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Abstract

In this paper, we analyze the cost allocation problem when a group of agents or
nodes have to be connected to a source, and where the cost matrix describing the
cost of connecting each pair of agents is not necessarily symmetric, thus extending
the well-studied problem of minimum cost spanning tree games, where the costs are
assumed to be symmetric. The focus is on rules which satisfy axioms representing
incentive and fairness properties. We show that while some results are similar, there
are also significant differences between the frameworks corresponding to symmetric and
asymmetric cost matrices.
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1 INTRODUCTION

In a variety of contexts, a group of users may be jointly responsible for sharing the total
cost of a joint “project”. Often, there is no appropriate “market mechanism” which can
allocate the total cost to the individual agents. This has given rise to a large literature
which describes axiomatic methods in distributional problems involving the sharing of costs
and benefits, the axioms typically representing notions of fairness. In the vast bulk of this
literature, the agents have no particular “positional” structure. However, there is a large
number of practical problems in which it makes sense to identify the agents with nodes in a
graph. Consider, for instance, the following examples.

(i) Multicast routing creates a directed network connecting the source to all receivers;
when a packet reaches a branch point in the tree, the router duplicates the packet
and then sends a copy over each downstream link. Bandwidth used by a multicast
transmission is not directly attributable to any one receiver, and so there has to be a

cost-sharing mechanism to allocate costs to different receivers.!

(ii) Several villages are part of an irrigation system which draws water from a dam, and
have to share the cost of the distribution network. The problem is to compute the
minimum cost network connecting all the villages either directly or indirectly to the
source, i.e. the dam (which is a computational problem), and to distribute the cost of
this network amongst the villages.

(iii) In a capacity synthesis problem, the agents may share a network for bilateral exchange
of information, or for transportation of goods between nodes. Traffic between any two
agents ¢ and j requires a certain capacity t;; (width of road, bandwidth). The cost
allocation problem is to share the minimum cost of a network in which each pair ¢ and
J is connected by a path in which each edge has a capacity of at least ¢;;. 2

The combinatorial structure of these problems raises a different set of issues (for instance
computational complexity) and proof techniques from those which arise when a network
structure is absent. Several recent papers have focused on cost allocation rules appropriate
for minimum cost spanning networks.> In these networks, the agents are each identified
with distinct nodes, and there is an additional node (the “source”). Each agent has to be
connected either directly or indirectly to the source through some path. A symmetric cost

1See, for instance, Herzog et al. (1997).

2See A. Bogomolnaia et al. (2008), who show that under some assumptions, the capacity synthesis prob-
lem is similar, though not identical, to the minimum cost spanning tree problem.

3See, for instance, Bird (1976), Bergantinos and Vidal-Puga (2007a), Bergantinos and Vidal-Puga
(2007¢), Bergantinos and Vidal-Puga (2007b), Bergantinos and Kar (2008), Bogomolnaia and Moulin
(2008), Branzei et al. (2004), Feltkamp et al. (1994), Kar (2002), Branzei et al. (2005).



matrix specifies the cost of connecting each pair of nodes. Obviously, the cheapest graph
connecting all nodes to the source must be a tree rooted at the node. The cost allocation
problem is to assign the total cost of the minimum cost spanning tree to the agents.

In this literature, it is assumed that the cost matrix is symmetric. This implies that the
spanning network can be represented as an undirected graph. However, in several situations
the cost of connecting agent i to agent j may not be the same as the cost of connecting agent
J to agent i. The most obvious examples of this arises in contexts where the geographical
position of the nodes affect the cost of connection. For instance, the villages in the second
example may be situated at different altitudes. In the capacity synthesis problem, the nodes
may be towns located along a river, so that transportation costs depend on whether the towns
are upstream or downstream. In this paper, we extend the previous analysis by permitting
the cost matrix to be asymmetric. The spanning tree will then be a directed graph and is
called an arborescence. The minimum cost arborescence can be computed by means of an
algorithm due to Chu and Liu (1965) and Edmonds (1967). This algorithm is significantly
different from the algorithms (Prim’s and Kruskal’s algorithms) used to compute a minimum
cost spanning tree in the symmetric case. However, from a computational perspective, the
algorithm for finding a minimum cost arborescence is still a polynomial time algorithm.

Our interest is in the cost sharing problem. Following the previous literature, we too
focus on an axiomatic approach, the axioms representing a combination of incentive and
fairness properties. The first property is the well-known Stand-Alone Core property. This
requires that no group of individuals be assigned costs which add up to more than the total
cost that the group would incur if it built its own subnetwork to connect all members of
the group to the source. We provide a constructive proof that the core is non-empty by
showing that the directed version of the Bird Rule,* due not surprisingly to the seminal
paper of Bird (1976), yields an allocation which belongs to the core of the cost game. Of
course, Bird himself had proved the same result when the cost matrix is symmetric. We then
prove a partial characterization result which shows that the set of cost allocation rules that
are core selections and which satisfy an invariance condition (requiring that the allocation
be invariant to costs of edges not figuring in any minimum cost arborescence) assign each
individual a cost which lies between the maximum and minimum cost assigned by the set
of Bird Rules. This also means that there can be only one such rule when the cost matrix
is such that it gives a unique minimum cost arborescence - namely the Bird Rule itself. Of
course, this result has no parallel when the cost matrix is symmetric, and emphasizes the
difference in the two frameworks.

We then go on to impose two other “minimal” or “basic” requirements - Continuity, which
requires that the cost shares depend continuously on the cost matrix, and a Monotonicity

4The Bird Rule is defined with respect to a specific tree, and stipulates that each agent pays the cost of
connecting to her predecessor.



requirement which requires that each individual is “primarily” responsible for the cost of
his or her incoming edges. We interpret this to mean the following - if the only difference
between two cost matrices is that the cost of an incoming edge of agent ¢ goes up, then the
cost share of ¢ should (weakly) go up by at least as much as that of any other agent. This
property is slightly stronger than the monotonicity condition which was initially defined by
Dutta and Kar (2004), and subsequently used in a number of papers on symmetric cost ma-
trices.” We construct a rule which satisfies these three basic properties, using Bird’s concept
of wrreducible cost matrices. In particular, we show that the Shapley value of the cost game
corresponding to the irreducible cost matrix satisfies these three properties. Readers famil-
iar with the literature on the original minimum cost spanning tree problem will immediately
recognize that this is exactly the procedure adopted by Bergantinos and Vidal-Puga (2007a)
to construct the “folk solution” for minimum cost spanning tree problems.® While the folk
solution also satisfies the three basic properties, it is important to realize that it belongs
to a very different class of rules from the one that we construct in this paper. In particu-
lar, Bird’s irreducible cost matrix only uses information about the costs of edges figuring in
some minimum cost spanning tree - costs of edges not figuring in a minimum cost spanning
tree are irrelevant in the construction of the irreducible cost matrix. This obviously means
that the folk solution too does not utilize all the information contained in the cost matrix.
Indeed, this forms the basis of the critique of “reductionist” solutions (solutions which only
utilize information about the costs of edges figuring in some minimum cost spanning tree)
by Bogomolnaia and Moulin (2008).

In contrast, the irreducible cost matrix constructed by us (and hence our solution) re-
quires more information than is contained in the minimum cost arborescence(s). This is one
important sense in which our solution is qualitatively different from the folk solution. We
go on to highlight another important difference. We show that our solution satisfies the
directed version of Ranking, a property due to Bogomolnaia and Moulin (2008). Our version
of Ranking is the following. If the costs of all incoming edges of ¢ are higher than the costs
of corresponding edges of j, and the corresponding outgoing edges of ¢ and j are the same,
then 4 should pay strictly more than j. Bogomolnaia and Moulin (2008) point out that all
reductionist solutions in the symmetric case - and hence the folk solution - must violate
Ranking.

Thus, our results demonstrate that there are significant differences between the frame-
works corresponding to symmetric and asymmetric cost matrices, and emphasizes the need

5See, for instance, Bergantinos and Vidal-Puga (2007a), Bergantinos and Vidal-Puga (2007c),
Bergantinos and Vidal-Puga (2007b).

6This is a term coined by Bogomolnaia and Moulin (2008) because this allocation rule has been indepen-
dently proposed and analyzed in a number of papers. See, for instance, Bergantinos and Vidal-Puga (2007a),
Bergantinos and Vidal-Puga (2007c), Bergantinos and Vidal-Puga (2007b), Bogomolnaia and Moulin
(2008), Branzei et al. (2004), Feltkamp et al. (1994), Norde et al. (2001) Branzei et al. (2005).



for more systematic analysis of the cost allocation problem for minimum cost arborescences.

2 FRAMEWORK

Let N ={1,2,...,n} be a set of n agents. We are interested in directed graphs or digraphs
where the nodes are elements of the set N*™ = N U {0}, where 0 is a distinguished node
which we will refer to as the source. We assume that the set of edges of this graph is the set
{ij:i€ Nt ,j € N}. So, we assume that there is an edge from every i € N* to every j € N.
We will also have to consider digraphs on some subsets of N*. So, for any set S C N, let
ST denote the set S U{0}. Then, a digraph on S consists of a set of directed edges out of
the set {ij:i € ST,j € S}.

A typical graph” over ST will be represented by gs whose edges are out of the set {ij :
i € ST, € S}. When there is no ambiguity about the set S (usually when we refer to a
graph on N*), we will simply write g, ¢’ etc instead of gs,gs. We will denote the set of
incoming edges of a node i in graph g as 6~ (i,g) = {ji : ji is an edge in g}. Similarly, the
set of outgoing edges of a node i is denoted as 67 (i,g) = {ij : ij is an edge in g}.

A cost matriz C = (¢;;) for N* represents the cost of various edges which can be con-
structed from nodes in N*. That is, ¢;; is the cost of the edge ij. We assume that each
¢;; > 0 for all 7j. We also adopt the convention that for each i € N*, ¢;; = 0. Note that
the cost of an edge 75 need not be the same as that of the edge ji - the direction of the edge
does matter.® Given our assumptions, each cost matrix is nonnegative, and of order n + 1.
The set of all cost matrices for N is denoted by Cx. For any cost matrix C, denote the cost

c(g) = Z Cij

of a graph g as ¢(g). That is,

iJEQg
A path in g is a sequence of distinct nodes (', ..., ) such that /™! is an edge in g for
all 1 <j < K —1.1If (i, ...,i%) is a path, then we say that it is a path from i! to % using
edges i'i?,4%3, ... 571K A cycle in g is a sequence of nodes (..., i i£*1) such that

Z'KZ'K—l—l K—I—l_

(i*,...,i%) is a path in g, is an edge in g, and i' =1
A node 7 is connected to node j if there is a path from node j to node i. Our interest is

in graphs in which every agent in NV is connected to the source 0.

DEFINITION 1 A graph g is an arborescence rooted at O for N if and only if g contains no
cycle and 6~ (i,g) =1 for alli € N.

"Henceforth, we will use the term “graph” to denote digraphs. Similarly, we will use the term “edge” to
denote a directed edge.

8 As the reader will recognize, this distinguishes our approach from the literature on minimum cost span-
ning tree problems.



Let Ay be the set of all arborescences for N. The minimum cost arborescence (MCA)
corresponding to cost matrix C' is an arborescence g such that ¢(g) < ¢(¢') for all ¢ € An.

Let M(C') denote the set of minimum cost arborescences corresponding to the cost matrix
C for the set N, and T'(C') represent the total cost associated with any element g of M (C').
While our main interest is in minimum cost arborescences for N, we will also need to define
the minimum cost of connecting subsets of N to the source 0. The set of arborescences for
any subset S of N will be denoted Ag and the set of minimum cost arborescences will be
represented by M (C,S). Also, Ts(C) will denote the total cost associated with any element
of M(C,S).

Clearly, a minimum cost arborescence is analogous to a minimum cost spanning tree
(MCST) for undirected graphs. Alternatively, an MCA may be viewed as a generalization
of an MCST when the cost matrix is not symmetric.

2.1 THE RECURSIVE ALGORITHM

It turns out that the typical greedy algorithms used to construct minimum cost spanning trees
fail to generate minimum cost arborescences. Figure 1 illustrates this phenomenon.’ Recall
that a unique feature of minimum cost spanning trees is that an MCST must always choose
the minimum cost (undirected) edge corresponding to any cost matrix. Notice, however,
that in Figure 1, the minimum cost arborescence involves edges 01,12,23. But it does not
involve the minimum cost edge 31.

We now describe an algorithm due to Chu and Liu (1965) and Edmonds (1967) to con-
struct an MCA. Though the algorithm is quite different from the algorithms for constructing
an MCST, it is still computationally tractable as it runs in polynomial time.

The algorithm works recursively. In each recursion stage, the original cost matrix on the
original set of nodes and the original graph is transformed to a new cost matrix on a new
set of nodes and a new graph. The terminal stage of the recursion yields an MCA for the
terminal cost matrix and the terminal set of nodes. One can then “go back” through the
recursion stages to get an MCA for the original problem. Since the algorithm to compute
an MCA is different from the algorithm to compute an MCST, we first describe it in detail
with an example.

Consider the example in Figure 2. To compute the MCA corresponding to the cost matrix
in Figure 2, we first perform the following operation: for every node, subtract the value of
the minimum cost incident edge from the cost of every edge incident on that node. As an
example, 31 is the minimum cost incident edge on node 1 with cost 1. Hence, the new cost
of edge 31is 1 —1 =0, edge 01 is 2 —1 =1, and edge 21 is 3 — 1 = 2. In a similar fashion,

9The numbers besides each edge represent the cost of the edge. The missing edges have very high cost
and do not figure in any MCA.



Figure 1: An example where greedy algorithm of undirected graph fails

Figure 2: An example

compute the following new cost matrix C*:

1 1 _ 1 _
cor =1, =2, ¢35 =0
1 _ 1 _ 1 _
Cp =1, cp=1, ¢3 =0

1 _ 1 _ 1 _
Co3 = 3, Co3 = 0, 13 = 3.

Clearly, an MCA corresponding to C! is also an MCA corresponding to the original cost
matrix. So, we find an MCA corresponding to C'. To do so, for every node, we pick a zero
cost edge incident on it (by the construction of C, there is at least one such edge for every
node). If such a set of edges form an arborescence, it is obviously an MCA corresponding

7



to O, and hence, corresponding to the original cost matrix. Otherwise, cycles are formed
by such a set of zero cost edges. In the example, we see that the set of minimum cost
edges are 31, 32, and 23. So, 32 and 23 form a cycle. The algorithm then merges nodes 2
and 3 to a single supernode (23), and constructs a new graph on the set of nodes 0, 1, and
supernode (23). We associate a new cost matrix C" on this set of nodes using C' as follows:
CoL = =1, 6(1)(23) = min{c}y, ¢33} = min{1,3} = 1; 6%(23) = min{c},, c}3} = min{1,3} =1,
(23)1, 6%23)1 = min{c};, c};} = min{2,0} = 0. The graph consisting of these edges along with

the costs corresponding to cost matrix C' is shown in Figure 3.

0

Figure 3: After first stage of the algorithm

We now seek an MCA for the situation depicted in Figure 3. We repeat the previous step.
The minimum cost incident edge on 1 is (23)1 and we choose the minimum cost incident
edge on (23) to be 0(23). Subtracting the minimum costs as we did earlier, we get that 0(23)
and (23)1 are edges with zero cost. Since these edges form an arborescence, this is an MCA
corresponding to cost matrix Cl. To get the MCA for the original cost matrix, we note
that 6(1)(23) = ¢y Hence, 0(23) is replaced by edge 02. Similarly, (23)1 is replaced by edge
31. The cycle in supernode (23) is broken such that we get an arborescence - this can be
done by choosing edge 23 since 02 is the incident edge on supernode (23). Hence, the MCA
corresponding to the original cost matrix is: 02, 23, 31.

We now describe the algorithm formally. Given any cost matrix C', we will say that a set
of nodes I = {1,..., K} form a C-cycle if ¢;;41 =0 foralli=1,... K — 1 and cx1 = 0.

e Stage 0: Set C° = C° = C, N = N U {0}, and for each j € N,
A? = rgéijnc?j,N;) ={j}.

e Stage 1: For each pair i, j, define ¢j; = ¢; — A?. Construct a partition {N},..., N, }
of N such that each N} is either a C*-cycle of elements of N° or a singleton with the



restriction that no set of singletons forms a C'-cycle.'® Denote N' = {N],..., N, }.

For each k,l € {1,..., K'}, define

Cyiyt = min ¢ = min &), — Al
iEN]L JEN} iEN},jeN]!

Hence, C! is a cost matrix on nodes N'. For each k € {1,..., K'}, define

Ap = min cij: min cN1N1
igN} jEN} N}#N}

e Stage t: For each pair 4, j, define ¢}; = cfj_l —Az-_l. Construct a partition {N{,..., Nk}
of N*=! such that each N} is either a C'-cycle of elements of N*=! or a singleton
element of N'~! with the restriction that no set of singletons forms a Ct-cycle. For
each k,1 € {1,..., K"}, define

. . -1 -1
c}tvt Nt = _Inin cfj = min [c}t\ﬂg,1 T Afl ].
iENLJEN] Ny 'CNpNgTreNp e T

Note that C* is a cost matrix on nodes N.

For each k € {1,..., K"}, define

Al = min ¢, = min &
k t Nt
igNt jent 7 Nrgne Ml

Terminate the algorithm at stage T if each N is a singleton. That is, each N} coincides
with some N !, so that each N[ is also an element of the partition N7~!. Since the source
cannot be part of any cycle and since N is finite, the process must terminate - there must
indeed be a stage when each N/ is a singleton.

We will sometimes refer to sets of nodes such as N} as supernodes. The algorithm
proceeds as follows. First, construct a MCA g7 of graph with nodes N7 (or equivalently
NT=1) corresponding to cost matrix CT. By definition, this can be done easily by choosing
a minimum cost edge for every node in N7. Then, unless T' = 1, “extend” ¢' to ¢'~! for all
2 <t < T by establishing connections between the elements of N* and N'~!, until we reach
gt € M(C).

Since g7 is an MCA on N7 corresponding to cost matrix 5T, if T =1, then ¢! is the
MCA on N° corresponding to cost matrix C*, and hence C'.

Suppose T' > 2. For every 2 <t < T, given an MCA ¢' corresponding to ét, we extend
it to an MCA ¢'~! on nodes N*~! corresponding to C*~! as follows.

(i) For every edge NtNt in ¢*, let ¢ CNt Nt = Eﬁvtl et —Al” I for some N}~ 1 C N} and some

N;~' C N} Then, replace NN} with N}~ 1Nt Lin graph ¢t~

10Tf there is some node j € N such that two or more edges minimize cost, then break ties arbitrarily.



(ii) In the previous step, if we choose NJ"'N!~' as an incoming edge to Ny, which is a
C'1 cycle, then retain all the edges in ¢*~! which constitute the cycle in supernode
Nj. except the edge which is incoming to N/~

This completes the extension of ¢/~! from ¢'. It is not difficult to see that ¢~! is a MCA for
graph with nodes N*~! corresponding to C*~! (for a formal argument, see Edmonds (1967)).
Proceed in this way to g* € M(C).

2.2 THE COST ALLOCATION PROBLEM

Given any cost matrix C', the recursive algorithm will generate an MCA corresponding to
C, and hence the total cost of connecting all the agents in N to the source. Since the total
cost is typically less than the direct cost of connecting each agent to the source, the group as
a whole gains from cooperation. So, there is the issue of how to distribute the cost savings
amongst the agents or, what is the same thing, how to allocate the total cost to the different
agents.

DEFINITION 2 A cost allocation rule is a function p : Cn — RV satisfying Z,ui(C) =
iEN

T(C) ¥V C € Cy.

So, for each cost matrix, a cost allocation rule specifies how the total cost of connecting
all agents to the source should be distributed. Notice that our definition incorporates the
notion that the rule should be efficient - the costs distributed should be exactly equal to the
total cost.

In this paper, we follow an axiomatic approach in defining “fair” or “reasonable” cost
allocation rules. The axioms that we will use here reflect a concern for both “stability” and
fairness.

The notion of stability reflects the view that any specification of costs must be acceptable
to all groups of agents. That is, no coalition of agents should have a justification for feeling
that they have been overcharged. This leads to the notion of the core of a specific cost
allocation game.

Consider any cost matrix C' on N*. While the set of agents incur a total cost of T'(C') to
connect each node to the source, each subset S of N incurs a corresponding cost of Ts(C').
It is natural to assume that agents in any subset S will refuse to cooperate if an MCA for N
is built and they are assigned a total cost which exceeds Ts(C') - they can issue the credible
threat of building their own MCA.

So, each cost matrix C' yields a cost game (N, ¢) where

For each S C N, ¢(S) = Ts(C)

10



The core of a cost game (N, ¢) is the set of all allocations z such that

for all S C N,in < C(S),in = ¢(N)

ies ieN
We will use Co(N, C') to denote the core of the cost game corresponding to C.

DEFINITION 3 A cost allocation rule p is a Core Selection (CS) if for all C, p(C) €
Co(N,C).

A rule which is a core selection satisfies the intuitive notion of stability since no group of
agents can be better off by rejecting the prescribed allocation of costs.

The next axiom is essentially a property which helps to minimize the computational
complexity involved in deriving a cost allocation. The property requires the cost allocation
to depend only on the costs of edges involved in the MCA s. That is, if two cost matrices
have the same set of MCA s, and the costs of edges involved in these trees do not change,
then the allocation prescribed by the rule should be the same.

For any N, say that two cost matrices C,C" are arborescence equivalent if (i) M (C) =
M(C'"), and (ii) if ij is an edge in some MCA, then c¢;; = ;.

DEFINITION 4 A cost allocation rule p satisfies Independence of Irrelevant Costs (IIC) if
for all C,C", u(C) = pu(C") whenever C' and C" are arborescence-equivalent.

The next axiom is straightforward.

DEFINITION 5 A cost allocation rule p satisfies Continuity (Con) if for all N, p is contin-
uous in the cost matrix C.

In the present context, a fundamental principle of fairness requires that each agent’s share
of the total cost should be monotonically related to the vector of costs of its own incoming
edges. So, if the cost of say edge ij goes up, and all other edges cost the same, then j’s share
of the total cost should not go down. This requirement is formalised below.

DEFINITION 6 A cost allocation rule satisfies Direct Cost Monotonicity (DCM) if for all

C, ", if cij < ciy, and for all other edges kl # ij, cu = ¢y, then p;(C') > p;(C).

This is the counterpart of the assumption of Cost Monotonicity introduced by Dutta and Kar
(2004). Clearly, DCM is also compelling from the point of view of incentive compatibility.
If DCM is not satisfied, then an agent has an incentive to inflate costs (assuming an agent
is responsible for its incoming edge costs).

Notice that DCM permits the following phenomenon. If the cost of some edge ij goes up
(other edge costs remain the same), then the cost allocated to j may go up by say €, but the
cost allocated to some k may go up by more than e. This is clearly unfair. The next axiom
rules out this possibility.

11



DEFINITION 7 A cost allocation rule satisfies Direct Strong Cost Monotonicity (DSCM) if
for all N, and for all C,C", if c;j < c}; and ¢y = cjy for all kl # ij we have p;(C) — p;(C') >
e (C) — u(C") for all k.

Note that DSCM implies DCM.

Our next axiom is a symmetry condition which essentially requires that if two nodes ¢
and j have identical vectors of costs of incoming and outgoing edges, then their cost shares
should not differ.

DEFINITION 8 A cost allocation rule p satisfies Equal Treatment of Equals (ETE) if for all
t,7 € N and for all cost matrices C' with cx; = ci; and i, = cj, for all k # i, 7 and ¢;; = cji,
we have 11;(C) = p;(C).

Our final axiom is that of Ranking, adapted from Bogomolnaia and Moulin (2008). Rank-
ing compares cost shares across individual nodes and insists that if costs of all incoming edges
of 7 are uniformly higher than the corresponding costs for j, while the costs of outgoing edges
are the same, then ¢ should pay strictly more than j. Notice that it is similar in spirit to
DSCM in that both insist that nodes are “primarily” responsible for their incoming costs.

DEFINITION 9 A cost allocation rule p satisfies Ranking (R) if for all i,7 € N and for
all cost matrices C' with ¢ = cji and cx; > cx; for all k # i, and c;; > ¢;;, we have
1i(C) > p;(C).

3 A PARTIAL CHARACTERIZATION THEOREM

In the context of minimum cost spanning tree problems, Bird (1976) is a seminal paper. Bird
defined a specific cost allocation rule - the Bird Rule, and showed that the cost allocation
specified by his rule belonged to the core of the cost game, thereby providing a constructive
proof that the core is always non-empty.*!

In this section, we show that even in the directed graph context, the Bird allocations
belong to the core of the corresponding game. We then show that if a cost allocation rule
satisfies IIC and CS, then the cost allocation of each agent must lie between the minimum
and maximum costs paid by the individual in different Bird allocations. In particular, this
implies that the cost allocation rule must coincide with the Bird Rule on the set of cost
matrices which give rise to unique MCA s.

For any arborescence g € Ay, for any i € N, let p(i) denote the predecessor of i in g.
That is, p(7) is the unique node which comes just before i in the path connecting i to the
source 0.

1Bird defined his rule for a specific MCST. Since a cost matrix may have more than one MCST, a proper
specification of a “rule” can be obtained by, for instance, taking a convex combination of the Bird allocations
obtained from the different minimum cost spanning trees.

12



DEFINITION 10 Let C be some cost matriz.
(i) A Bird allocation of any MCA g(C) is bi(g,C) = cpgiyi-

(it) A Bird rule is given by Bi(C) = > cypc)wobi(g, C), where 3 cypoywy = 1 and
wy > 0 for each g € M(C).

Notice that the Bird rule is a family of rules since it is possible to have different convex
combinations of Bird allocations. We first prove that Bird allocations belong to the core of
the cost game.

THEOREM 1 For every cost matriz C' and MCA ¢(C), b(g,C) € Co(N,C).

Proof: Let g* be the outcome of the recursive algorithm supplemented by tie-breaking rules
if necessary. Let x denote the corresponding Bird allocation.

Let {N{},..., N};} be the set of supernodes after stage 1 of the recursive algorithm. If the
algorithm terminates in one step, then each N} contains only a singleton node. Otherwise,
at least one N} contains more than one node of N. For each N}, let i; denote the node at
which ¢g* enters N}. Then, the following is true for every N} and for every i # i,

z; = A} and z;, > A} (1)

Now, let S be a mazimal blocking coalition, so that c(S) < >, ¢ ;.
Let K = {k|S N N} # 0}. We first show that if & € K, then N} C S. For suppose
T = N\ S, and T is nonempty. Now,

o(SUT) = o(S)+ Y AY

i€T
< e(S)+ Z T
i€T

where the first inequality follows from (1) and the last inequality from the fact that S is a
blocking coalition. This shows that S UT is a blocking coalition, violating maximality of S.
Hence,
Urex N = S

Since N is not a blocking coalition, there must be some le # 0 such that j ¢ K. Call

N} a predecessor of N} if the incoming edge (of g*) to N} is from N!.'> Moreover, we can

Note that each N} has a unique predecessor.
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choose some j ¢ K such that its predecessor is either contained in S or it is the source 0.
Then,
c(SUNJ) < e(S)+ > o

But, then S U le is a blocking coalition, violating the maximality of S. This contradiction
shows that there cannot be any blocking coalition. |

Of course, the Bird Rule satisfies IIC. We now prove a partial converse by showing that
any cost allocation rule satisfying CS and IIC must specify cost shares which are bounded
by the minimum and maximum Bird allocations. That is, for each C' and each i € N, let

b"(C) = min b;(g,C
(€)= min bi(g,C)

W) = bi(g,C).
i (C) = max bifg,C)

Then, we have the following theorem.

THEOREM 2 If i is a cost allocation rule satisfying CS and IIC, then for all C, for alli € N,
pi(C) € [b7(C), b (C)].

Proof: Fix C and consider any p which satisfies CS and IIC. Let u(C) = «.

(i) Suppose there is i € N such that z; = b"(C') — € for some € > 0. Let g be the MCA
which gives rise to the Bird allocation in which ¢ pays b[*(C), and let b(g,C') be the Bird
allocation. Let S be the set of successors of i - these are the nodes j such that ¢ lies in the
path from 0 to j.

Now, let T'= N\ (SU{i}). We first show that S # ). Assume for contradiction S = ().
Then, i is the leaf of the MCA g¢. Hence, if we remove the edge which goes to i, we get an MCA
of coalition N\ {}. This means, ¢c(N\{i}) = ¢(N) =bi(9,C) < 32jen T — T = D jen i} i
implying that N \ {i} will block, which is a contradiction. Now, consider the following.

ij :ij(gac)—ziﬁj—l"i

jes JEN JET

> bi(9.0) =)z —bi(g.C)
JEN jET

>3 (9. C) — o(T) = bi(9,C)  (By CS)
JEN

> "bi(9.C) = > bi(g,C) — bi(g,C)
JEN jeT

=Y b(9.0).
JES

14



Hence, > .cqx; > D icobi(9,C). Let §" = {j € S|p(j) = i} be the set of immediate
successors of 7. Let |S'| = s. Also, denote p(i) = k. Then, consider a cost matrix C” such
that

€
. roy
for aHJES,ij = Cij—i-%

for all other edges ki, ¢, = c¢;j. (3)

Vjeds (2)

Note that M(C) = M(C"). Also, the edges whose costs are changed do not figure in any
MCA. So, from IIC, u(C") = u(C) = z. Now, consider the following arborescence for nodes
in N\ {i}: take the MCA g and disconnect node 1, i.e., delete all edges outgoing from node
7 and the unique edge incident on i, and connect nodes in S’ using the direct edge from k to
every node in S’. This is an arborescence because every node is still connected to the source
and there are no cycles (if there was a cycle here, we would get a cycle in g via 7). The cost
of this arborescence is c(IV) — b;(g,C') + 5. This gives,

C(NA{E}) < e(V) = bi9,C) + 5
< c¢(N)=10bi(g9,C) +¢€
=c(N) — x;
R JEN\{i} :

This shows that « ¢ Co(N, ("), contradicting the assumption that p satisfies CS.
(i) Suppose p satisfies CS and IIC, and there is some cost matrix C' such that

1:(C) = bM(C) + € for some i € N

Then, consider C” such that cf; = bM(C) + €/2, while the cost of all other edges remains
the same. The change in the cost of the edge 0i cannot affect the set of MCA s, and so
w(C") = pu(C) by IIC. But, {i} will block u(C’) and so p cannot be in the core Co(N,C").
|

Remark 1 Note that for any cost matriz C, if M(C) is a singleton, then any cost allocation
rule p satisfying CS and IIC must coincide with the unique Bird Rule.

The following related theorem is of independent interest. We show that no reductionist
solution satisfying CS can satisfy either Con or DCM. As we have pointed out in the intro-
duction, this result highlights an important difference between the solution concepts for the
classes of symmetric and asymmetric cost matrices.

THEOREM 3 Suppose a cost allocation rule satisfies CS and IIC. Then, it cannot satisfy
either Con or DCM.
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Proof: Let N ={1,2}. Consider the cost matrix given below
Co1r = 6,002 = 4, C1g = 1,021 =3

Then,
b7 (C) = 3,05'(C) = 1,07/ (C) = 6,b5" (C) = 4

Let p satisty IIC and CS. Then,
,u1<0) € [376]7,“2(0) € [174]

Now, consider C” such that ¢j; = 6 + € where € > 0, and all other edges cost the same as in
C. There is now a unique MCA, and so since u satisfies CS and IIC,

p(C) = (3,4)

If v also satisfies DCM, then we need 1 (C") > py(C). This implies

N(C> = (37 4)

Now consider C" such that 032 =4+, with v > 0 while all other edges cost the same as in
C. Tt follows that if u is to satisfy CS, IIC, and DCM, then

u(C) = (6,1)

This contradiction establishes that there is no p satisfying CS, IIC, and DCM. Now, if u
is to satisfy CS, IIC and Con, then there must be a continuous function f : ®2 — %2 such
that

(3,4) = u(C) + f(€,0), and (6,1) = p(C) + (0,7)

for all €,y > 0 and with f(0,0) = (0,0). Clearly, no such continuous function can exist. W

The last theorem and the earlier remark demonstrate that there is a sharp difference
between allocation rules when the cost matrix is symmetric and when it is asymmetric. The
literature on minimum cost spanning tree games shows that there are a large number of cost
allocation rules satisfying CS, IIC and monotonicity and\or continuity. Clearly, options are
more limited when the cost matrix is asymmetric. Nevertheless, we show in the next section
that it is possible to construct a rule satisfying the three “basic” properties of CS, DCM and
Con. Of course, the rule we construct will not satisfy 11C.
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4 A RULE SATISFYING CS, DSCM AND CON

In this section, we construct a rule satisfying the three “basic” axioms of CS, DSCM and Con.
Our construction will use a method which has been used to construct the “folk solution”.
The rule satisfies counterparts of the three basic axioms in the context of the minimum cost
spanning tree framework. However, the rule constructed by us will be quite different. In
particular, the “folk solution” satisfies the counterpart of IIC but does not satisfy Ranking
for symmetric cost matrices. In contrast, while our rule obviously cannot satisfy I1C, we will
show that it satisfies Ranking.

We first briefly describe the methodology underlying the construction of the “folk solu-
tion”.

Bird (1976) defined the concept of an irreducible cost matrix corresponding to any cost
matrix C' in the minimum cost spanning tree problem. The irreducible matrix C* is obtained
from a symmetric cost matrix C' in the following way. Let g be some minimum cost spanning
tree for a symmetric cost matrix C.'3 For any i,5 € N, let P(ij) denote the set of paths
from 7 to j for this tree. Then, the “irreducible” cost of the edge 75 is

= min  max ¢y Vi, jé€EN.

Y pig)EP(ig) kiep(inj)
Of course, if some ij is part of a minimum cost spanning tree, then cf} = ¢;j. So, while
every original minimum cost spanning tree remains a minimum cost spanning tree for the
irreducible cost matrix, new trees also minimise the irreducible cost of a spanning tree.
Bird (1976) showed that the cost game corresponding to this CF is concave. From the

well-known theorem of Shapley (1971), it follows that the Shapley value belongs to the
R
j
corresponding to C* is contained in the core of the game corresponding to C. So, the cost

core of this game. Moreover, since ¢;; < ¢;; for all 77, it follows that the core of the game
allocation rule choosing the Shapley value of the game corresponding to CF satisfies CS.
Indeed, it also satisfies Cost Monotonicity'* and Continuity.

It is natural to try out the same approach for the minimum cost arborescence problem.
However, a similar approach cannot work when the cost matrix is asymmetric. Notice that
the construction of the irreducible cost matrix outlined above only uses information about
the costs of edges belonging to some minimum cost spanning tree. So, the Shapley value of
the cost game corresponding to the irreducible cost matrix must also depend only on such
information. In other words, the “folk” solution must satisfy IIC. It follows from Theorem 3,
that no close cousin of the folk solution can satisfy the desired properties.

I3Tf more than one tree minimises total cost, it does not matter which tree is chosen.

MBergantinos and Vidal-Puga (2007a) show that it satisfies a stronger version of cost monotonicity - a
solidarity condition which requires that if the cost of some edge goes up, then the cost shares of all agents
should (weakly) go up.

17



In what follows, we focus on the essential property of an irreducible cost matrix - it is a
cost matrix which has the property that the cost of no edge can be reduced any further if an
MCA for the original matrix is to remain an MCA for the irreducible matrix and the total
cost of an MCA of the irreducible cost matrix is the same as that of the original matrix. We
use the recursive algorithm to construct an irreducible matrix.

Given any cost matrix C, we construct an irreducible cost matrix C'®, and show that CF
possesses the following properties.

1. The irreducible cost matrix C is well-defined in the sense that it does not depend on
the tie-breaking rule used in the recursive algorithm.

2. Buvery edge ij is part of some MCA corresponding to C* and T(C) = T(CF).

3. The cost game corresponding to CF is concave.

We will use these properties to show that the rule choosing the Shapley value of the cost
game corresponding to CF satisfies CS, DSCM, and Con.

We first illustrate the construction of the irreducible cost matrix for the example in
Figure 2. Like in the recursive algorithm, we do it recursively. So, we first construct an
irreducible cost matrix on nodes N7 and corresponding cost matrix C7 of the last stage
T of the algorithm. For the example in Figure 2, Figure 3 exhibits the graph on this set
of nodes. An irreducible cost matrix corresponding to this cost matrix can be obtained as
follows: set the cost of any edge 75 equal to the minimum cost incident edge on j. Denoting
this reduced cost matrix as 53, we get ¢l = 523)1 =0 and 60R(23) = 6{2(23) = 1. It is easy to
verify that this is indeed an irreducible cost matrix. Now, we extend C® to an irreducible
cost matrix C® corresponding to the original cost matrix. For any edge ij, if i and j belong
to different supernodes N and N} respectively in Figure 3, then ¢fi = 6&17 N2 + A}, For
example, cﬁzéﬁ%)—l—Z: 1+2=3and 0&26&23)%—1 =1+1=2. For any ij, if i and j
belong to the same supernode, then ¢fi = AY. For example, ¢33 = 1 and ¢, = 2. Using this,
we show the irreducible cost matrix in Figure 4.

We now formalize these ideas of constructing an irreducible cost matrix below.

Fix some cost matrix C'. Suppose that the recursive algorithm terminates in 71" steps
given some tie-breaking rule. Say that ¢,j € N are t-neighbours if i, j € N} € N* for some
t <T —1 and there is no ' < ¢, N} such that i,j € Nf. If i, are not t-neigbours for any
t <T — 1, then call them T-neighbours.

If i € N, then let

5l = AL

For any pair ¢, € N which are t-neighbours,
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cgf = Z 5;? (4)

So, for instance, if the algorithm terminates in one step, then all ¢, j are 1-neighbours, and

R __ : — AO
Cij = min c; = A;

Since the recursive algorithm breaks ties arbitrarily and the irreducible cost matrix uses
the recursive algorithm, it does not follow straightaway that two different tie-breaking rules
result in the same irreducible cost matrix. We say that the irreducible cost matrix is well-
defined if different tie-breaking rules yield the same irreducible cost matrix.

LEMMA 1 The irreducible cost matriz defined through Equation (4) is well-defined.

Proof: To simplify notation, suppose there is a tie in step one of the algorithm, between
exactly two edges say ij and kj, as the minimum incident cost edge on node j7.!> Hence,
Cij = Cj = A?. We will investigate the consequence of breaking this tie one way or the other.
For this, we break the other ties in the algorithm exactly the same way in both cases.
We distinguish between three possible cases.

CASE 1: Suppose j forms a singleton node N jl in step 1 irrespective of whether the algorithm
breaks ties in favour of 75 or k£j. Then, in either case Ajl- = 0. Moreover, the structure of N*
for all subsequent ¢ is not affected by the tie-breaking rule. Hence, C* must be well-defined
in this case.

15The argument can easily be extended to a tie at any step t of the algorithm and to ties between any
number of edges.
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CASE 2: There are two possible C'-cycles - N! and N} depending on how the tie is broken.
Suppose the tie is broken in favour of ij so that N} forms a supernode. Then, {k} forms a
singleton node in Stage 1. But, since ¢z; = 0, N U N will form a supernode in step 2 of the
algorithm. Notice that if the tie in step 1 was resolved in favour of kj, then again N} U N}
would have formed a supernode in step 2 of the algorithm.

Also, the minimum cost incident edges of nodes outside N}! and N} remain the same
whether we break ties in favor of ij or kj. Hence, we get the same stages of the algorithm
from stage 2 onwards. So, if r ¢ N} U N}, then for all s € N°\ {r}, ¢/ cannot be influenced
by the tie-breaking rule.

Let s € N} U N!. Then, irrespective of how the tie is broken, §! = 0, and hence ¢
cannot be influenced by the tie-breaking rule for any r.

R
TS

CASE 3: Suppose N/! is a C'-cycle containing 7 and j, but there is no C'-cycle involving k.
Since the minimum incident edge on N} corresponds to kj and ¢;; = 0, 6, = 0 for all p € N}
irrespective of how the tie is broken. So, for all s € N}, cf is unaffected by the tie-breaking

rule for all r.
These arguments prove that Equation 4 gives a well-defined irreducible cost matrix. W

In the next two lemmas, we want to show (i) that the total cost of the minimum cost
arborescences corresponding to cost matrices C' and C” is the same, and (ii) that the set
M(C%) is “large” in the following sense - choose any ordered pair ij such that j # 0. Then,
there is some MCA g € M(C%) such that ij € g. The proofs of these results involve a similar
construction which we now describe.

In particular, we associate a cost matrix to each stage of the algorithm. Apart from
being used in the proofs of the next two lemmas, these cost matrices also give an alternate
interpretation of the irreducible cost matrix.

Let C be any cost matrix, and as usual, let C® be the irreducible cost matrix correspond-
ing to C.

Consider stage t of the recursive algorithm. The set of nodes in stage t is N*. Consider
N}, Nj € N' and let them be t-neighbors, i.e., in some stage t € {t +1,...,7 — 1} nodes N}
and N ; become part of the same supernode for the first time. Say that they are T-neighbors
if they are not t neighbors for some t <1 — 1. Now, define

i—1

~ !

t'=t

This defines a cost matrix C* on nodes Nt for stage t of the algorithm. Note that
CE = C° From the algorithm, the total cost of an MCA with nodes N corresponding to
cost matrix C? is equal to the total cost of an MCA with nodes N* corresponding to cost
matrix C*. Moreover, C* is the irreducible cost matrix of C*.
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LEMMA 2 Suppose C® is the irreducible cost matriz corresponding to cost matriz C. Then,
T(C)=T(CH).

Proof: We prove the result by using induction on the number of stages of the algorithm.
If T =1, then cf} = A? for all edges ij. By definition of the irreducible cost matrix,
T(C) = ¥ jen A7 = T(CH).

Now, assume the lemma holds for any cost matrix that takes less than t stages where
t > 1. We show that the lemma holds for any cost matrix C' that takes ¢ stages. Consider
cost matrix C', which is the irreducible cost matrix of C'. Note that the algorithm takes
t — 1 stages for cost matrix C*!, applied to nodes in N!. Hence, by our induction hypothesis
and using the fact T(C*) = T(C"), we get

T(CY) =T(C") =T(C"). (5)

Now, consider the cost matrix C' defined as follows: ¢;; = 0 if N} = N jl and G;; = Gy
_ v
otherwise. Thus, C is a cost matrix on N? with edges in supernodes in stage 1 having zero
cost and other edges having the same cost as in cost matrix C*. Clearly, T(C') = T(C)
(since edges inside a supernode in stage 1 have zero cost in C). Using Equation 5,

T(CY =T(C). (6)
But cost matrices C' and C* differ as follows: for any edge ij in the original graph

~ 0 R
Cij + Aj = ¢

This implies that

T(C™) =T(C)+ ) _ A (7)

JEN
Similarly, C' and C differ as follows: for any edge ij
c}j + Ag = Cij.
This implies that

T(C)=T(C") + > AS. (8)

JEN
Using Equations 6, 7, and 8§,
T(C)=T(C)+> AY=T(C)+ > _ AY=T(C").

JEN JEN

This completes the proof. [ |
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LEMMA 3 Choose any j € N andi € N*. Then, there is some g € M(C®) such that ij € g.

Proof: We use induction on the number of stages 7" of the algorithm for cost matrix C'.
Suppose T' = 1. By definition of the irreducible cost matrix, ch = A2 for every ordered
pair pqg where p € Nt and ¢ € N. Clearly, the total cost of an MCA corresponding to cost
matrix C™ is T(C") = 37 .y A). Consider the arborescence which connects every agent
except agent j to the source and agent j via agent i. The total cost of this arborescence
en A) = T(C*F). Hence, this is an MCA corresponding
to cost matrix CF. Thus, every edge ij is used in some MCA corresponding to cost matrix
Cr.

Now, suppose the claim holds for any cost matrix that takes less than t stages in the

corresponding to cost matrix C*is

algorithm, where ¢ > 1. We show that the claim holds for any cost matrix C' that takes ¢
stages in the algorithm. Consider cost matrix 51, which is the irreducible cost matrix of C".
Since the algorithm takes t — 1 stages for cost matrix C1 every edge N}le belongs to an
MCA corresponding to C' from the induction hypothesis.
Now, choose any ordered pair ij, with ¢ € N* and j € N. We consider two possible
cases.
CASE 1: Suppose i and j do not belong to the same supernode in N'. Let i in N! and
j € Nj. Let g' be the MCA corresponding to C' which contains the edge N/ N}. Now, for
cach p € N}, q € Nj,
cﬁl = /C\Nilel + AS 9)
Also, for each k,l € N},
i =AY (10)

Consider the total cost of connecting any p € N} to some ¢ € le, and then connecting all
nodes in le other than ¢ to ¢. From equations 9 and 10, this equals

Q = /C\N}NJ.1+A2+ Z A7

TEN;,T;éq

~ 0
= Cnint T E Ay

1
TGN]-

Hence, @) is independent of both the node p € N} and the node ¢ € le; that is the point
of exit from N and the point of entry into N;. This establishes that there must be some
g € M(C*) which connects i € N} to j in N,

CASE 2: Suppose i, j belong to the same supernode N}. From the previous paragraph, we
know that there must be some g € M(C®) which enters N} at i and then connects j to i.
|
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The next lemma shows that the additional cost (according to C®) that any i imposes on
a subset S not containing ¢ is precisely the minimum amongst the costs of all incoming edges
of ¢ from S.

LEMMA 4 Consider any S which is a proper subset of N and any i ¢ S. Then,

R - R R
¢ (SUA{i}) = ¢*(5) = ming;
Proof: Suppose the recursive algorithm for NV corresponding to C® ends in one step. Then,
for any i € N and all other k € N?, ¢t = AY. Clearly, the lemma must be true in this case.
Suppose the algorithm for N terminates in more than one step. Pick any S and i ¢ S.
Let T = SU{i}, and T* = {T},...,T}}, where each T}} = N} N'T, N} being a supernode
in N*. Without losss of generality, let

min ¢t = e
kes

Suppose k* € N} and i € N} with N} \ {i} # 0 and N} # N}. But for any j € N} \ {i}, we
have cff < ¢ff;. In that case, we set k* = j. Hence, there are two possibilities without loss
of generality. Either k* and ¢ belong to the some T} or {i} € T'.

CASE 1 : k* and 4 belong to some T}. Note that in this case, cf% is the same for all k in
T}, k # 4. From the proof of Lemma 3, there is an MCA g for T"and C* such that T} is the
last supernode to be entered. Furthermore, g can enter T} at some node k distinct from 4,
and then connect all other nodes in T} to k. So, i is a leaf of g since |67 (j,9)| = 1. Hence,
the lemma is true in this case.

CASE 2 : i forms a singleton node in T"'. Then, cf, is the cost of connecting {i} to every
other supernode in 7. Consider the MCA ¢ for T" and C® which enters {i} last. Then, the
lemma is true in this case too. |

We use this lemma to show that the cost game corresponding to CF is concave.
LEMMA 5 The cost game corresponding to C® is concave.
Proof: Consider any S, T such that S C T'C N with ¢ ¢ T'. We show that
(S U {i}) = cf(S) > (T U {i}) — H(T)
By Lemma 4,

R Y AROQY — i R
¢ (SU{i}) = ¢*(5) = ming;
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and

R A\ _ Ry e R
(T U{i}) — (T min ¢

Since S C T', the lemma follows. |

We now show that a “small” change in C' produces a small change in C*. In other words,
CF® changes continuously with C.

LEMMA 6 Suppose C' and C are such that cjy = ¢y for all kl # ij and Cij = ¢ + € for some
e>0. If CF and C® are the irreducible matrices corresponding to C and C, then

(1) 0< ¢ —cffy < e forallk#j and —e < & — cff <€ for all k #1# 7,

(i1) for alll € N\ {j}, for all S C N*\ {l,5},

R =R R
ki = TR Gy — TG Chy (11)

min Effj — minc
kes

kesS kesS

Proof: Say that two cost matrices C' and C are stage equivalent if ties can be broken in the
recursive algorithm such that the number of stages and partitions of nodes in each stage are
the same for C and C.

PROOF OF (i): We first prove this for the case when C' and C' are stage equivalent. Consider
node j such that ¢; — ¢;j = € > 0. Consider any k # j. Since C and C are stage equivalent,
if £ and j are t-neighbors in cost matrix C, then they are t-neighbors in cost matrix C. We
consider two possible cases.

CASE 1: Edge 75 is the minimum cost incident edge of some supernode containing j in some
stage t of the algorithm for cost matrix C, and hence for cost matrix C since they are stage
equivalent. Then 5; increases by €. But 5;“ (if stage t + 1 exists) decreases by €. Hence,
the irreducible cost of no edge can increase by more than € and the irreducible cost of no
edge can decrease by more than e. Moreover, we prove that for any edge kj, the irreducible
cost cannot decrease. To see this, note that the irreducible cost remains the same if kj are
t' neighbors and ¢/ < tort' > t+1. If = t+1, then the irreducible cost of kj only increases.

CASE 2: Edge ¢7 is not the minimum cost incident edge of any supernode containing j in
any stage of the algorithm for cost matrix C, and hence for cost matrix C. In that case, 5;
remains the same for all ¢. Hence CF = CF.

Examining both the cases, we conclude that 0 < & — ¢y < e for all k& # j. Also,
—e< (B —cly<eforallk#£1+#j.
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We complete the proof by arguing that cost of edge 75 can be increased from c¢;; to ¢;; by
a finite sequence of increases such that cost matrices generated in two consecutive sequences
are stage equivalent.

Define ranking of an edge ij in cost matrix C as rank®(ij) = [{kl : cx > c;;}]. Clearly,
two edges 75 and Kl have the same ranking if and only if ¢;; = cp. Note that if rankings of
edges do not change from C to C, then we can always break ties in the same manner in the
recursive algorithm in C' and C, and thus C' and C' are stage equivalent.

Suppose rank(ij) = r > rank®(ij) = 7. Consider the case when 7 = r — 1. This
means that a unique edge kl # ij exists such that ¢ > ¢;; but ¢y = ¢y < &;. Consider
an intermediate cost matrix C' such that Cij = Cu = Ciy and Cpg = Cpq = Cpq for all edges
pq # ij. In the cost matrix C, one can break ties in the algorithm such that one chooses ij
over kl everywhere. This will generate the same stages of the algorithm with same partitions
of nodes in every stage for cost matrix C' and C. Hence, C and C are stage equivalent. But
we can also break the ties in favor of edge kl everywhere, and this will generate the same
set of stages and partitions as in cost matrix C'. This shows that C and C are also stage
equivalent. 6.

If 7 <r—1, then we increase the cost of edge ¢j from ¢;; in a finite number of steps such
that at each step, the ranking of ij falls by exactly one.

PROOF OF (ii): For simplicity, we only consider the case where C' and C are stage-equivalent.
As argued in the proof of (i), the argument extends easily to the case when they are not
stage-equivalent.

Let ¢j be the minimum cost incident edge of Nf. Then, for any p € N{,

EZD > cﬁo implies p, ¢ are (t + 1)-neighbours (12)

Also, for all p € N} and all ¢ which are (¢ + 1)-neighbours,

_R _ R
qu—qu+€

So, to prove that equation 11 is true, we only need to consider any [ € N}, 1 # j. Consider
any S C N\ {l,7}, and suppose mingeg it > mingeg ck. Then, from Equation 12, S must
contain some ¢ which is a (¢t 4+ 1)-neighbour of I. Moreover, since the irreducible cost of
edges which are #’-neighbours are higher than those which are (¢ — 1)-neighbours for all ¢/,
S cannot contain any neighbours which are t-neighbours of [ for ¢ < t. This is because if
S did contain some m which was a #'-neighbour with ¢ < ¢, then mingeg ¢ty would not be
attained at a (¢ 4+ 1)-neigbour of [. But, then equation 12 establishes that

min éﬁ — min cle = min EkRj — min ckRj =€
kes kes kes kes

16Note that this does not imply C' and C' are stage equivalent.
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This completes the proof of the lemma. ]

Remark 2 So, a small change of € in the cost of some edge ij cannot change the irreducible
cost of any edge by more than e. Hence, C* changes continuously with C'.

We identify a cost allocation rule f* with the Shapley value of the cost game (N, CF).
So,
f*(C) = Sh(N, C")
The main result of the paper is to show that f* satisfies CS, DSCM, and Con.

THEOREM 4 The cost allocation f* satisfies CS, DSCM, and Con.

Proof: Take any cost matrix C' whose irreducible cost matrix is C*. From Lemma 5, the
game (N, CT) is concave. Hence, the Shapley value of (N,CF) is in the core of the game
(N,C®). Of course, cf-}- < ¢;; for all edges ij. Using Lemma 2 it follows that the core of the
game (N, C®) is contained in the core of the game (N, C). Hence, f* satisfies CS.

By Lemma 4, ¢®(S U {k}) — ¢"(S) = minjeg cff, for any S € N with k ¢ S. By Lemma
6, C changes continuously with C'. Hence, the cost game (N, cf?) also changes continuously
with C. The continuity of the Shapley value with respect to the cost game establishes that
f* satisfies continuity.

We use Lemma 4 and Equation 11 to prove that f* satisfies DSCM. Consider two cost
matrices C' and C' as in Lemma 6. From Lemma 4, the marginal costs of any [ to a coalition
S for C® and C® are given by

r]?ég i and r]glelg e
Using the formula for the Shapley value and Equation 11, it is straightforward to verify that
DSCM is satisfied. |

In the minimum cost spanning tree problem, the folk solution satisfies a Solidarity axiom
which requires the following. If the cost of an edge goes up, then the cost share of every node
should increase or remain the same. This is, of course, stronger than the cost monotonic-
ity axiom of Dutta and Kar (2004), and was put forward by Bergantinos and Vidal-Puga
(2007a). The following example shows that f* does not satisfy the directed version of the
Solidarity axiom.

EXAMPLE 1 Let N = {1,2}, and consider cost matrices C' and C as follows
C12 = C91 — 1, Co1 = 2, Co2 — 3, Co1 = 157 Eij = Cz‘j7f07" all 6dg€8 Zj 7é 21
The corresponding irreducible cost matrices are
R R

_ _ R _ R _ o =R _ R _ 1 =R _ o =R __
Cla =Cy = 1,51 = Cpg = 2,05y = 1.5,¢15 = 1,¢5, = 2,¢p00 = 1.5

Then, f*(C) = (1.5,1.5) and f*(C) = (1.75,1.25).
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We now show that f* satisfies Ranking.
THEOREM 5 The allocation rule f* satisfies ETE and Ranking.

Proof: Since the Shapley value is symmetric, f* satisfies ETE.

Consider a cost matrix C' such that for i, j € N, we have ¢;; = c¢j; and ¢x; > ¢y for all
k # 1,7 and cj; > ¢;;. Consider another cost matrix C such that Cik = Cji = Cik, = Cj, and
Cri = Crj = Cj < cx; for all k # 4,5 and ¢&; = ¢;; = ¢i; < ¢j. By ETE, f](é) = fz(é’)

Now, let € = ming;[ck; — éri]. Note that € > 0 by assumption. Consider a cost matrix
C defined as follows: ¢; = ¢4 + € for all k # i and ¢,, = &, for all p,q with ¢ # i. So
we increase cost of incident edges on i from C' to C' by the same amount €, whereas costs of
other edges remain the same.

Let é;% = min,; ¢,;. By construction, ¢;; = min,; ¢,; = ¢ + €. Also, cl = (. Hence,
et = ¢t € for all p # 0. Thus, f; ( 2) = f#(C) + e. But the cost of the MCA has increased

bI; e_fromCto C. So, f(C) = f#(C) for all k # i. Hence, f(C) > f*(C) = I3 () = f1(0).

Since f* satisfies DSCM, f;(C) — f+(C) > f;(C) — f#(C) > 0. This implies that f;(C) >
£3(0) .

J

Notice that the condition of Ranking requires that if the incoming edges of node 7 cost
strictly more than the corresponding incoming edges for j while corresponding outgoing
edges cost the same, then the cost allocated to ¢ should be strictly higher than the cost
allocated to j. But, now suppose both incoming and outgoing edges of ¢ cost strictly more
than those of j. Perhaps, one can argue that if the outgoing edges of 7 cost more than the
outgoing edges of j, then 7 is less “valuable” in the sense that 7 is going to be used less often
in order to connect to other nodes. Hence, in this case too, ¢ should pay strictly more than
j. However, it turns out that f* does not satisfy this modified version of Ranking.!” This is
demonstrated below.

EXAMPLE 2 Let N = {1,2,3}. Figure 5 shows a cost matriz C' (assume e > 0 in Figure 5)
and its associated irreducible cost matrix, the latter being shown on the right. It is easy to
see that f(C) = e, f5(C) = f3(C) = 1/2. So, for e < 1/2, agent 1 pays less than agent 2,
though agent 2 has strictly lower incoming and outgoing edge costs than agent 1.

We do not know whether there are other rules which satisfy the basic axioms and this
modified version of Ranking.

1"We do not define this axiom formally.
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Figure 5: Example illustrating violation of the modified version of Ranking
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