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Abstract

The recent literature suggests that first announcements of real output growth in the US have
predictive power for the future course of the economy. We show that this need not point to a
behavioural relationship, whereby agents respond to the announcement, but may instead simply
be a by-product of the data revision process. Initial estimates are subsequently subject to a
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1 Introduction

The key issue we investigate in this paper is whether agents’ beliefs or perceptions about the current
state of the economy affect the future evolution of the economy. In a recent paper, Rodriquez Mora
and Schulstad (2007, p. 1934) argue that:

The beliefs of agents (expressed in the announcement, their available information)
determine the future path of the economy much more than the true events that the

announcement measures.

The assertion is based on the empirical evidence that last quarter’s actual rate of output growth
has no predictive power for the present quarter’s actual rate of output growth once we take into
account the first announcement of the rate of output growth in the last quarter. They relate their
results to those of Oh and Waldman (1990, 2005), who report that announcements of the leading
economic indicator affect future activity (as measured by industrial production), and that these
announcements are an important source of expectational shocks. Specifically, Oh and Waldman
(2005) show that errors in the initial announcements of the leading indicator affect survey expec-
tations of future activity. Referring to the literature on strategic complementarity, they state that
[p.75]:

if all agents suddenly revised upwards their beliefs concerning the production plans
of other agents - even if there were no change in any real variable - the result would be

a type of self-fulfilling increase in the future level of production

which would be consistent with their earlier findings that false announcements affect the future
evolution of the economy. As they note, the importance of expectational errors for business cycle
fluctuations dates back to an earlier literature associated with such luminaries as Keynes and Pigou,
as well as the more recent literature on sunspot equilibria and strategic complementarities (see Oh
and Waldman (2005) for references).

In this paper we consider an alternative explanation of the finding by Rodriquez Mora and
Schulstad (2007) which stresses issues to do with measurement, rather than behavioural explana-
tions which suppose agents respond to announcements irrespective of the true state of the economy.
A reason for considering measurement issues is simply that revisions to estimates of the true state
of the economy are ongoing, so that the ‘true’ GDP growth rate in any period will not be de-
termined until a number of years later, and will typically depend on a whole raft of revisions, as
discussed below. There is the very real possibility that the nature of the revisions process may of
itself generate the findings that Rodriquez Mora and Schulstad (2007) report.

There has been much interest in the recent literature in the nature of data revisions and the

revisions process, and whether early estimates are efficient forecasts of later, revised estimates, or



are simply noisy estimates of ‘final’ values (see, e.g., Mankiw and Shapiro (1986), Aruoba (2008),
as well as the review in Jacobs and van Norden (2006)). We will consider how the findings of
Rodriquez Mora and Schulstad (2007) fit within this literature on ‘measurement’.!

As well as issues to do with the nature of the revisions process, the question of whether data
vintages matter has also been addressed - do key macroeconomic results or relationships estab-
lished for one particular vintage of data remain relevant for other vintages of data. For example,
Croushore and Stark (2003) examine three major studies in macroeconomics, and find that of these
three the results of the seminal paper by Hall (1978) on the rational expectations permanent in-
come hypothesis appear to be dependent on the particular data vintage studied. Runkle (1998),
Orphanides (2001) and Orphanides and van Norden (2005) consider the effects of data revisions
on the conduct of monetary policy and the calculation of output gaps. There has also been much
interest in data vintages and forecasting, as the use of final-revised data may give a misleading
impression relative to the use of data available at the time in pseudo real-time forecasting exercises
(see, for example, Diebold and Rudebusch (1991), Faust, Rogers and Wright (2003), and the re-
cent review by Croushore (2006)). Recently, a number of authors have considered how to specify
forecasting models when there are various data vintage estimates of the same observation (see,
e.g., Koenig, Dolmas and Piger (2003), Clements and Galvao (2008b) and Clements and Galvao
(2008a)).

Relative to this burgeoning literature on measurement in the presence of multiple data vintages,
consideration of the impact of early vintage estimates on the final value of real output in subsequent
quarters gives rise to a different line of analysis. Our interest is not in whether the same macro
relationship holds on different vintages of data, but in a putative relationship that draws on different
data vintages, namely first-release data, and final release data. In this paper we consider whether
the recent literature on modelling and testing data revisions is compatible with the findings of
Rodriquez Mora and Schulstad (2007).

Our main contribution is to show that the dependence of real output growth on prior first
announcements can be viewed as a by-product of the data revision process, rather than revealing
agents responding to first announcements. We use two different models of the dynamics of the
revision process to investigate the relationship between real output growth and first announcements,
and the dependence of this relationship on the revisions process. The first model supposes that the
true state of the economy is a latent process that may never be observed, and is based on the state-

space model of Jacobs and van Norden (2006) and allows for correlated revisions or ‘spillovers’. The

'Rodriquez Mora and Schulstad (2007, p. 1926) talk of ‘noise’ in the first announcement, but it appears that they
are not using this term in the Mankiw and Shapiro (1986) sense, as discussed below. They do not test for noise,
although their regression (2) of the final value on the first announcement is a test of news (this is formally equivalent

to the more familiar form of regressing the revision on the first announcement), and they reject the news hypothesis.



second is a vector autoregression that models the various data vintages directly. Both approaches
allow the identification and testing of whether data revisions incorporate news to the measurement
of output growth. Of interest are two related questions: whether these frameworks are capable
of generating the finding that first announcements affect the future course of the economy; and
assuming that they do, whether the predictive power of first announcements holds for empirically
relevant regions of the parameter space.

The next section describes the main findings of Rodriquez Mora and Schulstad (2007), and
reproduces their estimates on our data set. Section 3 analyses their findings within a modelling
framework that characterises data revisions as news or noise processes. Section 4 investigates the
impact of announcements within the vector autoregressive framework which has become the most
popular modelling framework for empirical research since its inception by Sims (1980). Finally,

section 5 offers some concluding remarks.

2 Perceptions and the economy

Rodriquez Mora and Schulstad (2007) argue that ‘perceptions affect the economy’ based on the
empirical evidence they report that shows that last quarter’s actual rate of output growth has no
predictive power for the present quarter’s actual rate of output growth once we take into account
the first announcement of the rate of output growth in the last quarter. By ‘actual’ is meant the
estimate published a number of years later, which is assumed to reveal the truth.

Letting y; denote the final vintage value of real output growth (GNP/GDP) in quarter ¢, the

regression:

Yt = 00 + 01y1—1 + & (1)

over the sample period 1967 to 1991, is found to yield a statistically significant estimate &1 of around
0.32, giving rise to the standard finding that post WWII US output growth can be approximated
by a first-order autoregression. But if the first announcement of growth in ¢ — 1 is included as an
additional explanatory variable, Rodriquez Mora and Schulstad (2007) find that the estimate of
the coefficient on y;_1 is no longer statistically significantly different from zero. Letting y! ; denote
the first announcement of the value of output in period ¢ — 1 (available one period later- denoted

by the ‘¢’ superscript), then the regression model becomes:

Yt = o+ Y1 + aoyl_q + vt (2)

and we fail to reject the null that then a; = 0, but reject the null that as = 0, with &s equal to

0.36. The first announcement has a statistically significant impact on the final value, whilst last



period’s final value has no predictive power once the first announcement of the value of output in
that period is included.

We begin by replicating these findings. Rodriquez Mora and Schulstad (2007) use the ‘advance’
or first announcement (see their footnote 4), made available soon after the end of the quarter.
Our first-release series is taken from the monthly vintages of real output growth made available by
the Real-Time Data Set for Macroeconomists (www.philadelphiafed.org, see Croushore and Stark
(2001)), and we use the vintage from the second month in the quarter after the quarter of interest
(which corresponds to the advance report of the Bureau of Economic Analysis, BEA). Here and
throughout we use a number of different definitions of final data because of the ambiguity in this
notion. We take the final data to be the value after three years of revisions, after six years of
revisions, and the value recorded in the latest available vintage, 2008Q2. We denote these by
{yf+12}, {y§+24} and {nyOSQz}, respectively, so that nyQ is the estimate of the value of y in
period ¢ from the data vintage of ¢t + 12 (12 quarters after the observational period), and so on.

Rodriquez Mora and Schulstad (2007) use GNP data from 1967 to 1991. We will consider a
number of different sample periods, the longest of which will be 1965Q3 to 2001Q4. By ending the

t2008Q2} will have undergone a minimum of

estimation sample in 2001Q4, all the observations {y
seven years of revisions. But the earliest observations (those for the 1960’s) will have been subject
to nearly forty years of revisions. Every five or ten years data are typically subject to benchmark
revisions, reflecting methodological changes in measurement or collection procedures (including
base year changes), in addition to the ‘regular revisions’ process which normally runs for three
years.? This motivates the use of the {yf“Q} as a partial control for benchmark revisions. The
use of {nyQ} in place of {th OOSQQ} in (2) should mitigate the impact of benchmark revisions on
the relationship between the ‘final’ and early release. Corradi, Fernandez and Swanson (2007) and
van Dijk, Franses and Ravazzolo (2007) both warn of the consequences of benchmark revisions on
the relationship between first and final release estimates. The use of {y§+24}, the vintage available
six years after the first estimate of each observation of the output growth, as a measure of the final
series is motivated in section 4.

Hence, our choice of data vintage and estimation sample should ensure that the main difference

between {yﬁu} and both {yf+24} and {yf 008@2} as measures of the final values is in terms of the

’Data published by the BEA are normally revised up to three years after they are first released. In July of each
year there are revisions to the National Accounts data for the first quarter of the current year, as well as all the
quarters of the previous three years. Siklos (2008) identifies eight benchmark revisions in 1966, 1971, 1976, 1981,
1986, 1992, 1996 and 2001, all occurring in the data vintage of the first quarter of the year - so, for example, the
1981:1 data set has data up to 1980:4 calculated on a different basis or definition to the 1980:4 vintage data set.
The way which the national accounts data are calculated then remains unchanged until the 1986:1 data set. Base
year changes occurred in 1976, 1985 and 1991. Although we only consider growth rates, the use of a fixed-weighting
method prior to the introduction of chain-weighting in 1996 means that the growth rates of real variables changed,

especially observations not close to the base year.



effects of benchmark revisions rather than the number of standard revisions they have been subject
to.

When {yf 008@2} is taken as the series of final values, table 1 reproduces the finding that the
lagged actual series is insignificant when the lagged first-release series is included, pointing to the
importance of first announcements as opposed to the events which they measure. The size of
the coefficient on the lagged first-released data is also larger than that on lagged final-data when
instead the final series is measured by {y§+24}. Clearly there is a degree of collinearity between
the explanatory variables that affects the estimated coefficients’ standard errors, whereby even
with an R? as large as 16% the null hypotheses of the individual insignificance of both regressors
cannot be rejected. Because of multicollinearity, we will consider magnitudes of effects and not
just statistical significance, especially when smaller sample sizes are being used. The regressions
involving {ytz 008@2} and {yf+24} will be subject to the effects of benchmark revisions. When we
estimate the regression (2) using {yf+12} for the final data, the dependence of output growth on
the ‘first announcement’ no longer holds. Using the {yﬁm} series partially controls for benchmark
revisions and indicates that lagged first release output growth is not statistically significant, whereas
lagged actual is borderline significant at the 10% level.

Table 1 also presents results using the same period as Rodriquez Mora and Schulstad (2007),
that is, 1967-1991. The broad pattern of results is confirmed, subject to the caveats about statistical
significance. Finally, we report results for the period 1974-2001, as this matches the sample period
used in the next two sections. Importantly, we find that the lagged announcements is the key
explanatory variable when {ytz 008@2} and {y?%} are used as final data, and the lagged actual is
more important when {yf“Q} are the final data.

Finally, the last column records the results of regressing the ¢ + 24 ‘final values’ on the t +
12 vintage ‘first announcements’. A telling finding is that the lagged value of the final series is
insignificant, and the ‘earlier’ announcement is either statistically significant or has an effect four
or five times as large, depending on the sample period. Because the earlier announcement is not
available until 3 years after the observation to which it refers, the significance of this term in the
regression cannot be because agents alter their behaviour in response to it. Instead we suggest
that the significance of the earlier announcement term is due to the data revision process. In the
remainder of the paper we consider whether the data revision process is also able to explain the
significance of the first announcement in the first three columns of table 1.

In the next two sections we analyse whether these findings are consistent with two standard
approaches to modelling data revisions process: the state-space model in section 3 and the vector

autoregressive model in section 4.



3 A state-space model of data vintages

Generally, the basic statistical framework for modelling data revisions relates a data vintage esti-

mate to the true value plus an error or errors, where the errors are typically unobserved. So the

period t + s vintage estimate of the value of ¥ in period ¢, denoted yf“, where s = 1,...,[, consists

of the true value y;, as well as (in the general case) news and noise components, v:* and ei**:
t+s _ t+s t+s
YT =yt e

Data revisions are news when initially released data are optimal forecasts of later data, so news

revisions are not correlated with the new released data, that is,
Cov (v, y;7°) = 0.

Data revisions are noise when each new release of the data is equal to the true value y; plus noise,

so that noise revisions are not correlated with the truth:
Cov (€§+S, yt) =0.

We adopt the framework of Jacobs and van Norden (2006) which stacks the [ different vintage

/
estimates of 1y, namely, yf“, . ,yf/“ in the vector y; = (yi“, e ,yf“) , and similarly the vector
!/ !/
of noise revisions €; = (si“, . ,5%“) and the one of news revisions v; = (vf“, . ,vf“) , SO

that y; = y; + v¢ + &:. One way of defining a revisions process with the required characteristics
is to assume a process for y;, for example, an AR(1) with iid disturbances 7;;, plus a sum of iid

disturbances 7q;:
l

Yo = prYe—1 + By + Z Ov; M2t 3)
=1
and then specify v; and e; as:
{v:}
oYt - 4 A G2
yitt Ovy Ovy  --- T Nat,1 Oe1M3¢,1
42 o
Yy v2 UbT®) Oes3t,2
=UYt— I + ) (4)
t+1
L Y i i 0 oy | L M2t | T M3t |

where 1, = (114,05, Nb,) is iid, E(n,) = 0, with E (nm}) = I. Thus o,,,...,0, are standard
deviations of 7y 1, ..., 79 Processes, oc,, ..., 0, are standard deviations of 73 1,...,73;; processes,
and Ry = o), is the standard deviation of the disturbances of the underlying AR(1) process for the
true values. Therefore, the first estimate of y, yf“, estimates y; with noise (0,73 1) and a news

term consisting of | separate components (— Zizl oMot ;)- Later estimates are also characterised
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by noise, but fewer news components and therefore provide more accurate estimates of y;. If o, = 0
and o, = 0 the [-vintage value is the true value, y,f"” = Y.

Combining equation (4) with the statistical process for y;, equation (3), the specification implies
that the set of revisions, y; — iy, = v¢ + &; (i an [ x 1 vector of ones) is uncorrelated with y; when
there is no news (v, = 0), i.e., F (g;y) = 0 by the assumption that E (n,n7}) = I. As a consequence,

when revisions are pure noise:
Yt — iyt = E¢, SO that E (Etyt) = O

Combining equations (4) and (3) also implies that the revisions are uncorrelated with y, when there
is no noise (g, = 0), because then: y!™* =y, +1/+5 = plyt_l—i—Rlnlt—l—Zé:l Uvith,i—Zizs Tv Mot =
p1Yt—1 + Rany + Zf;ll oMoy~ Hence £ (v§+sy§+s) = 0 since v{ = — Zé:s OuMar s, for s =1,... 1.

As a consequence, when revisions are pure news:

s—1

YT = pryeo1 + Ramyg Y 00,70 s0 that E (v yite) = 0.
i=1

The model can be cast in state-space form (SSF'), where the transition equations are described by:

By = T8 + Ry

Yt pr 00 0 Ry R; .
1t
Yt—1 1 0 0 O 0 0 0
By = , T= , R= _ o e = | M2
Vitl 0 0 Ts O 0 —Uj.diag(Rs) 0
Eii1 0 0 0 Ty 0 0 Ry M3t
(5)
Here, R3 = [0y, ... 0], Uy is an upper-triangular matrix of ones, and Ry = diag (0¢,,...,0¢,).The
measurement equation is:
yt =yt + Live + Ligy (6)

This SSF gives the setup we have described when T3 = 0 and T4 = 0, but otherwise allows for

what Jacobs and van Norden (2006) refer to as ‘spillover effects’.

3.1 Implications of the SS Model of data revisions for the Rodriquez Mora and
Schulstad (2007) regression estimates

Given this statistical model of data revisions, we can calculate the least-squares population values
of the coefficients in the regression (2) for both news and noise revisions. We begin by assuming
the absence of spillovers (T3 = 0 and T4 = 0) and that v/ ™" = ¢/™ = 0, so that y! ™ = y,. That is,
we assume that the series taken as final values are equal to the true values. Our findings for this

case are recorded in the following proposition (with detailed proofs confined to the appendix).



Proposition 1. When the revisions process is given by the measurement and transition equations
in (6) and (5), and assuming that the final values are the true values, v/ = elt! = 0, then the
population values of the parameters in the regression model (2) are oy = p and ags = 0 under both

pure news and pure noise data revisions processes in the absence of spillovers.

Suppose there are news and noise spillovers of the type that C (v§+8,vfff_1) = oV (vﬁf‘l)
and C (e, elt571) = 6V (e/*57!) for s = 1,...,1. This suggests that the extent of the upward
revision to one period (say, t) is related to the extent of the upward revision to the previous period
(t —1). In other words, the revisions are serial correlated. If we allow for this type of spillover,

then the true process for y; in the SS model (eq. 3) needs to be amended to

l

Yt = p1Ye—1 + Rany + Z OuMati — Pv_1,
i=1

to reflect the fact that

l
t+1 ¢
vt = puig — Z Ov;Mat,i-
i=1
The results for when we allow spillovers of this sort are collected in the following proposition.

Proposition 2. When the revisions process is given by the measurement and transition equations
in (6) and (5), while news and noise spillovers are allowed, and maintaining the assumption that
vf“ = 5§+l = 0, the population values of a1 and ag in (2) are a1 = p+ ¢ and ay = —¢ for news

revisions, and a1 = p and as = 0 for noise revisions.

Thus the coefficient on the lagged first-announcement, o, equals zero when there are noise
spillovers, but is non-zero in the presence of news spillovers. Moreover, in the case of news spillovers
a1 +az = p.

Suppose now that the final series yi"” does not reveal the truth, as either Uf"” %0 or a,tfl #0.

We collect our results in two propositions, treating the case of noise and news revisions separately.

Proposition 3. When the revisions process is given by the measurement and transition equations
in (6) and (5) but with only noise revisions, and when in addition 5%” %0, in general a1 # p and
ag # 0, and the values of a1 and as depend on the properties of the revisions process. However, we
can establish a number of interesting special cases, notably, i) if p =49, then ag = p and ag = 0;
i) if p>0,5>0, and p> 9, then 0 < ag < p— 9, and 1) if § =0, then aq/as = V., /V,, the

ratio of the variances of the first and last noise components.

Proposition 4. When the revisions process is given by the measurement and transition equations

in (6) and (5) but with only news revisions, and when in addition vf” # 0, then ooy = p and ap =0



when ¢ =0. When ¢ #£0, a1 =~ p+ ¢ and as = —¢, where the approximations depend on ¢ being

small.

Hence, if the SSM is a good model of the data revisions process, we would expect to find as
non-zero in (2) when either: revisions are noisy, and the series of final observations remain noisy

t+l1
&t

estimates of the true values, i.e., # 0; or, revisions are news, and the news revisions are

correlated (irrespective of whether the final series reveal the true values).

3.2 Empirical Assessment of Analytical Results

We have established that the characterisation of revisions as news or noise may affect whether
announcements matter, in the sense that ag # 0 in regression (2). Revisions are defined as reducing
noise if the initial estimate is an observation on the final series but measured with error, in which
case the revisions are uncorrelated with revised data, but typically are correlated with data available
when the initial estimate was made. Hence noisy revisions are predictable. Alternatively, revisions
contain news if the initial estimate is an efficient forecast of the revised data or final value, such
that the revision is unpredictable from information available at the time the initial estimate was

made.? We test for news and noise revisions using, respectively, the following regressions:

ul =™ = a4+ By oy (7)
ul =™ = o+ Byl +wu (8)

where the null hypothesis is that & = 8 = 0 in both cases. y{ is one of the three estimates of

the final value, y;*'?, y§+24, y? 008@2, and we also include tests of the revisions between y!™'? and

yi™4 and between y!T?* and yf 008Q2

Table 2 summarises our results. Focusing firstly on revisions that include the initial data (yf“),

a key finding is that the revisions from the initial data to the 3 and 6 year vintages (y§+127 yf+24)
appear to be characterised as news (although the news hypothesis would be rejected at the 10%
level for the longer-period revision). The news hypothesis is clearly rejected for the revision to the
2008Q2 vintage. For the revision from the 6-year vintage to the 2008Q)2 vintage we also reject the
news hypothesis. In nearly all cases, and in all cases of revisions involving first announcements, the
noise hypothesis is rejected. In summary, it appears that revisions between the first release and
three years later can be characterised as containing news, whereas longer period revisions are more
difficult to characterise.

This pattern of results suggests that the nature of the revisions process is influenced by bench-

mark revisions. Generally, the first three years of revisions are based on new information and

enhance the estimates, and consequently show up as news revisions, whereas revisions after three

#See Mankiw and Shapiro (1986) for an early contribution: they found that revisions to real output added news.
See also Croushore and Stark (2003) and Aruoba (2008).
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years are essentially benchmark revisions of a methodological nature which provide little new in-

4 For example, the base year changes that formed

formation on more distant past observations.
part of the benchmark changes in 1976, 1985 and 1991 disproportionately affected more distant
observations under the fixed-weighting scheme and are likely to have contributed to the rejection
of the news hypothesis when revisions are calculated using the 2008Q)2 vintage data.

We use these findings to guide the specification of our empirical SS model. However, it is
important to appreciate at the outset that the SS model is not designed to capture the structural
changes that constitute the benchmark revisions, and it is not clear how this could best be done
(but van Dijk et al. (2007) offer a promising approach). We would hope to be able to model the
regular revisions that characterise the data for up to three years, but doubt that such a model will
prove adequate for the 2008Q)2 vintage.

We make a number of adjustments and simplifications to the general framework of section 3
to facilitate the estimation of the SSM, and to more accurately estimate the parameters that the
analytical results in section 3.1 suggest are key to determining the apparent relationship between
real growth and early announcements. The population values of the parameters a; and «ay in (2)
depend on the process for the true data, y;, on the nature of the revisions (news, noise; spillovers),
and on whether y; is observable (that is, whether yf” = 1y;). When y; is only observable with error

(0s, # 0), the size of the measurement error also affects the values of a; and ay. Based on table

2, it appears we can set 0., = 0., = ... = 0., = 0. Estimating the variance of the news revisions
turned out to be difficult unless we assume that o, = 0. ® Setting 0y, = 0 implies that yf“ = Y

in the absence of noise, so a pragmatic solution is simply to allow measurement error only for the
last vintage (y!t!).

Although we have data vintages from ¢+ 1 to ¢t + 24, and 2008@Q2, we select only some vintages
to use in the estimation of the model. This keeps parameter proliferation in check while providing

enough information to accurately estimate the parameters of interest. Specifically, we use:

!/
_ t+1  t+4 t+8  t+12  t+24  08:Q2
Yt_(yt Y Y Yy y Yg » Yt .

Given the above specification of the revision process, the state vector is:

vt+8

t+1 | t+4
) vt » Yt )

/
_ t+12 | t+24  08:Q2 _08:Q2
IBt — (yhyt*lavt Uy y Ut y U )

751‘,

where we assume 0,,5,,, = 0. The data suggest that the news revisions are serially correlated - the

1 Aruoba (2008) takes the view that three years of revisions account for the information content of the revisions

to US macro variables.
5le appears to be poorly identified. Jacobs and van Norden (2006, Table 3) appear to find the same: their

estimate of o, (also when only allowing news) is ten times larger than the other news variances.
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spillover phenomenon described in section 3.1. The T matrix of equation (5) is specified as:

|
-

=
Il
O O 0O 0o o o o~

o O O O o o o o o
o O O o o o o o

o O O O O B o o o
S O O B O o o o o
O O - O O o o o o
SO - O O O o o o o
O O O O o o o o o

SO O O O B o o o o

We also add a constant to the y; equation. Figure 1 present smoothed estimates of the state variables
including confidence intervals using data from 1975:Q3. The crucial estimates are p = .41, qAb =-.11
and 0'??8:@2 = .048, all of which are statistically significant at the 5% level.

From the estimated parameters of the SSM we can deduce the values of a; and as in (2).
As a check on the usefulness of the analytical results for small samples, we simulate data from
the estimated SSM and calculate the Monte Carlo estimates (as averages over replications) of
quantities of interest, such as the parameter estimates and rejection frequencies of tests of the
significance of the parameters. The results reported in table 3 are based on two sample sizes,
T = 150 and T" = 1,000. In the first case the researcher has just over 37 years of quarterly
data. For each simulated series of size T' from the data generating process, the estimated SSM, we
estimate equation (2) and record whether the null hypotheses that a; = 0 and that ap = 0 are
rejected at the 5% level using t-tests with robust standard errors. Table 3 presents the average
estimates over replications and the proportion of replications that the null hypothesis was rejected
assuming different vintages as final data (all vintages incorporated in the state-space model).

t+24 t+12

Consider firstly the two regressions based on using y and y respectively as the final

values, and y!_; as the second explanatory variable, when 7" takes on the empirically relevant value
of 150. Given the specification of the revisions process, i.e., news spillovers, Proposition 4 predicts

that a1 = p+ ¢ = .41 — .11 = .30, and as = —¢ = .11, which is a close match to the Monte Carlo

estimates of these quantities. The Monte Carlo point estimates are 0.293 for a; for both ytt24

412 “and 0.099 and 0.098 respectively for ap. The simple analytical formulae do not apply

. . 2 2
directly when there is measurement error, as when y; 008Q2 are used as final values, but nevertheless

and y

the clear finding is that lagged output is more important than the lagged first announcement, both
in terms of magnitude, and in terms of its statistical significance. For both y‘*t24 and y'T'2, the
rejection frequency of as = 0 is only around 0.09, while that for a; = 0 is around one half. If
instead we set T' = 1,000 the rejection frequency for a; = 0 is approximately one, and that for

ag = 0 increases, but the relative magnitudes of the sizes of the estimated effects of lagged final

12



output and lagged first announcements is clearly at odds with the findings of Rodriquez Mora and

t+24 2008Q2

Schulstad (2007), and with our empirical findings when y and y are used as finals.

The key finding is that the SSM is only able to capture the aspects of the data revisions process
that relate to ‘regular revisions’. The yf+12 vintage consists mainly of regular revisions to yf“.
Hence the Monte Carlo estimates of the regression (2) based on the estimated SSM match the
empirical findings when we consider the relationship between y§+12, and yﬁil and y!_;. The SSM
does not capture the structural aspects of the benchmark revisions that generate the empirical
correlation between y!72* and y!_, (or between yf 008Q2 and yt_,) so that the simulation results for
this case do not match the empirical findings, and are similar to those for yf“z. In principle the
SSM is capable of generating the finding that the first announcement affects output growth, but

this would require a news spillover (¢) over twice as large as the empirical estimate.

4 A vector autoregressive model of data vintages

The vector autoregression (VAR) is an alternative to the SSM for modelling different data vintages
(see e.g., Garratt, Lee, Mise and Shields (2006)). Whereas the news and noise components in
the SSM are unobserved, the VAR models the relationship between observables directly without
recourse to additional latent variables. This allows the use of models of data revisions with more
complex dynamics. Models which allow for potential instabilities caused by benchmark revisions
have been used in related contexts, such as the flexible time-varying parameter (TVP) model of
van Dijk et al. (2007), but for our current purposes the constant-parameter VAR will be used.
We require a systems model of the set of different data estimates in order to be able to simulate,
whereas the TVP model of van Dijk et al. (2007) is a single-equation forecasting model.

To motivate our approach, suppose that there are just two vintages, and the second vintage (i.e.,
the first revision) reveals the truth (so y!_, = y;—2). The vector of endogenous variables consists
of the new information that becomes available at period ¢, Y; = (yg_l, y§_2)/. At period t we also
observe y! 5, y! 4, ..., etc., but under the assumption that the second vintage reveals the truth,
Yl = yf::)l, = y;_3, which was in the period t — 1 data set. As we are modelling growth rates, it is
reasonable to assume that the elements of Y; are stationary so that Y; has a Wold representation.

We assume that this can be approximated by a finite order VAR of order p:

p
YVi=To+ Y TiVii+e
=1

where Y;_; = (yfjfi, yfiéﬂ) ey = (14, 6275)' are the innovations to the variables (yf_l, yf_2) based
on the information set comprising I;_1 = {Y;—1,Y;_2,...}, and in general will be correlated, so that
Q= E (g€}) is non-diagonal.

Within this framework, a more general version of the ‘news hypothesis’ can be tested and

applied as a restriction on the VAR if warranted. The simple news hypothesis is often implemented
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as a test of £/ (y}fJr2 — oyt yf“) = 0, i.e., the revision to the first estimate is unrelated to the
first estimate. The more general version is F (y,f+2 — yf“ | It+1) = 0, so that the revision does
not vary systematically with past values of Y;i1, Vs, .... In terms of the VAR this requires that
Yo =0, 7191 =1, Y100 = 0 and 7,5 ; = 0 for all i > 1 and j = 1,2, where T'g = (v1,7,)’, and
Yiijk = Lij (the 4, k element of I';). Hence y}_, = y;_3 + e9¢ with E (g3 | I_1) = 0.

As noted in section 2, data revisions are ongoing, but suppose there are ¢ revisions before
the truth is revealed. This suggests a ¢ + 1 dimensional Y3, ¥; = (y!_1,v}_o,. ..yfqul),, where
y,’f_q_Q = yf:;_g, so that data on time periods prior to t — ¢ — 1 are already known in period t — 1.
If we model all g revisions using a p-th order VAR, there will be p x (¢ + 1) slope coefficients in
each of the ¢ + 1 equations. Our interest is primarily in the variables in regression (2), that is, the
first estimate and a measure of ‘final’ output growth. There would be no loss of information in

estimation if we simply estimated the 2-variable system consisting of the VAR equations for y!

and yf_q_l. Formally this amounts to estimating the equation system given by:

P
S, = STo+) ST i+ Se
=1
P
v = T 3T ©)
=1

where the 2 x 1 vector Yt(2) = S'Y}, ete., and S is the (¢ + 1) x 2 selection matrix that picks up the
first and last elements of Y;. However there would be a loss of information in using the estimated
model to simulate data as the second through to g-estimates are no longer modelled. We make a
further simplification and instead estimate bivariate VARs for Y; = (yf_l, yf_q_l)/. Relative to (9),
the explanatory variables are lags of {y;_,y}_ -1 }, as opposed to lags of {y!_ 1,y o,..., yf_q_l}.
The advantages are that we are able to entertain a longer number of lags and the estimated model

can be used to simulate data.

4.1 Specification issues and empirical results

We estimate two VAR models to investigate the dynamic relationships between the first and final
data. In the first, VAR,—12, the final data were taken to be the data estimates made three years
(¢ = 12) after the time period to which the observation refers, and in the second case, VAR;=24,
the final data are the estimates after six years (¢ = 24). For the first VAR we set p = 12, and for
the second p = 24.

Consider VAR =12 with Y; = (yf_l,yf_u)/. The second equation in the VAR allows y!_;, to
depend on {yi:%, .. ,yfj%; yfjg, el yﬁ:ﬁ}. That is, the period ¢ estimate of ¢ — 12 (assumed to
be the final value of y in ¢ — 12) can depend on estimates of more recent observations (say, y at
time t — 2) provided those estimates are vintage-dated earlier than ¢. The choice of ¢ = 12 reflects

the fact that regular revisions typically occur for the first three years, as discussed in section 2. For
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VAR4—12 the news hypothesis (i.e., E (y!_15 — yi_13 | Ii—11) = 0) requires that the coefficient on
yij% in the equation for y!_;, is unity, and the coefficients on { yﬁjg, yf:%?l,, yf:%z } in the equation
for y!_,, are all zero.

VARy—24 has V; = (yffl,yffﬂ)/ and p = 24. This is to approximate taking the final values
from the last available data vintage. Hence these final data will contain benchmark revisions as well
as regular revisions. Using {yf 08@2} as final values would be inconsistent with the interpretation
of the elements of the vector Y; as the new information that is revealed at period ¢, as the latest
vintage values are not revealed until ¢+ = 2008Q2.5 We also need to increase the lag length for the
second VAR if we wish to allow the news hypothesis to be incorporated as a special case. The news
hypothesis requires that F (y}L24 — yfjgi’ | It,gg) = 0, so that the VAR needs to include yfjgi’, the
23rd lag of y!_; (the first element of Y;).

We estimated the two VARs on the common sample period 1977:3 to 2004:4. We then simulated
data from the estimated VARs, and ran the Rodriquez Mora and Schulstad (2007) regression,
recording the Monte Carlo estimates of the estimated parameters as well as the rejection frequencies
of the standard t-tests of the hypotheses of the individual insignificance of the two explanatory
variables. The model disturbances were drawn from a bivariate normal distribution with covariance
structure equal to that of the VAR residuals. We simulate T' + 300 observations, and discard the
initial 300 observations to minimise the impact of initial values. As in the case of the SSM, of
interest is whether the VAR is able to reproduce the underlying data generation process sufficiently
well that the empirical findings hold in the simulated data.

We also estimated both VARs models imposing the restrictions of news revisions. For both
cases ¢ = 12, 24, we are not able to reject the restrictions imposed by the news hypothesis using a
Wald statistic (details available on request). However, imposing the news hypothesis does have a
significant impact on some of our simulation results, as we explain below. This apparent anomaly -
the restricted and unrestricted models used as data generating processes yield marked differences in
terms of estimates of equation (2), even though one is a valid restriction of the other - we attribute to
the relatively large number of model parameters compared to the available number of observations,
resulting in the imposition of the restriction having only a small effect on the maximised value of
the model likelihood function.

We firstly consider the results when the news restriction is not imposed. The results are recorded
in the first two columns of table 4 for T' = 150, 1,000. When T" = 150, we find that the magnitude of
the effect of the first announcement is larger than that of lagged growth in the first VAR (VAR =24,

424 a5 finals), and the first announcement is more often significant. In the second VAR

using y
(VAR —12) for y'*12 the situation is reversed. The lagged final value has the larger coefficient

and is more often significant. For the larger sample size the rejection frequencies accentuate the

SFormally, we could write ¥; = (yf,l, yf,oo)/ for all ¢ prior to 2008Q2, as for these t no final values are revealed.
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t+24

importance of the first announcement for y*™=*, and the importance of the lagged final value for

412 These findings are in tune with the empirical estimates recorded in table 17: especially

Yy
that the significance of the first announcement in (2) depends on whether the final series contains
benchmark revisions (y'724) or not (y*+12). The use of long lags in the VAR (especially VAR—24)
results in a model which is better able to capture the effects of benchmark revisions than the SSM:
the VAR ,—24 adequately captures the relationship between the initial data and that revised six
years later.

Consider now the impact of imposing the news hypothesis on the VAR models, and using the
restricted VAR models in the Monte Carlo. The results are recorded in the final two columns of
table 4. The results for VAR,—24 are little changed. Recall from table 2 that we failed to reject both
the news and noise hypotheses for y?*24. For 3'*12 the effect of imposing the news hypothesis is to
push the estimated value of « close to zero and double the size of as, pointing to the importance of

412 reported

first announcements in (2). This is markedly at odds with the empirical findings for y
in table 1, and suggests that the characterisation of revisions between t41 and £+ 12 as being purely
news is too simplistic: in table 2 we found that the news hypothesis was borderline significant at
the 10% level. This suggests a more complex dynamic process for revisions than that they are
simply news, and that the unrestricted VAR captures this reasonably well.

We also use a VAR with ¢ = 12 to model the revision processes of y!_;, and y!_,,, and the
simulation results with this data-generating process are presented in the last two columns of table
4. The imposition of the news hypothesis has a minor effect on the estimates, in agreement with
the results of table 2. Comparing the estimates of equation (2) using the VAR data generating
process and the results using the actual data in the last column of table 1, we conclude that in
general the VAR model with the imposition of the news hypothesis is a good representation of the

revision process from the ¢ + 12 up to the ¢t + 24 vintage. Between these two vintages, the lagged

value of the ¢ + 12 vintage affects /724 but the lagged ‘final’ value (y;_1) is insignificant.

5 Conclusions

In the recent literature the correlation between real output growth and the first announcement

of growth in the previous period (controlling for lagged real output growth) has been given a

t424

"For example, in table 4 we obtain Monte Carlo estimates of aa of 0.221 and 0.126 respectively for y and

y' T2 compared to empirical estimates in table 1 of 0.238 and 0.124 for the comparable sample period (1974-2001).
The Monte Carlo results also indicate that whereas az = 0 is only rejected a third of the time for y**2* when T = 150,
the rejection frequency is close to one when 7' = 1,000, suggesting that the lack of significance we find empirically

might be due to the small sample size.
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behavioural interpretation: agents respond to the first announcement, and this affects the future
course of real output growth. We show that instead this correlation can be viewed as a by-product of
the data revision process, and in particular, is occasioned by the structural changes that accompany
benchmark revisions. The importance of the first announcement is found to depend crucially on
whether the series taken as the final estimates of real output contains primarily regular revisions
that add news to the initial estimate, or also includes benchmark revisions.

We analyse whether two popular modelling frameworks for data revisions are able to adequately
model the relationship between the initial and ‘final’ data to the extent that data simulated from
these models matches the empirical data in certain respects. Namely, first announcements do not
have predictive power for three-year revised final values, but do appear to explain six-year revised
finals. The state-space modelling framework that characterises data revisions as (unobservable)
news and noise processes affecting a (generally unobserved) true value does not match the empirical
findings, although our analytical results suggest that it would do so were revisions news with a
larger spillover effect. That is, the first-announcement of output growth would help predict future
output growth even controlling for lagged output growth if data revisions add new information
to the measurement of output growth and are negatively serial correlated. In contrast, a vector-
autoregression in terms of observables provides a closer match to the empirical findings for the
six-year revised final series, but is unable to explain the empirical findings for the three-year revised
final series if we assume that revisions are purely news within this framework.

Given the high degree of collinearity between the two explanatory variables, the first announce-
ment of the lagged value, and the ‘final’ lagged value, of output growth, and the complexity of
the revision process between the first and final value, it is perhaps unsurprising that the relative
importance of the two explanatory variables depends on the definition of ‘final’. The two modelling
approaches we consider help to partially illuminate some aspects of the problem, but neither serves
as a comprehensive statistical framework. However taken together they are sufficiently informative
to indicate that the presumption that the first announcement has a causal impact on future output

growth appears unwarranted.
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A Proofs of Propositions

For the state space data generating process outlined in section 3, we derive the population values
of @; and a2 in equation (2).

In the general case we allow that yf"” # ¢, because either o,, # 0 and/or o, # 0.

From section 3 we have that:

v =y ol et T =y ol e and ye = pyea + Ry —of

Allowing for news spillovers, v/t = ¢! | — 22:1 T v Mot is pitt = ¢vffi_1 — Oy Tgy; and for

noise spillovers, C'ov (5?1, ei_l) =0V (6%_1).

The population values of a7 and ag in the equation (2) are given by:
l -1 -1 l
V@i_)Cw oy — Oyt i) Oyl
- - :
V@ TV (i) — Clythviog)?
- l - l 1—
oy — Vg Cw ) - Clydt oy )C Lyt
- - - ‘
V(yfl I)V(yf—ﬁ - C(yfi 1795—1)2

To compute these values one needs to compute the required moments: (1) C(yf“‘l,yffl); (2)
Clyit=t gt ) (3) Cyl™ vt h); (4) V(yt_,), and (5) V(yiT™1). To compute these moments,

we use the following notation:

Vy = V(y);
Voo =V (Zl; O'Ui772t,i> Vi =V (0una) ;
Vig = C (o oft) Vin = C (of 1ot s
Ve = V(b)) Ve =V ().
(1A)
Cly i) = Cov[(m+of +e™) (s +vfy +2iy)]
= Cov (yy—1) + Cov (yvl_y) + Cov (yt_lv}f*’) +C (vgwg,l)
= pVy+(p— ) Cov (yr—1vf_;) — ¢Vi1 + ¢Cov (ytfla vfffl) + ¢Viy
(2A)

C(yﬁlfl, Y1) Cov [(Z/tfl + Uﬁlfl + Eitlfl) (ye—1 + vy + 5%—1)}
= V(y-1)+C (ye—1v{_,) + C (yt—wﬁll_l) + Cov (vfﬂ_l,vﬁ,J

= VO (yav) + C (mervfH ) + Vi
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(3A)
Oty = C[(y +Ut+l+€t+l> <yt_ Fottioly gt 1)}
= Cov(yye1) +C (w7 + O (meref™) + O (o oY) + € (et
= pV (y-1) — ¢C (ye—1v;_1) + pC (yt 1wt 1) C( ot 1) +
+¢C (yt it 1) + oV (vﬁ*i 1) + 6V< iy 1)
= PV (1) = 9C (-1vim) + (p 4+ 6) C (pra0f i) + oV (e
= pVy+(p+9)C (yt ot 1) +6Ve, — ¢C (yi-1,vf_1)
(4A)
V(yi_) = V(g)+V (vi_1) +V (e_1) +2C (yr-1vj_y)
= Vy+ Vi1 + Ve, +2C (y—1v)_y)

(5A)

V(yzﬂ 1) V(yt_1)+V< tHl— 1) +V( t+l— 1) 120 (yt IU§+11 1)

= Vy+Vii+V,+2C (yt 1vf+ll 1)

All these moments can be further simplified by using that:

Vig=Vy (1—¢?) "
Vir = Vi (1— )71,

C (m-10f17) = 60 (w-20f'572) = Vit = =Varl = p) " = =Vay (1= p) (1 = 6) 7"

C (yt lvt 1) Vll(l - p¢) Vm(l - pﬁb)il(l - ¢2)71

Re-writing using previous results:

(1B)

CO i) = pVy+(p—9) Cov (yrvf 1) = OVir +6Cov (yim, vii™) + 9V,
- [VZJP (1 - P¢) —-p (1 - ¢2) Vll - p(ﬁQVu] (1 — p¢)_

(2B)

C(?/€+l1 Lyly) = Vy+C (yt—lvi—l) +C (yt gt 1 ) + Vi,
= [Vy(1—p¢) — Vi1 — pdVi] (1 — pg)
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(3B)

COI Y = Vot (0400 C (ot ) +0Ve = 60 (s o)

(4B)

= [Vyp (1= pg) +6Vz, (1 — po) + ¢Vi1 — (p+ &) Vil (1 — pg) "

1% (yf,l) = Vy+Vu+V, +2C (yt_lvffl)
= [Vy(1—pd) + Ve, (1= pp) — Va1 (1 — pg)] (1 — pop) ™"

V(5 = Vet Vag Ve 20 (oot
= [Vy(1—po) + Ve, (1= pp) — Viy (1= pd)] (1 — pp) ™"

Using 5A, 3A, 2A and 1A, the numerator for «y is:

V(yi_) Oyt yitt ™) — Oyttt yi_ ) Oyt vi_y)

= [Vy+ Vi1 + Vo, +2C (ye—1vf_1) ]

X |:pVy +(p+¢)C (ytflvﬁlfl) +0Ve, —oC (yt,l,vf_l)}
[Vt € mvl) + € (v ) + VA

X [PVy + (p— ¢) Cov (y—1v{_1) — ¢Vi1 + ¢Cov (yt—h Uﬁifl) + ¢V1,l}

Using 5A, 1A, 2A and 3A, the numerator of ay is:

Vet v — Cly Ty et gt

= [Vy + Vi +V, +2C (ytqvﬁlfl)}
X [va +(p—¢)Cov (yr—1v;_1) — Va1 + ¢C <yt_1v§fll_1) + ¢V1,z}
— [Vy +C (?/tflvi_l) +C (ytflvﬁlfl) + Vl,l}

% [oV+ (04 6) C (woavf ) + 0V, = 6C (wo1,0i0)]

And the denominator of both expressions using 5A, 4A and 2A is:

V@tV yiy) - Cluyi)?

VT o) = (Ve + C (-1vi) + € (yt_lviﬂ_l))2
VW) — [V + C rvfr) + C (w0

[V, + Va1 + Vi, +2C (ye_10l_1)] x [ij + Vi + Ve, +2C (yt_lvff’flﬂ

— [Vy +C (ytflvg_l) +C (Z/tflvzirl171> + Vl,l}2
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A.1 Proof of proposition 1:

When il = !+ = 0, the numerator of a; (from eq.(10)) is:
[V + Vin 4 Ve, +2C (gervia) ] x [pVy = 6C (y-1, 011
— [Vy + C (ye-1vi_1)] x [pVy + (p = ) Cov (yr-1vi_1) — ¢VA1]

= pVyVy+pVyVir + pVy Ve, + 20V, C (ye-1vi_1)
—¢C (yi-1,v_1) Vy — 6C (ye—1,v{_1) Vi1 — ¢C (y1-1,vj_1) Ve, — ¢C (y1-1,vi_1) 2C (ye—1v}_;)
—pVy = Vy (p = ) Cov (ye-1v; 1) — C (ye-1vi 1) PVy = C (ye-10; 1) (p — &) Cov (ye-1v; 1)
+oV11Vy + oV11C (y—1v)_1)
= (p+ ) (VyVir = C (y1vf1)") + 0 [V = 6C (gm0 )] V2,

The denominator (from eq. (12)) is:
2
VinVy + Ve, Vy = C (ye-1vf 1)
As a consequence, the population value of a1 assuming 5§+l = vf“ =0 is:

(p+¢) (Vyvll -C (yt—lvf—1)2> +p[Vy —oC (y—1,vf_1)] Ve
ViaVy + Vo,V = C (yt—lvg—lf

o] = (13)

When revisions are pure news, a1 = (p + ¢). When they are either pure noise or news with ¢ = 0,
one has oy = p. This means that when there is no spillovers, that is, ¢ = 0, for both the cases of

news and noise revisions, one has that a; = p.

Under the assumption that gttt = it = 0, the numerator of as (from equation (11)) is:
t t

Vg e i) — Clyt Tyl ) Oyt
= Vyx [pVy — oVii + (p — ¢) Cov (ye—1v;_1)]

— [Vy +C (ye1vf_1)] x [pVy — ¢C (yi-1,vi_1)]
= —VuV, + 6C (y1,vl1)°

And the population value of ay assuming 5%“ = vf” =0,

o — —oVi1Vy + ¢C (yt—lvi_l)z
2

_ ) (1)
ViaVy + Ve, Vy = C (yt—lvtfl)

This implies that the revisions are news ag = ¢, but if there is no spillovers as = 0. When revisions

are noise, ag = 0.

A.2 Proof of Proposition 2:

Using equations (13) and (14), one can show that a; = p and as = 0 when revisions are noise,

while a; = p+ ¢ and a3 = —¢ when revisions are news.
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A.3 Proof of Proposition 3:

When €§+l #0, vﬁ“ # 0, and there is no spillovers, that is, ¢ = § = 0, the numerator (eq. 10) is:

V(i )Cl ™yt = Clyy L wi) Clut oyl
= [Vy+Vir+ Vo, +2C (ye—1vi_1)] % {pVy + pC (yt_lvﬁll_lﬂ
— Vo + € (r10i0) + € (wmaofH171) +Vaa] % [V, + pCov (e10f_y)]
= pVyVi1 + pV, Ve,
+0C (101 Vin + 0C (moavf 17 ) Ve, + 0C (w10 17) € (e-10fy)
—pVyVig — pCov (y_1vi_)? = pCou (yr_1vt_1) Vi
When ¢ = 0, one can use the following Vi ; = V,,, Vi1 = V,,, C (ytfwf_l) =-V,,C <yt7w€4_rl1—1) —
—Vy,- Substituting these expressions gives:
= pVyVy, +pVy Ve, (15)
—pVo, Vo, = pVo, Vey + pVi, Vi,
—pVyVy + Pv;i + Vo, Vi
= PVyViy + pVyVey = pVaVey = Vy Vo, + Vi), + oV, Vo

Therefore, the population value of numerator of o1 assuming pure noise and 5?” # 0 is:

(Vy + V) x (pVy +0Vz) — P‘/;f
= oVyVe, + pVo, Vy + 6V, Vy,

The denominator (from equation (12)) assuming noise is:

(Vy + VEl) (Vy + Val) - Vy2
= VyVo, + Ve, Vy + Ve, Ve,

As a consequence, the population value of o is:

ar = oVyVe, + pVe, Vy + 6Ve, Ve,
PV VeV VLV

This means that a3 # 0, and depends on the properties of the revision process. And if p = §, then
a1 = p.

When data revisions are noise, the numerator of ag (from equation (11) is:
= pVyVe, = VyoVe,
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The population value of s assuming pure news and 5?” # 0 is:

LA
ViVe + Ve Vy + Ve Ve

a2

This means that as # 0. However, if p = §, as = 0. In addition if p > 0, § > 0, and p > §, then
0 < ag < p—4. Finally comparing the expressions for o; and ao in the case of no spillover (§ = 0),

one has that a;/ag = V;, /V;,, the ratio of the variances of the first and last noise components.

A.4 Proof of Proposition 4:

When data revisions are pure news and there are no spillovers, the numerator of a; (equation (15)
becomes:

= pVyVm - pVy%z + ,OVU21 + p%l %l

While the denominator (equation (12)) is:

= (Vy - V;Jl) (Vy - VYU[) - (% - Vv1)2
= ‘/;J‘/Ul - V;J%l +Vv21 +‘/111‘/vl

This expression makes use of the fact that Vi = Vi, Vi1 = Vo, C (ye—1vj_;) = = V4, C (yt,lvﬁlfl) =
—V,, when there are no spillovers. Combining the numerator and the denominator, we have that
a1 = p.

When data revisions are pure news and there are no spillovers, the numerator of ay (equation
(11) becomes:

= (Vy+Vy —2Vy) X (pVy — pVi,)
- (V;/ - Vv1) X (pVy - val)
= pvy‘/’l)l - pVy‘/i,l - p%l‘/;)l + p%l‘/l,l = O

using C' (yt_lvffll_l) =—-Vig=-V,, and C (yt_lvffl) = —Vi1 = —V,,. Therefore ay = 0 when
data revisions are pure news and v/ ™ # 0 with ¢ = 0.

Now let us assume that there are spillovers, that is, ¢ # 0, when vf” = (0. The numerator of
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a1 (eq. 10) using expressions 4B, 3B, 2B and 1B and eliminating noise terms is:

= (Vy(A=pg) = Vi1 (1 = pg)] * [Vyp (1 = pd) + ¢Vi1 — (p + ¢) V1,1])
—([Vy (1= pg) = Vis — poVi ] = [Vyp (1 = pg) — p (1 — ¢°) Vi1 — po*VA])
= VuVy (1= pg) ¢ — Vi1Vyp (1 — po) (1 — po) + V11V, (1 — pg) (1 — ¢2) p+ViiVyp (1 — po)
ViV (1= po) (p+ ¢) + V11V (1 — pg) > + V11Vyp*d (1 — po)
+Vi Vi (1= po) (p+ @) — Vit Viupe® — ViuVin (1 — ¢°) p°¢
—p** Vi
VA1 =pg)é—p(1-¢%) Vi
= (¢+p)(1—pp)V1V,
—((¢+p) +20%0) (1 — pe)V11V,,
+(p+¢) (1= pp)ViaVy — p*éV1iVin
—p* V7
—(¢+ p)Vii +20%0V

To obtain an approximate expression for oy, we separate out the terms that are ‘small’ when both
|p| and |¢| are small (recall that both these parameters are small in our empirical model for real

output growth):

= (¢+p)ViVy — (& + p)ViaVy + (¢ + p)ViaVir — (6 + p)Vi3
[(p6? + P26 ViaVy — 20%0(1 — pd)ViaVy — p*$ViaVar + 20° V).

26



The denominator (eq. 12) using 5B, 4B and 2B is:

VTV i) - Cutt v’
= [Vy(1=pd) = Vii (1= po)] x [V} (1 = pg) — Vi1 (1 — po)]
—[Vy (1= pg) — Vi1 — poV1,] x [V (1 — pp) — Vi1 — ppVi]
= —VyVuu(1=p9) (1 = pg) +2V11V, (1 - pg)
=VyViu (1= p@) (1 = po) + 2V, Vi (1 — po) po
+V11 Vi (1 = po) (1 — pp) — 2ppV11 V1
—p**Vay
-Vi
= (1-p¢*)V,Via
—(3p°¢% — 4¢p + )V, V1,
+(¢% — 49p+ Vi1V
—p*$* Vi,
_V121

Again separating out terms that are small when |p| and |¢| are small:
= VyVir = VyVig + VaVig = Vi + [026°V,Vin — (3p%¢% — 4op)Vy Viy — p*¢° VA ]

And ignoring the terms in square brackets in the expressions for the numerator and denominator,

we find: )
(0 +p)ViiVy — (0 + p)V1iVy + (9 + p)V1, Vi1 — (¢ + p)V13
VyVii = VyVi + ViuVa, — V3

The population value of a; is not exactly equal to ¢ + p because we have ignored terms which are

1~

~ ¢+ p.

powers of ¢ and p or enter as products of these two parameters.
The numerator of ag, using expressions 5B, 1B, 2B and 3B and ignoring noise terms, when

vf“ # 0 and ¢ # 0 and revisions are news is:
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= [Vy (1= pd) = Vii (1= pg)] x [Vyp (1 = pg) — p (1 = ¢%) Vir — p¢* V1]
—[Vy (X = pp) = Vir — poVau] x [Vyp (1 = pd) + ¢Vi1 — (p + ¢) Vi)

= —V,Vii(1—p¢)p(1—¢*) = V,Vi1 (1 — pg) ¢ + Vi1Vyp (1 — pgp)
—VyViu (1 = pd) pd* — Vi Vyp (1 = pg) (1 — pg) + Vy, Vi (1 — po) (p + @) + V1,1Vyp?d (1 — po)
ViV (1= pg) p (1= ¢%) = (p+¢) Vi Vig + pd?ViiVin
+VE (1= pg) po® — pd (p+ ¢) V7
+oV3

= VyVii (1= p¢) (p¢* — ¢)
+VyVii (1= po) (¢ + 20%¢ — pg?)
VLV (p°8® — p°¢ — o)
+VE(pd” — p*6° — pPd — po)
+oVi

Separating out small terms as before:

= —oV,Vi1 + oV, Vi  — dV1 Vi1 + oV
[(2p6° — p*¢* )V, Vi1 + (2070 — 2p8° — p*¢° + p*6°)V, Vi, +
(P*6° — P2O)Vi Vi1 + (po® — p*¢° — p?6 — pd) VY]

gives rise to an approximation to the population value of as of:

0y~ —OVaV11 + OV Vi = SV + oVE
VyVir = VyVi, + VinVa, — V3
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Figure 1: Smoothed estimates of the revisions processes from the state-space model.
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Table 1: Regressions of final output on lagged final output and first announcements

Final output 2008Q2 t+ 24 t+12 t+24
Sample 1965:4 to 2001:4  1965:4 to 2001:4  1965:4 to 2001:4 1965:4 to 2001:4
Const. 0.537H%* 0.416%%* 0.389%** Const. 0.424%%*

(.097) (.105) (.110) (.105)
Vi1 -0.031 0.135 0.269% Yi-1 -0.178
(.132) (.185) (.165) (.320)
. 0,409+ 0.290 0.175 i 0.572*
(.133) (.189) (.183) (.321)
o 0.819 0.807 0.794 o 0.805
R2 0.132 0.159 0.181 R? 0.163
Sample 1967:1 to 1991:4  1967:1 to 1991:4 1967:1 to 1991:4 1967:1 to 1991:4
Const. 0.541*** 0.375%** 0.367*** Const. 0.367***
(.113) (.121) (.129) (.123)
Yi-1 -0.101 0.143 0.218 Ye-1 -0.113
(.154) (.235) (.204) (.386)
yt 0,465+ 0.275 0.223 ! 508
(.154) (.232) (.216) (.385)
o 0.912 0.905 0.898 o 0.904
R? 0.141 0.159 0.178 R? 0.161
Sample 1974:3 to 2001:4 1974:3 to 2001:4 1974:3 to 2001:4 1974:3 to 2001:4
Const. 0.511%** 0.418*** 0.390*** Const. 0.416***
(.101) (0.110) (.111) (.110)
Yi-1 0.092 0.165 0.305* Ye-1 -0.107
(.147) (.205) (.170) (.366)
yt 0.289%* 0.239 0.124 yit! 0.491
(.146) (.207) (.191) (.361)
o 0.793 0.811 0.787 o 0.809
R? 0.134 0.146 0.175 R? 0.151

Note. The dependent variable y; is ‘final’ output, which is taken to be either {ytz 008@2}, {y§+24}

or {yﬁu}. In the final column we replace the regressor y!_; by y

t+11
t—1

The figures in parentheses are robust (Newey-West) standard errors, o is the estimated regression

standard error, and ***, ** and * denote significance at the 1%, 5% and 10% levels respectively.
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Table 2: Tests of the news and noise hypotheses

Revised Data | 2008: Q2  t+24 t+12 t4+24 2008 : Q2
Initial Data t+1 t+1 t+1 t+12 t+24
Ho: News | 7.42[.001]  2.46[.089]  2.32[.101] 1.06[.348] 9.38[.000]
Ho: Noise | 17.08[.000] 11.39[.000] 10.42[.000] 1.36[.324] 7.28[.000]

Note. Sample period is 1965:Q3-2001:QQ4. The entries are the F-statistics (robust Wald statistic) of
the null hypotheses that Hy: o = 8 = 0 in regressions (7) and (8), followed by p-values in brackets.

Table 3: Monte Carlo estimates based on the estimated SSM

T =150

Simulated final data | y98@2 yt+24  4t+12 gyt
Yt—1 0.245 0.293 0.293 41 0.293

[520] [.584] [.494] [.216]

i, 0.146 0.099 0.098 gt 0.076

[187] [117] [.109] .077]

T = 1,000

Simulated final data | y98@2 gt+24  4t+12 ytt24
Yt—1 .251 .299 298 yi1 298

L999] [ [.999] .828]

Yl 156 .108 106 yit{t 084

[744] [418] [.354] [123]

Note. Number of replications is 10,000. Value in [] is the proportion of rejections of the null of no
statistical significance at the 5% level using robust standard errors over the replications.
We simulate 50 additional observations in each, which are then discarded, to approximate a sta-

tionary draw.
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Table 4: Estimates and Rejection Frequencies for the Rodriquez Mora and Schulstad (2007) regres-
sion based on the estimated VAR models

T =150
VAR: q=24 q=12 q=24 q=12 q=12 q=12
News imp. News imp. News imp.
Simulated Final Data: ylt24 o412 t+24 yt+12 ytt24 ytt24
Yi—1 0.065  0.162  -0.026 0.019 Y- -.085 -.083
[.114]  [.241]  [.099] [.070] [.102] [.089]
vl 0.221  0.126  0.267 0.242 yitit 444 435
[.329] [.152] [.381] [.347] [.437] [.395]
T = 1000
gq=24 qg=12 q=24 q=12 q=12 q=12
News imp. News imp. News imp.
Simulated Final Data: y!t24 412 0424 yit+12 ytt+24 ytt+24
Yt—1 0.065 0.167  -0.029 0.022 yi—1  -.082 -.079
[.263]  [.851]  [.119] [.076] [.193] [.164]
vy 0.239  0.130  0.287 0.245 yit 449 441
[.987]  [.630]  [.997] [.977] [.997] [.992]

Note. Number of replications is 10,000. Value in [] is the proportion of rejections of the null of no
statistical significance at the 5% level with robust standard errors over the replications.
We simulate 300 additional observations in each replication, which are then discarded, to approxi-

mate a stationary draw.
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