W (q ,t ,8* )-P (q )=0. 

3. f(8,A .P ), the temperature at which consumer 8 is just rationed if his fuse size is A , 
given the price schedule P (q ). It is defined by: 

W (A ,f,8)-P (q )=0. 

4. 8(q .P ,R) , the consumer whose fuse size is q, given the price structure. It is 
implicitly defined by: 

A*(8.P ,R)-q=O. 

5. f(q .P ,R ), the temperature at which 8 is just rationed. It is implicitly defined by: 

f(q ,P ,R )=f(8,q .P ). 
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