
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

Minimum Cost Arborescences

Bhaskar Dutta and Debasis Mishra

No 889

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

Minimum Cost Arborescences∗

Bhaskar Dutta† Debasis Mishra‡

January 8, 2009

Abstract

In this paper, we analyze the cost allocation problem when a group of agents or
nodes have to be connected to a source, and where the cost matrix describing the
cost of connecting each pair of agents is not necessarily symmetric, thus extending
the well-studied problem of minimum cost spanning tree games, where the costs are
assumed to be symmetric. The focus is on rules which satisfy axioms representing
incentive and fairness properties. We show that while some results are similar, there
are also significant differences between the frameworks corresponding to symmetric and
asymmetric cost matrices.

JEL Classification Numbers: D85, C70
Keywords: directed networks, cost allocation, core stability, continuity, cost mono-

tonicity.

∗Stimulating conversations about cost allocation problems that one of us have had with Herve Moulin
are gratefully acknowledged.

†Corresponding author. Department of Economics, University of Warwick, Coventry CV4 7AL, England.
Email: B.Dutta@warwick.ac.uk

‡Indian Statistical Institute, 7 S.J.S. Sansanwal Marg, New Delhi 110016, India. Email:
dmishra@isid.ac.in

1

1 Introduction

In a variety of contexts, a group of users may be jointly responsible for sharing the total

cost of a joint “project”. Often, there is no appropriate “market mechanism” which can

allocate the total cost to the individual agents. This has given rise to a large literature

which describes axiomatic methods in distributional problems involving the sharing of costs

and benefits, the axioms typically representing notions of fairness. In the vast bulk of this

literature, the agents have no particular “positional” structure. However, there is a large

number of practical problems in which it makes sense to identify the agents with nodes in a

graph. Consider, for instance, the following examples.

(i) Multicast routing creates a directed network connecting the source to all receivers;

when a packet reaches a branch point in the tree, the router duplicates the packet

and then sends a copy over each downstream link. Bandwidth used by a multicast

transmission is not directly attributable to any one receiver, and so there has to be a

cost-sharing mechanism to allocate costs to different receivers.1

(ii) Several villages are part of an irrigation system which draws water from a dam, and

have to share the cost of the distribution network. The problem is to compute the

minimum cost network connecting all the villages either directly or indirectly to the

source, i.e. the dam (which is a computational problem), and to distribute the cost of

this network amongst the villages.

(iii) In a capacity synthesis problem, the agents may share a network for bilateral exchange

of information, or for transportation of goods between nodes. Traffic between any two

agents i and j requires a certain capacity tij (width of road, bandwidth). The cost

allocation problem is to share the minimum cost of a network in which each pair i and

j is connected by a path in which each edge has a capacity of at least tij.
2

The combinatorial structure of these problems raises a different set of issues (for instance

computational complexity) and proof techniques from those which arise when a network

structure is absent. Several recent papers have focused on cost allocation rules appropriate

for minimum cost spanning networks.3 In these networks, the agents are each identified

with distinct nodes, and there is an additional node (the “source”). Each agent has to be

connected either directly or indirectly to the source through some path. A symmetric cost

1See, for instance, Herzog et al. (1997).
2See A. Bogomolnaia et al. (2008), who show that under some assumptions, the capacity synthesis prob-

lem is similar, though not identical, to the minimum cost spanning tree problem.
3See, for instance, Bird (1976), Bergantinos and Vidal-Puga (2007a), Bergantinos and Vidal-Puga

(2007c), Bergantinos and Vidal-Puga (2007b), Bergantinos and Kar (2008), Bogomolnaia and Moulin
(2008), Branzei et al. (2004), Feltkamp et al. (1994), Kar (2002), Branzei et al. (2005).

2

matrix specifies the cost of connecting each pair of nodes. Obviously, the cheapest graph

connecting all nodes to the source must be a tree rooted at the node. The cost allocation

problem is to assign the total cost of the minimum cost spanning tree to the agents.

In this literature, it is assumed that the cost matrix is symmetric. This implies that the

spanning network can be represented as an undirected graph. However, in several situations

the cost of connecting agent i to agent j may not be the same as the cost of connecting agent

j to agent i. The most obvious examples of this arises in contexts where the geographical

position of the nodes affect the cost of connection. For instance, the villages in the second

example may be situated at different altitudes. In the capacity synthesis problem, the nodes

may be towns located along a river, so that transportation costs depend on whether the towns

are upstream or downstream. In this paper, we extend the previous analysis by permitting

the cost matrix to be asymmetric. The spanning tree will then be a directed graph and is

called an arborescence. The minimum cost arborescence can be computed by means of an

algorithm due to Chu and Liu (1965) and Edmonds (1967). This algorithm is significantly

different from the algorithms (Prim’s and Kruskal’s algorithms) used to compute a minimum

cost spanning tree in the symmetric case. However, from a computational perspective, the

algorithm for finding a minimum cost arborescence is still a polynomial time algorithm.

Our interest is in the cost sharing problem. Following the previous literature, we too

focus on an axiomatic approach, the axioms representing a combination of incentive and

fairness properties. The first property is the well-known Stand-Alone Core property. This

requires that no group of individuals be assigned costs which add up to more than the total

cost that the group would incur if it built its own subnetwork to connect all members of

the group to the source. We provide a constructive proof that the core is non-empty by

showing that the directed version of the Bird Rule,4 due not surprisingly to the seminal

paper of Bird (1976), yields an allocation which belongs to the core of the cost game. Of

course, Bird himself had proved the same result when the cost matrix is symmetric. We then

prove a partial characterization result which shows that the set of cost allocation rules that

are core selections and which satisfy an invariance condition (requiring that the allocation

be invariant to costs of edges not figuring in any minimum cost arborescence) assign each

individual a cost which lies between the maximum and minimum cost assigned by the set

of Bird Rules. This also means that there can be only one such rule when the cost matrix

is such that it gives a unique minimum cost arborescence - namely the Bird Rule itself. Of

course, this result has no parallel when the cost matrix is symmetric, and emphasizes the

difference in the two frameworks.

We then go on to impose two other “minimal” or “basic” requirements - Continuity, which

requires that the cost shares depend continuously on the cost matrix, and a Monotonicity

4The Bird Rule is defined with respect to a specific tree, and stipulates that each agent pays the cost of
connecting to her predecessor.

3

requirement which requires that each individual is “primarily” responsible for the cost of

his or her incoming edges. We interpret this to mean the following - if the only difference

between two cost matrices is that the cost of an incoming edge of agent i goes up, then the

cost share of i should (weakly) go up by at least as much as that of any other agent. This

property is slightly stronger than the monotonicity condition which was initially defined by

Dutta and Kar (2004), and subsequently used in a number of papers on symmetric cost ma-

trices.5 We construct a rule which satisfies these three basic properties, using Bird’s concept

of irreducible cost matrices. In particular, we show that the Shapley value of the cost game

corresponding to the irreducible cost matrix satisfies these three properties. Readers famil-

iar with the literature on the original minimum cost spanning tree problem will immediately

recognize that this is exactly the procedure adopted by Bergantinos and Vidal-Puga (2007a)

to construct the “folk solution” for minimum cost spanning tree problems.6 While the folk

solution also satisfies the three basic properties, it is important to realize that it belongs

to a very different class of rules from the one that we construct in this paper. In particu-

lar, Bird’s irreducible cost matrix only uses information about the costs of edges figuring in

some minimum cost spanning tree - costs of edges not figuring in a minimum cost spanning

tree are irrelevant in the construction of the irreducible cost matrix. This obviously means

that the folk solution too does not utilize all the information contained in the cost matrix.

Indeed, this forms the basis of the critique of “reductionist” solutions (solutions which only

utilize information about the costs of edges figuring in some minimum cost spanning tree)

by Bogomolnaia and Moulin (2008).

In contrast, the irreducible cost matrix constructed by us (and hence our solution) re-

quires more information than is contained in the minimum cost arborescence(s). This is one

important sense in which our solution is qualitatively different from the folk solution. We

go on to highlight another important difference. We show that our solution satisfies the

directed version of Ranking, a property due to Bogomolnaia and Moulin (2008). Our version

of Ranking is the following. If the costs of all incoming edges of i are higher than the costs

of corresponding edges of j, and the corresponding outgoing edges of i and j are the same,

then i should pay strictly more than j. Bogomolnaia and Moulin (2008) point out that all

reductionist solutions in the symmetric case - and hence the folk solution - must violate

Ranking.

Thus, our results demonstrate that there are significant differences between the frame-

works corresponding to symmetric and asymmetric cost matrices, and emphasizes the need

5See, for instance, Bergantinos and Vidal-Puga (2007a), Bergantinos and Vidal-Puga (2007c),
Bergantinos and Vidal-Puga (2007b).

6This is a term coined by Bogomolnaia and Moulin (2008) because this allocation rule has been indepen-
dently proposed and analyzed in a number of papers. See, for instance, Bergantinos and Vidal-Puga (2007a),
Bergantinos and Vidal-Puga (2007c), Bergantinos and Vidal-Puga (2007b), Bogomolnaia and Moulin
(2008), Branzei et al. (2004), Feltkamp et al. (1994), Norde et al. (2001) Branzei et al. (2005).

4

for more systematic analysis of the cost allocation problem for minimum cost arborescences.

2 Framework

Let N = {1, 2, . . . , n} be a set of n agents. We are interested in directed graphs or digraphs

where the nodes are elements of the set N+ ≡ N ∪ {0}, where 0 is a distinguished node

which we will refer to as the source. We assume that the set of edges of this graph is the set

{ij : i ∈ N+, j ∈ N}. So, we assume that there is an edge from every i ∈ N+ to every j ∈ N .

We will also have to consider digraphs on some subsets of N+. So, for any set S ⊂ N , let

S+ denote the set S ∪ {0}. Then, a digraph on S+ consists of a set of directed edges out of

the set {ij : i ∈ S+, j ∈ S}.
A typical graph7 over S+ will be represented by gS whose edges are out of the set {ij :

i ∈ S+, j ∈ S}. When there is no ambiguity about the set S (usually when we refer to a

graph on N+), we will simply write g, g′ etc instead of gS, g′S. We will denote the set of

incoming edges of a node i in graph g as δ−(i, g) = {ji : ji is an edge in g}. Similarly, the

set of outgoing edges of a node i is denoted as δ+(i, g) = {ij : ij is an edge in g}.
A cost matrix C = (cij) for N+ represents the cost of various edges which can be con-

structed from nodes in N+. That is, cij is the cost of the edge ij. We assume that each

cij ≥ 0 for all ij. We also adopt the convention that for each i ∈ N+, cii = 0. Note that

the cost of an edge ij need not be the same as that of the edge ji - the direction of the edge

does matter.8 Given our assumptions, each cost matrix is nonnegative, and of order n + 1.

The set of all cost matrices for N is denoted by CN . For any cost matrix C, denote the cost

of a graph g as c(g). That is,

c(g) =
∑
ij∈g

cij

A path in g is a sequence of distinct nodes (i1, . . . , iK) such that ijij+1 is an edge in g for

all 1 ≤ j ≤ K − 1. If (i1, . . . , iK) is a path, then we say that it is a path from i1 to iK using

edges i1i2, i2i3, . . . , iK−1iK . A cycle in g is a sequence of nodes (i1, . . . , iK , iK+1) such that

(i1, . . . , iK) is a path in g, iKiK+1 is an edge in g, and i1 = iK+1.

A node i is connected to node j if there is a path from node j to node i. Our interest is

in graphs in which every agent in N is connected to the source 0.

Definition 1 A graph g is an arborescence rooted at 0 for N if and only if g contains no

cycle and δ−(i, g) = 1 for all i ∈ N .

7Henceforth, we will use the term “graph” to denote digraphs. Similarly, we will use the term “edge” to
denote a directed edge.

8As the reader will recognize, this distinguishes our approach from the literature on minimum cost span-
ning tree problems.

5

Let AN be the set of all arborescences for N . The minimum cost arborescence (MCA)

corresponding to cost matrix C is an arborescence g such that c(g) ≤ c(g′) for all g′ ∈ AN .

Let M(C) denote the set of minimum cost arborescences corresponding to the cost matrix

C for the set N , and T (C) represent the total cost associated with any element g of M(C).

While our main interest is in minimum cost arborescences for N , we will also need to define

the minimum cost of connecting subsets of N to the source 0. The set of arborescences for

any subset S of N will be denoted AS and the set of minimum cost arborescences will be

represented by M(C, S). Also, TS(C) will denote the total cost associated with any element

of M(C, S).

Clearly, a minimum cost arborescence is analogous to a minimum cost spanning tree

(MCST) for undirected graphs. Alternatively, an MCA may be viewed as a generalization

of an MCST when the cost matrix is not symmetric.

2.1 The Recursive Algorithm

It turns out that the typical greedy algorithms used to construct minimum cost spanning trees

fail to generate minimum cost arborescences. Figure 1 illustrates this phenomenon.9 Recall

that a unique feature of minimum cost spanning trees is that an MCST must always choose

the minimum cost (undirected) edge corresponding to any cost matrix. Notice, however,

that in Figure 1, the minimum cost arborescence involves edges 01, 12, 23. But it does not

involve the minimum cost edge 31.

We now describe an algorithm due to Chu and Liu (1965) and Edmonds (1967) to con-

struct an MCA. Though the algorithm is quite different from the algorithms for constructing

an MCST, it is still computationally tractable as it runs in polynomial time.

The algorithm works recursively. In each recursion stage, the original cost matrix on the

original set of nodes and the original graph is transformed to a new cost matrix on a new

set of nodes and a new graph. The terminal stage of the recursion yields an MCA for the

terminal cost matrix and the terminal set of nodes. One can then “go back” through the

recursion stages to get an MCA for the original problem. Since the algorithm to compute

an MCA is different from the algorithm to compute an MCST, we first describe it in detail

with an example.

Consider the example in Figure 2. To compute the MCA corresponding to the cost matrix

in Figure 2, we first perform the following operation: for every node, subtract the value of

the minimum cost incident edge from the cost of every edge incident on that node. As an

example, 31 is the minimum cost incident edge on node 1 with cost 1. Hence, the new cost

of edge 31 is 1− 1 = 0, edge 01 is 2− 1 = 1, and edge 21 is 3− 1 = 2. In a similar fashion,

9The numbers besides each edge represent the cost of the edge. The missing edges have very high cost
and do not figure in any MCA.

6

4 2

1

22

0

1

2

3

Figure 1: An example where greedy algorithm of undirected graph fails

0

1

2
3

2

3

4

1

2

3
4

1
3

Figure 2: An example

compute the following new cost matrix C1:

c1
01 = 1, c1

21 = 2, c1
31 = 0

c1
02 = 1, c1

12 = 1, c1
32 = 0

c1
03 = 3, c1

23 = 0, c1
13 = 3.

Clearly, an MCA corresponding to C1 is also an MCA corresponding to the original cost

matrix. So, we find an MCA corresponding to C1. To do so, for every node, we pick a zero

cost edge incident on it (by the construction of C1, there is at least one such edge for every

node). If such a set of edges form an arborescence, it is obviously an MCA corresponding

7

to C1, and hence, corresponding to the original cost matrix. Otherwise, cycles are formed

by such a set of zero cost edges. In the example, we see that the set of minimum cost

edges are 31, 32, and 23. So, 32 and 23 form a cycle. The algorithm then merges nodes 2

and 3 to a single supernode (23), and constructs a new graph on the set of nodes 0, 1, and

supernode (23). We associate a new cost matrix C̃1 on this set of nodes using C1 as follows:

c̃1
01 = c1

01 = 1; c̃1
0(23) = min{c1

02, c
1
03} = min{1, 3} = 1; c̃1

1(23) = min{c1
12, c

1
13} = min{1, 3} = 1,

(23)1, c̃1
(23)1 = min{c1

21, c
1
31} = min{2, 0} = 0. The graph consisting of these edges along with

the costs corresponding to cost matrix C̃1 is shown in Figure 3.

0

1 (23)

1 1

1

0

Figure 3: After first stage of the algorithm

We now seek an MCA for the situation depicted in Figure 3. We repeat the previous step.

The minimum cost incident edge on 1 is (23)1 and we choose the minimum cost incident

edge on (23) to be 0(23). Subtracting the minimum costs as we did earlier, we get that 0(23)

and (23)1 are edges with zero cost. Since these edges form an arborescence, this is an MCA

corresponding to cost matrix C̃1. To get the MCA for the original cost matrix, we note

that c̃1
0(23) = c1

02. Hence, 0(23) is replaced by edge 02. Similarly, (23)1 is replaced by edge

31. The cycle in supernode (23) is broken such that we get an arborescence - this can be

done by choosing edge 23 since 02 is the incident edge on supernode (23). Hence, the MCA

corresponding to the original cost matrix is: 02, 23, 31.

We now describe the algorithm formally. Given any cost matrix C, we will say that a set

of nodes I = {1, . . . , K} form a C-cycle if ci,i+1 = 0 for all i = 1, . . . K − 1 and cK1 = 0.

• Stage 0: Set C0 ≡ C̃0 ≡ C, N0 ≡ N ∪ {0}, and for each j ∈ N ,

∆0
j = min

i6=j
c0
ij, N

0
j = {j}.

• Stage 1: For each pair i, j, define c1
ij = c0

ij −∆0
j . Construct a partition {N1

1 , . . . , N1
K1}

of N0 such that each N1
k is either a C1-cycle of elements of N0 or a singleton with the

8

restriction that no set of singletons forms a C1-cycle.10 Denote N1 = {N1
1 , . . . , N1

K1}.
For each k, l ∈ {1, . . . , K1}, define

c̃1
N1

kN1
l

= min
i∈N1

k ,j∈N1
l

c1
ij = min

i∈N1
k ,j∈N1

l

[c̃0
ij −∆0

j].

Hence, C̃1 is a cost matrix on nodes N1. For each k ∈ {1, . . . , K1}, define

∆1
k = min

i6∈N1
k ,j∈N1

k

c1
ij = min

N1
l 6=N1

k

c̃1
N1

l N1
k
.

• Stage t: For each pair i, j, define ct
ij = ct−1

ij −∆t−1
j . Construct a partition {N t

1, . . . , N
t
Kt}

of N t−1 such that each N t
k is either a Ct-cycle of elements of N t−1 or a singleton

element of N t−1 with the restriction that no set of singletons forms a Ct-cycle. For

each k, l ∈ {1, . . . , Kt}, define

c̃t
Nt

k,Nt
l

= min
i∈Nt

k,j∈Nt
l

ct
ij = min

Nt−1
p ⊆Nt

k,Nt−1
q ⊆Nt

l

[c̃t−1

Nt−1
p Nt−1

q
−∆t−1

q].

Note that C̃t is a cost matrix on nodes N t.

For each k ∈ {1, . . . , Kt}, define

∆t
k = min

i6∈Nt
k,j∈Nt

k

ct
ij = min

Nt
l 6=Nt

k

c̃t
Nt

l Nt
k
.

Terminate the algorithm at stage T if each NT
k is a singleton. That is, each NT

k coincides

with some NT−1
k , so that each NT

k is also an element of the partition NT−1. Since the source

cannot be part of any cycle and since N is finite, the process must terminate - there must

indeed be a stage when each NT
k is a singleton.

We will sometimes refer to sets of nodes such as N t
k as supernodes. The algorithm

proceeds as follows. First, construct a MCA gT of graph with nodes NT (or equivalently

NT−1) corresponding to cost matrix C̃T . By definition, this can be done easily by choosing

a minimum cost edge for every node in NT . Then, unless T = 1, “extend” gt to gt−1 for all

2 ≤ t ≤ T by establishing connections between the elements of N t and N t−1, until we reach

g1 ∈ M(C).

Since gT is an MCA on NT corresponding to cost matrix C̃T , if T = 1, then g1 is the

MCA on N0 corresponding to cost matrix C1, and hence C.

Suppose T ≥ 2. For every 2 ≤ t ≤ T , given an MCA gt corresponding to C̃t, we extend

it to an MCA gt−1 on nodes N t−1 corresponding to C̃t−1 as follows.

(i) For every edge N t
i N

t
j in gt, let c̃t

Nt
i ,Nt

j
= c̃t−1

Nt−1
p Nt−1

q
−∆t−1

q for some N t−1
p ⊆ N t

i and some

N t−1
q ⊆ N t

j . Then, replace N t
i N

t
j with N t−1

p N t−1
q in graph gt−1.

10If there is some node j ∈ N such that two or more edges minimize cost, then break ties arbitrarily.

9

(ii) In the previous step, if we choose N t−1
p N t−1

q as an incoming edge to N t
k, which is a

Ct−1 cycle, then retain all the edges in gt−1 which constitute the cycle in supernode

N t
k except the edge which is incoming to N t−1

q .

This completes the extension of gt−1 from gt. It is not difficult to see that gt−1 is a MCA for

graph with nodes N t−1 corresponding to C̃t−1 (for a formal argument, see Edmonds (1967)).

Proceed in this way to g1 ∈ M(C).

2.2 The Cost Allocation problem

Given any cost matrix C, the recursive algorithm will generate an MCA corresponding to

C, and hence the total cost of connecting all the agents in N to the source. Since the total

cost is typically less than the direct cost of connecting each agent to the source, the group as

a whole gains from cooperation. So, there is the issue of how to distribute the cost savings

amongst the agents or, what is the same thing, how to allocate the total cost to the different

agents.

Definition 2 A cost allocation rule is a function µ : CN → <N satisfying
∑
i∈N

µi(C) =

T (C) ∀ C ∈ CN .

So, for each cost matrix, a cost allocation rule specifies how the total cost of connecting

all agents to the source should be distributed. Notice that our definition incorporates the

notion that the rule should be efficient - the costs distributed should be exactly equal to the

total cost.

In this paper, we follow an axiomatic approach in defining “fair” or “reasonable” cost

allocation rules. The axioms that we will use here reflect a concern for both “stability” and

fairness.

The notion of stability reflects the view that any specification of costs must be acceptable

to all groups of agents. That is, no coalition of agents should have a justification for feeling

that they have been overcharged. This leads to the notion of the core of a specific cost

allocation game.

Consider any cost matrix C on N+. While the set of agents incur a total cost of T (C) to

connect each node to the source, each subset S of N incurs a corresponding cost of TS(C).

It is natural to assume that agents in any subset S will refuse to cooperate if an MCA for N

is built and they are assigned a total cost which exceeds TS(C) - they can issue the credible

threat of building their own MCA.

So, each cost matrix C yields a cost game (N, c) where

For each S ⊆ N, c(S) = TS(C)

10

The core of a cost game (N, c) is the set of all allocations x such that

for all S ⊆ N,
∑
i∈S

xi ≤ c(S),
∑
i∈N

xi = c(N)

We will use Co(N,C) to denote the core of the cost game corresponding to C.

Definition 3 A cost allocation rule µ is a Core Selection (CS) if for all C, µ(C) ∈
Co(N, C).

A rule which is a core selection satisfies the intuitive notion of stability since no group of

agents can be better off by rejecting the prescribed allocation of costs.

The next axiom is essentially a property which helps to minimize the computational

complexity involved in deriving a cost allocation. The property requires the cost allocation

to depend only on the costs of edges involved in the MCA s. That is, if two cost matrices

have the same set of MCA s, and the costs of edges involved in these trees do not change,

then the allocation prescribed by the rule should be the same.

For any N , say that two cost matrices C,C ′ are arborescence equivalent if (i) M(C) =

M(C ′), and (ii) if ij is an edge in some MCA, then cij = c′ij.

Definition 4 A cost allocation rule µ satisfies Independence of Irrelevant Costs (IIC) if

for all C, C ′, µ(C) = µ(C ′) whenever C and C ′ are arborescence-equivalent.

The next axiom is straightforward.

Definition 5 A cost allocation rule µ satisfies Continuity (Con) if for all N , µ is contin-

uous in the cost matrix C.

In the present context, a fundamental principle of fairness requires that each agent’s share

of the total cost should be monotonically related to the vector of costs of its own incoming

edges. So, if the cost of say edge ij goes up, and all other edges cost the same, then j’s share

of the total cost should not go down. This requirement is formalised below.

Definition 6 A cost allocation rule satisfies Direct Cost Monotonicity (DCM) if for all

C, C ′, if cij < c′ij, and for all other edges kl 6= ij, ckl = c′kl, then µj(C
′) ≥ µj(C).

This is the counterpart of the assumption of Cost Monotonicity introduced by Dutta and Kar

(2004). Clearly, DCM is also compelling from the point of view of incentive compatibility.

If DCM is not satisfied, then an agent has an incentive to inflate costs (assuming an agent

is responsible for its incoming edge costs).

Notice that DCM permits the following phenomenon. If the cost of some edge ij goes up

(other edge costs remain the same), then the cost allocated to j may go up by say ε, but the

cost allocated to some k may go up by more than ε. This is clearly unfair. The next axiom

rules out this possibility.

11

Definition 7 A cost allocation rule satisfies Direct Strong Cost Monotonicity (DSCM) if

for all N , and for all C, C ′, if cij < c′ij and ckl = c′kl for all kl 6= ij we have µj(C)−µj(C
′) ≥

µk(C)− µk(C
′) for all k.

Note that DSCM implies DCM.

Our next axiom is a symmetry condition which essentially requires that if two nodes i

and j have identical vectors of costs of incoming and outgoing edges, then their cost shares

should not differ.

Definition 8 A cost allocation rule µ satisfies Equal Treatment of Equals (ETE) if for all

i, j ∈ N and for all cost matrices C with cki = ckj and cik = cjk for all k 6= i, j and cij = cji,

we have µi(C) = µj(C).

Our final axiom is that of Ranking, adapted from Bogomolnaia and Moulin (2008). Rank-

ing compares cost shares across individual nodes and insists that if costs of all incoming edges

of i are uniformly higher than the corresponding costs for j, while the costs of outgoing edges

are the same, then i should pay strictly more than j. Notice that it is similar in spirit to

DSCM in that both insist that nodes are “primarily” responsible for their incoming costs.

Definition 9 A cost allocation rule µ satisfies Ranking (R) if for all i, j ∈ N and for

all cost matrices C with cik = cjk and cki > ckj for all k 6= i, j and cji > cij, we have

µi(C) > µj(C).

3 A Partial Characterization Theorem

In the context of minimum cost spanning tree problems, Bird (1976) is a seminal paper. Bird

defined a specific cost allocation rule - the Bird Rule, and showed that the cost allocation

specified by his rule belonged to the core of the cost game, thereby providing a constructive

proof that the core is always non-empty.11

In this section, we show that even in the directed graph context, the Bird allocations

belong to the core of the corresponding game. We then show that if a cost allocation rule

satisfies IIC and CS, then the cost allocation of each agent must lie between the minimum

and maximum costs paid by the individual in different Bird allocations. In particular, this

implies that the cost allocation rule must coincide with the Bird Rule on the set of cost

matrices which give rise to unique MCA s.

For any arborescence g ∈ AN , for any i ∈ N , let ρ(i) denote the predecessor of i in g.

That is, ρ(i) is the unique node which comes just before i in the path connecting i to the

source 0.
11Bird defined his rule for a specific MCST. Since a cost matrix may have more than one MCST, a proper

specification of a “rule” can be obtained by, for instance, taking a convex combination of the Bird allocations
obtained from the different minimum cost spanning trees.

12

Definition 10 Let C be some cost matrix.

(i) A Bird allocation of any MCA g(C) is bi(g, C) = cρ(i)i.

(ii) A Bird rule is given by Bi(C) =
∑

g∈M(C) wgbi(g, C), where
∑

g∈M(C) wg = 1 and

wg ≥ 0 for each g ∈ M(C).

Notice that the Bird rule is a family of rules since it is possible to have different convex

combinations of Bird allocations. We first prove that Bird allocations belong to the core of

the cost game.

Theorem 1 For every cost matrix C and MCA g(C), b(g, C) ∈ Co(N, C).

Proof : Let g∗ be the outcome of the recursive algorithm supplemented by tie-breaking rules

if necessary. Let x denote the corresponding Bird allocation.

Let {N1
1 , . . . , N1

L} be the set of supernodes after stage 1 of the recursive algorithm. If the

algorithm terminates in one step, then each N1
k contains only a singleton node. Otherwise,

at least one N1
k contains more than one node of N . For each N1

k , let ik denote the node at

which g∗ enters N1
k . Then, the following is true for every N1

k and for every i 6= ik,

xi = ∆0
i and xik ≥ ∆0

ik
(1)

Now, let S be a maximal blocking coalition, so that c(S) <
∑

i∈S xi.

Let K = {k|S ∩ N1
k 6= ∅}. We first show that if k ∈ K, then N1

k ⊂ S. For suppose

T = N1
k \ S, and T is nonempty. Now,

c(S ∪ T) = c(S) +
∑
i∈T

∆0
i

≤ c(S) +
∑
i∈T

xi

<
∑

i∈S∪T

xi

where the first inequality follows from (1) and the last inequality from the fact that S is a

blocking coalition. This shows that S ∪ T is a blocking coalition, violating maximality of S.

Hence,

∪k∈KN1
k = S

Since N is not a blocking coalition, there must be some N1
j 6= 0 such that j /∈ K. Call

N1
i a predecessor of N1

j if the incoming edge (of g∗) to N1
j is from N1

i .12 Moreover, we can

12Note that each N1
j has a unique predecessor.

13

choose some j /∈ K such that its predecessor is either contained in S or it is the source 0.

Then,

c(S ∪N1
j) ≤ c(S) +

∑

i∈N1
j

xi

But, then S ∪N1
j is a blocking coalition, violating the maximality of S. This contradiction

shows that there cannot be any blocking coalition. ¥

Of course, the Bird Rule satisfies IIC. We now prove a partial converse by showing that

any cost allocation rule satisfying CS and IIC must specify cost shares which are bounded

by the minimum and maximum Bird allocations. That is, for each C and each i ∈ N , let

bm
i (C) = min

g∈M(C)
bi(g, C)

bM
i (C) = max

g∈M(C)
bi(g, C).

Then, we have the following theorem.

Theorem 2 If µ is a cost allocation rule satisfying CS and IIC, then for all C, for all i ∈ N ,

µi(C) ∈ [bm
i (C), bM

i (C)].

Proof : Fix C and consider any µ which satisfies CS and IIC. Let µ(C) ≡ x.

(i) Suppose there is i ∈ N such that xi = bm
i (C)− ε for some ε > 0. Let g be the MCA

which gives rise to the Bird allocation in which i pays bm
i (C), and let b(g, C) be the Bird

allocation. Let S be the set of successors of i - these are the nodes j such that i lies in the

path from 0 to j.

Now, let T = N \ (S ∪ {i}). We first show that S 6= ∅. Assume for contradiction S = ∅.
Then, i is the leaf of the MCA g. Hence, if we remove the edge which goes to i, we get an MCA

of coalition N \{i}. This means, c(N \{i}) = c(N)− bi(g, C) <
∑

j∈N xj−xi =
∑

j∈N\{i} xj,

implying that N \ {i} will block, which is a contradiction. Now, consider the following.

∑
j∈S

xj =
∑
j∈N

bj(g, C)−
∑
j∈T

xj − xi

>
∑
j∈N

bj(g, C)−
∑
j∈T

xj − bi(g, C)

≥
∑
j∈N

bj(g, C)− c(T)− bi(g, C) (By CS)

≥
∑
j∈N

bj(g, C)−
∑
j∈T

bj(g, C)− bi(g, C)

=
∑
j∈S

bj(g, C).

14

Hence,
∑

j∈S xj >
∑

j∈S bj(g, C). Let S ′ = {j ∈ S|ρ(j) = i} be the set of immediate

successors of i. Let |S ′| = s. Also, denote ρ(i) ≡ k. Then, consider a cost matrix C ′ such

that

for all j ∈ S ′, c′kj = cij +
ε

2s
∀ j ∈ S ′ (2)

for all other edges kl, c′kl = cij. (3)

Note that M(C) = M(C ′). Also, the edges whose costs are changed do not figure in any

MCA. So, from IIC, µ(C ′) = µ(C) = x. Now, consider the following arborescence for nodes

in N \ {i}: take the MCA g and disconnect node i, i.e., delete all edges outgoing from node

i and the unique edge incident on i, and connect nodes in S ′ using the direct edge from k to

every node in S ′. This is an arborescence because every node is still connected to the source

and there are no cycles (if there was a cycle here, we would get a cycle in g via i). The cost

of this arborescence is c(N)− bi(g, C) + ε
2
. This gives,

c′(N \ {i}) ≤ c(N)− bi(g, C) +
ε

2

< c(N)− bi(g, C) + ε

= c(N)− xi

=
∑

j∈N\{i}
xj

This shows that x /∈ Co(N,C ′), contradicting the assumption that µ satisfies CS.

(ii) Suppose µ satisfies CS and IIC, and there is some cost matrix C such that

µi(C) = bM
i (C) + ε for some i ∈ N

Then, consider C ′ such that c′0i = bM
i (C) + ε/2, while the cost of all other edges remains

the same. The change in the cost of the edge 0i cannot affect the set of MCA s, and so

µ(C ′) = µ(C) by IIC. But, {i} will block µ(C ′) and so µ cannot be in the core Co(N,C ′).
¥

Remark 1 Note that for any cost matrix C, if M(C) is a singleton, then any cost allocation

rule µ satisfying CS and IIC must coincide with the unique Bird Rule.

The following related theorem is of independent interest. We show that no reductionist

solution satisfying CS can satisfy either Con or DCM. As we have pointed out in the intro-

duction, this result highlights an important difference between the solution concepts for the

classes of symmetric and asymmetric cost matrices.

Theorem 3 Suppose a cost allocation rule satisfies CS and IIC. Then, it cannot satisfy

either Con or DCM.

15

Proof : Let N = {1, 2}. Consider the cost matrix given below

c01 = 6, c02 = 4, c12 = 1, c21 = 3

Then,

bm
1 (C) = 3, bm

2 (C) = 1, bM
1 (C) = 6, bM

2 (C) = 4

Let µ satisfy IIC and CS. Then,

µ1(C) ∈ [3, 6], µ2(C) ∈ [1, 4]

Now, consider C ′ such that c′01 = 6 + ε where ε > 0 , and all other edges cost the same as in

C. There is now a unique MCA, and so since µ satisfies CS and IIC,

µ(C ′) = (3, 4)

If µ also satisfies DCM, then we need µ1(C
′) ≥ µ1(C). This implies

µ(C) = (3, 4)

Now consider C
′′

such that c
′′
02 = 4 + γ, with γ > 0 while all other edges cost the same as in

C. It follows that if µ is to satisfy CS, IIC, and DCM, then

µ(C) = (6, 1)

This contradiction establishes that there is no µ satisfying CS, IIC, and DCM. Now, if µ

is to satisfy CS, IIC and Con, then there must be a continuous function f : <2 → <2 such

that

(3, 4) = µ(C) + f(ε, 0), and (6, 1) = µ(C) + f(0, γ)

for all ε, γ > 0 and with f(0, 0) = (0, 0). Clearly, no such continuous function can exist. ¥

The last theorem and the earlier remark demonstrate that there is a sharp difference

between allocation rules when the cost matrix is symmetric and when it is asymmetric. The

literature on minimum cost spanning tree games shows that there are a large number of cost

allocation rules satisfying CS, IIC and monotonicity and\or continuity. Clearly, options are

more limited when the cost matrix is asymmetric. Nevertheless, we show in the next section

that it is possible to construct a rule satisfying the three “basic” properties of CS, DCM and

Con. Of course, the rule we construct will not satisfy IIC.

16

4 A Rule Satisfying CS, DSCM and Con

In this section, we construct a rule satisfying the three“basic”axioms of CS, DSCM and Con.

Our construction will use a method which has been used to construct the “folk solution”.

The rule satisfies counterparts of the three basic axioms in the context of the minimum cost

spanning tree framework. However, the rule constructed by us will be quite different. In

particular, the “folk solution” satisfies the counterpart of IIC but does not satisfy Ranking

for symmetric cost matrices. In contrast, while our rule obviously cannot satisfy IIC, we will

show that it satisfies Ranking.

We first briefly describe the methodology underlying the construction of the “folk solu-

tion”.

Bird (1976) defined the concept of an irreducible cost matrix corresponding to any cost

matrix C in the minimum cost spanning tree problem. The irreducible matrix CR is obtained

from a symmetric cost matrix C in the following way. Let g be some minimum cost spanning

tree for a symmetric cost matrix C.13 For any i, j ∈ N , let P (ij) denote the set of paths

from i to j for this tree. Then, the “irreducible” cost of the edge ij is

cR
ij = min

p(ij)∈P (i,j)
max

kl∈p(i,j)
ckl ∀ i, j ∈ N.

Of course, if some ij is part of a minimum cost spanning tree, then cR
ij = cij. So, while

every original minimum cost spanning tree remains a minimum cost spanning tree for the

irreducible cost matrix, new trees also minimise the irreducible cost of a spanning tree.

Bird (1976) showed that the cost game corresponding to this CR is concave. From the

well-known theorem of Shapley (1971), it follows that the Shapley value belongs to the

core of this game. Moreover, since cR
ij ≤ cij for all ij, it follows that the core of the game

corresponding to CR is contained in the core of the game corresponding to C. So, the cost

allocation rule choosing the Shapley value of the game corresponding to CR satisfies CS.

Indeed, it also satisfies Cost Monotonicity14 and Continuity.

It is natural to try out the same approach for the minimum cost arborescence problem.

However, a similar approach cannot work when the cost matrix is asymmetric. Notice that

the construction of the irreducible cost matrix outlined above only uses information about

the costs of edges belonging to some minimum cost spanning tree. So, the Shapley value of

the cost game corresponding to the irreducible cost matrix must also depend only on such

information. In other words, the “folk” solution must satisfy IIC. It follows from Theorem 3,

that no close cousin of the folk solution can satisfy the desired properties.

13If more than one tree minimises total cost, it does not matter which tree is chosen.
14Bergantinos and Vidal-Puga (2007a) show that it satisfies a stronger version of cost monotonicity - a

solidarity condition which requires that if the cost of some edge goes up, then the cost shares of all agents
should (weakly) go up.

17

In what follows, we focus on the essential property of an irreducible cost matrix - it is a

cost matrix which has the property that the cost of no edge can be reduced any further if an

MCA for the original matrix is to remain an MCA for the irreducible matrix and the total

cost of an MCA of the irreducible cost matrix is the same as that of the original matrix. We

use the recursive algorithm to construct an irreducible matrix.

Given any cost matrix C, we construct an irreducible cost matrix CR, and show that CR

possesses the following properties.

1. The irreducible cost matrix CR is well-defined in the sense that it does not depend on

the tie-breaking rule used in the recursive algorithm.

2. Every edge ij is part of some MCA corresponding to CR and T (C) = T (CR).

3. The cost game corresponding to CR is concave.

We will use these properties to show that the rule choosing the Shapley value of the cost

game corresponding to CR satisfies CS, DSCM, and Con.

We first illustrate the construction of the irreducible cost matrix for the example in

Figure 2. Like in the recursive algorithm, we do it recursively. So, we first construct an

irreducible cost matrix on nodes NT and corresponding cost matrix C̃T of the last stage

T of the algorithm. For the example in Figure 2, Figure 3 exhibits the graph on this set

of nodes. An irreducible cost matrix corresponding to this cost matrix can be obtained as

follows: set the cost of any edge ij equal to the minimum cost incident edge on j. Denoting

this reduced cost matrix as C̃R, we get c̃R
01 = c̃R

(23)1 = 0 and c̃R
0(23) = c̃R

1(23) = 1. It is easy to

verify that this is indeed an irreducible cost matrix. Now, we extend C̃R to an irreducible

cost matrix CR corresponding to the original cost matrix. For any edge ij, if i and j belong

to different supernodes N1
i and N1

j respectively in Figure 3, then cR
ij = c̃R

N1
i ,N2

j
+ ∆0

j . For

example, cR
12 = c̃R

1(23) + 2 = 1 + 2 = 3 and cR
03 = c̃R

0(23) + 1 = 1 + 1 = 2. For any ij, if i and j

belong to the same supernode, then cR
ij = ∆0

j . For example, cR
23 = 1 and cR

32 = 2. Using this,

we show the irreducible cost matrix in Figure 4.

We now formalize these ideas of constructing an irreducible cost matrix below.

Fix some cost matrix C. Suppose that the recursive algorithm terminates in T steps

given some tie-breaking rule. Say that i, j ∈ N are t-neighbours if i, j ∈ N t
k ∈ N t for some

t ≤ T − 1 and there is no t′ < t, N t′
k such that i, j ∈ N t′

k . If i, j are not t-neigbours for any

t ≤ T − 1, then call them T -neighbours.

If i ∈ N t
k, then let

δt
i = ∆t

k.

For any pair i, j ∈ N which are t-neighbours,

18

0

1

2
3

1

3

2

1

2

3
2

1

1

Figure 4: Irreducible cost matrix for graph in Figure 2

cR
ij =

t−1∑

t′=0

δt′
j (4)

So, for instance, if the algorithm terminates in one step, then all i, j are 1-neighbours, and

cR
ij = min

k 6=j
ckj ≡ ∆0

j

Since the recursive algorithm breaks ties arbitrarily and the irreducible cost matrix uses

the recursive algorithm, it does not follow straightaway that two different tie-breaking rules

result in the same irreducible cost matrix. We say that the irreducible cost matrix is well-

defined if different tie-breaking rules yield the same irreducible cost matrix.

Lemma 1 The irreducible cost matrix defined through Equation (4) is well-defined.

Proof : To simplify notation, suppose there is a tie in step one of the algorithm, between

exactly two edges say ij and kj, as the minimum incident cost edge on node j.15 Hence,

cij = ckj = ∆0
j . We will investigate the consequence of breaking this tie one way or the other.

For this, we break the other ties in the algorithm exactly the same way in both cases.

We distinguish between three possible cases.

Case 1: Suppose j forms a singleton node N1
j in step 1 irrespective of whether the algorithm

breaks ties in favour of ij or kj. Then, in either case ∆1
j = 0. Moreover, the structure of N t

for all subsequent t is not affected by the tie-breaking rule. Hence, CR must be well-defined

in this case.

15The argument can easily be extended to a tie at any step t of the algorithm and to ties between any
number of edges.

19

Case 2: There are two possible C1-cycles - N1
i and N1

k depending on how the tie is broken.

Suppose the tie is broken in favour of ij so that N1
i forms a supernode. Then, {k} forms a

singleton node in Stage 1. But, since c1
kj = 0, N1

i ∪N1
k will form a supernode in step 2 of the

algorithm. Notice that if the tie in step 1 was resolved in favour of kj, then again N1
i ∪N1

k

would have formed a supernode in step 2 of the algorithm.

Also, the minimum cost incident edges of nodes outside N1
i and N1

k remain the same

whether we break ties in favor of ij or kj. Hence, we get the same stages of the algorithm

from stage 2 onwards. So, if r /∈ N1
i ∪N1

k , then for all s ∈ N0 \ {r}, cR
sr cannot be influenced

by the tie-breaking rule.

Let s ∈ N1
i ∪ N1

k . Then, irrespective of how the tie is broken, δ1
s = 0, and hence cR

rs

cannot be influenced by the tie-breaking rule for any r.

Case 3: Suppose N1
i is a C1-cycle containing i and j, but there is no C1-cycle involving k.

Since the minimum incident edge on N1
i corresponds to kj and c1

kj = 0, δ1
p = 0 for all p ∈ N1

i

irrespective of how the tie is broken. So, for all s ∈ N1
i , cR

rs is unaffected by the tie-breaking

rule for all r.

These arguments prove that Equation 4 gives a well-defined irreducible cost matrix. ¥

In the next two lemmas, we want to show (i) that the total cost of the minimum cost

arborescences corresponding to cost matrices C and CR is the same, and (ii) that the set

M(CR) is “large” in the following sense - choose any ordered pair ij such that j 6= 0. Then,

there is some MCA g ∈ M(CR) such that ij ∈ g. The proofs of these results involve a similar

construction which we now describe.

In particular, we associate a cost matrix to each stage of the algorithm. Apart from

being used in the proofs of the next two lemmas, these cost matrices also give an alternate

interpretation of the irreducible cost matrix.

Let C be any cost matrix, and as usual, let CR be the irreducible cost matrix correspond-

ing to C.

Consider stage t of the recursive algorithm. The set of nodes in stage t is N t. Consider

N t
i , N

t
j ∈ N t and let them be t̂-neighbors, i.e., in some stage t̂ ∈ {t + 1, . . . , T − 1} nodes N t

i

and N t
j become part of the same supernode for the first time. Say that they are T -neighbors

if they are not t̂ neighbors for some t̂ ≤ T − 1. Now, define

ĉNt
i Nt

j
=

t̂−1∑

t′=t

δt′
Nt

j
.

This defines a cost matrix Ĉt on nodes N t for stage t of the algorithm. Note that

CR = Ĉ0. From the algorithm, the total cost of an MCA with nodes N corresponding to

cost matrix Ct is equal to the total cost of an MCA with nodes N t corresponding to cost

matrix C̃t. Moreover, Ĉt is the irreducible cost matrix of C̃t.

20

Lemma 2 Suppose CR is the irreducible cost matrix corresponding to cost matrix C. Then,

T (C) = T (CR).

Proof : We prove the result by using induction on the number of stages of the algorithm.

If T = 1, then cR
ij = ∆0

j for all edges ij. By definition of the irreducible cost matrix,

T (C) =
∑

j∈N ∆0
j = T (CR).

Now, assume the lemma holds for any cost matrix that takes less than t stages where

t > 1. We show that the lemma holds for any cost matrix C that takes t stages. Consider

cost matrix Ĉ1, which is the irreducible cost matrix of C̃1. Note that the algorithm takes

t− 1 stages for cost matrix C̃1, applied to nodes in N1. Hence, by our induction hypothesis

and using the fact T (C1) = T (C̃1), we get

T (C1) = T (C̃1) = T (Ĉ1). (5)

Now, consider the cost matrix C̄ defined as follows: c̄ij = 0 if N1
i = N1

j and c̄ij = ĉ1
N1

i N1
j

otherwise. Thus, C̄ is a cost matrix on N0 with edges in supernodes in stage 1 having zero

cost and other edges having the same cost as in cost matrix Ĉ1. Clearly, T (Ĉ1) = T (C̄)

(since edges inside a supernode in stage 1 have zero cost in C̄). Using Equation 5,

T (C1) = T (C̄). (6)

But cost matrices C̄ and CR differ as follows: for any edge ij in the original graph

c̄ij + ∆0
j = cR

ij.

This implies that

T (CR) = T (C̄) +
∑
j∈N

∆0
j . (7)

Similarly, C1 and C differ as follows: for any edge ij

c1
ij + ∆0

j = cij.

This implies that

T (C) = T (C1) +
∑
j∈N

∆0
j . (8)

Using Equations 6, 7, and 8,

T (C) = T (C1) +
∑
j∈N

∆0
j = T (C̄) +

∑
j∈N

∆0
j = T (CR).

This completes the proof. ¥

21

Lemma 3 Choose any j ∈ N and i ∈ N+. Then, there is some g ∈ M(CR) such that ij ∈ g.

Proof : We use induction on the number of stages T of the algorithm for cost matrix C.

Suppose T = 1. By definition of the irreducible cost matrix, cR
pq = ∆0

q for every ordered

pair pq where p ∈ N+ and q ∈ N . Clearly, the total cost of an MCA corresponding to cost

matrix CR is T (CR) =
∑

q∈N ∆0
q. Consider the arborescence which connects every agent

except agent j to the source and agent j via agent i. The total cost of this arborescence

corresponding to cost matrix CR is
∑

q∈N ∆0
q = T (CR). Hence, this is an MCA corresponding

to cost matrix CR. Thus, every edge ij is used in some MCA corresponding to cost matrix

CR.

Now, suppose the claim holds for any cost matrix that takes less than t stages in the

algorithm, where t > 1. We show that the claim holds for any cost matrix C that takes t

stages in the algorithm. Consider cost matrix Ĉ1, which is the irreducible cost matrix of C̃1.

Since the algorithm takes t − 1 stages for cost matrix C̃1 every edge N1
i N1

j belongs to an

MCA corresponding to Ĉ1 from the induction hypothesis.

Now, choose any ordered pair ij, with i ∈ N+ and j ∈ N . We consider two possible

cases.

Case 1: Suppose i and j do not belong to the same supernode in N1. Let i in N1
i and

j ∈ N1
j . Let g1 be the MCA corresponding to Ĉ1 which contains the edge N1

i N1
j . Now, for

each p ∈ N1
i , q ∈ N1

j ,

cR
pq = ĉN1

i N1
j

+ ∆0
q (9)

Also, for each k, l ∈ N1
j ,

cR
kl = ∆0

l (10)

Consider the total cost of connecting any p ∈ N1
i to some q ∈ N1

j , and then connecting all

nodes in N1
j other than q to q. From equations 9 and 10, this equals

Q = ĉN1
i N1

j
+ ∆0

q +
∑

r∈N1
j ,r 6=q

∆0
r

= ĉN1
i N1

j
+

∑

r∈N1
j

∆0
r

Hence, Q is independent of both the node p ∈ N1
i and the node q ∈ N1

j ; that is the point

of exit from N1
i and the point of entry into N1

j . This establishes that there must be some

g ∈ M(CR) which connects i ∈ N1
i to j in N1

j .

Case 2: Suppose i, j belong to the same supernode N1
k . From the previous paragraph, we

know that there must be some g ∈ M(CR) which enters N1
k at i and then connects j to i.

¥

22

The next lemma shows that the additional cost (according to CR) that any i imposes on

a subset S not containing i is precisely the minimum amongst the costs of all incoming edges

of i from S.

Lemma 4 Consider any S which is a proper subset of N and any i /∈ S. Then,

cR(S ∪ {i})− cR(S) = min
k∈S

cR
ki

Proof : Suppose the recursive algorithm for N corresponding to CR ends in one step. Then,

for any i ∈ N and all other k ∈ N0
k , cR

ki = ∆0
i . Clearly, the lemma must be true in this case.

Suppose the algorithm for N terminates in more than one step. Pick any S and i /∈ S.

Let T ≡ S ∪ {i}, and T 1 = {T 1
1 , . . . , T 1

K}, where each T 1
k = N1

k ∩ T , N1
k being a supernode

in N1. Without losss of generality, let

min
k∈S

cR
ki = cR

k∗i

Suppose k∗ ∈ N1
k and i ∈ N1

i with N1
i \ {i} 6= ∅ and N1

i 6= N1
k . But for any j ∈ N1

i \ {i}, we

have cR
ji ≤ cR

k∗i. In that case, we set k∗ = j. Hence, there are two possibilities without loss

of generality. Either k∗ and i belong to the some T 1
k or {i} ∈ T 1.

Case 1 : k∗ and i belong to some T 1
k . Note that in this case, cR

ki is the same for all k in

T 1
k , k 6= i. From the proof of Lemma 3, there is an MCA g for T and CR such that T 1

k is the

last supernode to be entered. Furthermore, g can enter T 1
k at some node k distinct from i,

and then connect all other nodes in T 1
k to k. So, i is a leaf of g since |δ−(j, g)| = 1. Hence,

the lemma is true in this case.

Case 2 : i forms a singleton node in T 1. Then, cR
k∗i is the cost of connecting {i} to every

other supernode in T 1. Consider the MCA g for T 1 and CR which enters {i} last. Then, the

lemma is true in this case too. ¥

We use this lemma to show that the cost game corresponding to CR is concave.

Lemma 5 The cost game corresponding to CR is concave.

Proof : Consider any S, T such that S ⊂ T ⊆ N with i /∈ T . We show that

cR(S ∪ {i})− cR(S) ≥ cR(T ∪ {i})− cR(T)

By Lemma 4,

cR(S ∪ {i})− cR(S) = min
k∈S

cR
ki

23

and

cR(T ∪ {i})− cR(T) = min
k∈T

cR
ki

Since S ⊂ T , the lemma follows. ¥

We now show that a “small” change in C produces a small change in CR. In other words,

CR changes continuously with C.

Lemma 6 Suppose C and C̄ are such that ckl = c̄kl for all kl 6= ij and c̄ij = cij + ε for some

ε > 0. If CR and C̄R are the irreducible matrices corresponding to C and C̄, then

(i) 0 ≤ c̄R
kj − cR

kj ≤ ε for all k 6= j and −ε ≤ c̄R
kl − cR

kl ≤ ε for all k 6= l 6= j,

(ii) for all l ∈ N \ {j}, for all S ⊆ N+ \ {l, j},

min
k∈S

c̄R
kj −min

k∈S
cR
kj ≥ min

k∈S
c̄R
kl −min

k∈S
cR
kl (11)

Proof : Say that two cost matrices C and C̄ are stage equivalent if ties can be broken in the

recursive algorithm such that the number of stages and partitions of nodes in each stage are

the same for C and C̄.

Proof of (i): We first prove this for the case when C and C̄ are stage equivalent. Consider

node j such that c̄ij − cij = ε > 0. Consider any k 6= j. Since C and C̄ are stage equivalent,

if k and j are t-neighbors in cost matrix C, then they are t-neighbors in cost matrix C̄. We

consider two possible cases.

Case 1: Edge ij is the minimum cost incident edge of some supernode containing j in some

stage t of the algorithm for cost matrix C, and hence for cost matrix C̄ since they are stage

equivalent. Then δt
j increases by ε. But δt+1

j (if stage t + 1 exists) decreases by ε. Hence,

the irreducible cost of no edge can increase by more than ε and the irreducible cost of no

edge can decrease by more than ε. Moreover, we prove that for any edge kj, the irreducible

cost cannot decrease. To see this, note that the irreducible cost remains the same if kj are

t′ neighbors and t′ ≤ t or t′ > t+1. If t′ = t+1, then the irreducible cost of kj only increases.

Case 2: Edge ij is not the minimum cost incident edge of any supernode containing j in

any stage of the algorithm for cost matrix C, and hence for cost matrix C̄. In that case, δt
j

remains the same for all t. Hence CR = C̄R.

Examining both the cases, we conclude that 0 ≤ c̄R
kj − cR

kj ≤ ε for all k 6= j. Also,

−ε ≤ (c̄R
kl − cR

kl) ≤ ε for all k 6= l 6= j.

24

We complete the proof by arguing that cost of edge ij can be increased from cij to c̄ij by

a finite sequence of increases such that cost matrices generated in two consecutive sequences

are stage equivalent.

Define ranking of an edge ij in cost matrix C as rankC(ij) = |{kl : ckl > cij}|. Clearly,

two edges ij and kl have the same ranking if and only if cij = ckl. Note that if rankings of

edges do not change from C to C̄, then we can always break ties in the same manner in the

recursive algorithm in C and C̄, and thus C and C̄ are stage equivalent.

Suppose rankC(ij) = r > rankC̄(ij) = r̄. Consider the case when r̄ = r − 1. This

means that a unique edge kl 6= ij exists such that ckl > cij but c̄kl = ckl ≤ c̄ij. Consider

an intermediate cost matrix Ĉ such that ĉij = ckl = c̄kl and ĉpq = cpq = c̄pq for all edges

pq 6= ij. In the cost matrix Ĉ, one can break ties in the algorithm such that one chooses ij

over kl everywhere. This will generate the same stages of the algorithm with same partitions

of nodes in every stage for cost matrix C and Ĉ. Hence, C and Ĉ are stage equivalent. But

we can also break the ties in favor of edge kl everywhere, and this will generate the same

set of stages and partitions as in cost matrix C̄. This shows that Ĉ and C̄ are also stage

equivalent.16.

If r̄ < r− 1, then we increase the cost of edge ij from cij in a finite number of steps such

that at each step, the ranking of ij falls by exactly one.

Proof of (ii): For simplicity, we only consider the case where C and C̄ are stage-equivalent.

As argued in the proof of (i), the argument extends easily to the case when they are not

stage-equivalent.

Let ij be the minimum cost incident edge of N t
k. Then, for any p ∈ N t

k,

c̄R
qp > cR

qp implies p, q are (t + 1)-neighbours (12)

Also, for all p ∈ N t
k and all q which are (t + 1)-neighbours,

c̄R
qp = cR

qp + ε

So, to prove that equation 11 is true, we only need to consider any l ∈ N t
k, l 6= j. Consider

any S ⊆ N+ \ {l, j}, and suppose mink∈S c̄R
kl > mink∈S cR

kl. Then, from Equation 12, S must

contain some q which is a (t + 1)-neighbour of l. Moreover, since the irreducible cost of

edges which are t′-neighbours are higher than those which are (t′ − 1)-neighbours for all t′,
S cannot contain any neighbours which are t′-neighbours of l for t′ ≤ t. This is because if

S did contain some m which was a t′-neighbour with t′ ≤ t, then mink∈S c̄R
kl would not be

attained at a (t + 1)-neigbour of l. But, then equation 12 establishes that

min
k∈S

c̄R
kl −min

k∈S
cR
kl = min

k∈S
c̄R
kj −min

k∈S
cR
kj = ε

16Note that this does not imply C and C̄ are stage equivalent.

25

This completes the proof of the lemma. ¥

Remark 2 So, a small change of ε in the cost of some edge ij cannot change the irreducible

cost of any edge by more than ε. Hence, CR changes continuously with C.

We identify a cost allocation rule f ∗ with the Shapley value of the cost game (N, CR).

So,

f ∗(C) ≡ Sh(N, CR)

The main result of the paper is to show that f ∗ satisfies CS, DSCM, and Con.

Theorem 4 The cost allocation f ∗ satisfies CS, DSCM, and Con.

Proof : Take any cost matrix C whose irreducible cost matrix is CR. From Lemma 5, the

game (N,CR) is concave. Hence, the Shapley value of (N, CR) is in the core of the game

(N,CR). Of course, cR
ij ≤ cij for all edges ij. Using Lemma 2 it follows that the core of the

game (N, CR) is contained in the core of the game (N, C). Hence, f ∗ satisfies CS.

By Lemma 4, cR(S ∪ {k})− cR(S) = minj∈S cR
jk for any S ⊆ N with k /∈ S. By Lemma

6, CR changes continuously with C. Hence, the cost game (N, cR) also changes continuously

with C. The continuity of the Shapley value with respect to the cost game establishes that

f ∗ satisfies continuity.

We use Lemma 4 and Equation 11 to prove that f ∗ satisfies DSCM. Consider two cost

matrices C and C̄ as in Lemma 6. From Lemma 4, the marginal costs of any l to a coalition

S for CR and C̄R are given by

min
k∈S

cR
kl and min

k∈S
c̄R
kl

Using the formula for the Shapley value and Equation 11, it is straightforward to verify that

DSCM is satisfied. ¥

In the minimum cost spanning tree problem, the folk solution satisfies a Solidarity axiom

which requires the following. If the cost of an edge goes up, then the cost share of every node

should increase or remain the same. This is, of course, stronger than the cost monotonic-

ity axiom of Dutta and Kar (2004), and was put forward by Bergantinos and Vidal-Puga

(2007a). The following example shows that f ∗ does not satisfy the directed version of the

Solidarity axiom.

Example 1 Let N = {1, 2}, and consider cost matrices C and C̄ as follows

c12 = c21 = 1, c01 = 2, c02 = 3, c̄21 = 1.5, c̄ij = cij, for all edges ij 6= 21

The corresponding irreducible cost matrices are

cR
12 = cR

21 = 1, cR
01 = cR

02 = 2, c̄R
21 = 1.5, c̄R

12 = 1, c̄R
01 = 2, c̄R

02 = 1.5

Then, f ∗(C) = (1.5, 1.5) and f ∗(C̄) = (1.75, 1.25).

26

We now show that f ∗ satisfies Ranking.

Theorem 5 The allocation rule f ∗ satisfies ETE and Ranking.

Proof : Since the Shapley value is symmetric, f ∗ satisfies ETE.

Consider a cost matrix C such that for i, j ∈ N , we have cik = cjk and cki > ckj for all

k 6= i, j and cji > cij. Consider another cost matrix Ĉ such that ĉik = ĉjk = cik = cjk and

ĉki = ĉkj = ckj < cki for all k 6= i, j and ĉij = ĉji = cij < cji. By ETE, fj(Ĉ) = fi(Ĉ).

Now, let ε = mink 6=i[cki − ĉki]. Note that ε > 0 by assumption. Consider a cost matrix

C̄ defined as follows: c̄ki = ĉki + ε for all k 6= i and c̄pq = ĉpq for all p, q with q 6= i. So,

we increase cost of incident edges on i from Ĉ to C̄ by the same amount ε, whereas costs of

other edges remain the same.

Let ĉki = minp6=i ĉpi. By construction, c̄ki = minp6=i c̄pi = ĉki + ε. Also, C̄1 = Ĉ1. Hence,

c̄R
pi = ĉR

pi + ε for all p 6= i. Thus, f ∗i (C̄) = f ∗i (Ĉ) + ε. But the cost of the MCA has increased

by ε from Ĉ to C̄. So, f ∗k (C̄) = f ∗k (Ĉ) for all k 6= i. Hence, f ∗i (C̄) > f ∗i (Ĉ) = f ∗j (Ĉ) = f ∗j (C̄).

Since f ∗ satisfies DSCM, f ∗i (C) − f ∗j (C) ≥ f ∗i (C̄) − f ∗j (C̄) > 0. This implies that f ∗i (C) >

f ∗j (C). ¥

Notice that the condition of Ranking requires that if the incoming edges of node i cost

strictly more than the corresponding incoming edges for j while corresponding outgoing

edges cost the same, then the cost allocated to i should be strictly higher than the cost

allocated to j. But, now suppose both incoming and outgoing edges of i cost strictly more

than those of j. Perhaps, one can argue that if the outgoing edges of i cost more than the

outgoing edges of j, then i is less “valuable” in the sense that i is going to be used less often

in order to connect to other nodes. Hence, in this case too, i should pay strictly more than

j. However, it turns out that f ∗ does not satisfy this modified version of Ranking.17 This is

demonstrated below.

Example 2 Let N = {1, 2, 3}. Figure 5 shows a cost matrix C (assume e > 0 in Figure 5)

and its associated irreducible cost matrix, the latter being shown on the right. It is easy to

see that f ∗1 (C) = e, f ∗2 (C) = f ∗3 (C) = 1/2. So, for e < 1/2, agent 1 pays less than agent 2,

though agent 2 has strictly lower incoming and outgoing edge costs than agent 1.

We do not know whether there are other rules which satisfy the basic axioms and this

modified version of Ranking.

17We do not define this axiom formally.

27

0

1 2 3

0

1 2 3

1+e 1
3

1 0

01+e

e

2

e
1 1

1 0

0e

e

1

Figure 5: Example illustrating violation of the modified version of Ranking

References

A. Bogomolnaia, R. H., , and H. Moulin (2008): “Sharing the Cost of a Capacity

Network,” Working Paper, Rice University.

Bergantinos, G. and A. Kar (2008): “Obligation Rules,” Working Paper, Universidade

Vigo.

Bergantinos, G. and J. J. Vidal-Puga (2007a): “A Fair Rule for Minimum Cost

Spanning Tree Problems,” Journal of Economic Theory, 137, 326–352.

——— (2007b): “The Optimistic TU Game in Minimum Cost Spanning Tree Problems,”

International Journal of Game Theory, 36, 223–239.

——— (2007c): “Several Approaches to the Same Rule in Minimum Cost Spanning Tree

Problems,” Working Paper, Universidade Vigo.

Bird, C. G. (1976): “On Cost Allocation of a Spanning Tree: A Game Theoretic Approach,”

Networks, 6, 335–350.

Bogomolnaia, A. and H. Moulin (2008): “Beyond the Folk Solution in the Minimum

Cost Spanning Tree Problem,” Working Paper, Rice University.

Branzei, R., S. Moretti, H. Norde, and S. Tijs (2004): “The P-Value for Cost

Sharing in Minimum Cost Spanning Tree Situations,” Theory and Decision, 56, 47–61.

——— (2005): “The Bird Core for Minimum Cost Spanning Tree Problems Revisited: Mono-

tonicity and Additivity Aspects,” Working Paper, Tilburg University (CentER DP).

Chu, Y. J. and T. H. Liu (1965): “On the Shortest Arborescence of a Directed Graph,”

Science Sinica, 14, 1396–1400.

28

Dutta, B. and A. Kar (2004): “Cost Monotonicity, Consistency and Minimum Cost

Spanning Tree Games,” Games and Economic Behavior, 48, 223–248.

Edmonds, J. (1967): “Optimum Branchings,” Journal of Reseseach National Bureau Stan-

dards, 71B, 233–240.

Feltkamp, V., S. Muto, and S. Tijs (1994): “On the Irreducible Core and the Equal

Remaining Obligations Rule of Minimum Cost Spanning Extension Problems,” Working

Paper, Tilburg University (CentER DP).

Herzog, S., S.Shenker, and D.Estrin (1997): “Sharing the Cost of Multicast Trees:

An Axiomatic Analysis,” IEEE/ACM Transactions on Networking, 847–860.

Kar, A. (2002): “Axiomatization of the Shapley Value on Minimum Cost Spanning Tree

Games,” Games and Economic Behavior, 38, 265–277.

Norde, H., S. Morettie, and S. Tijs (2001): “Minimum Cost Spanning Tree Games and

Population Monotonic Allocation Schemes,” European Journal of Operational Research,

154, 84–97.

Shapley, L. (1971): “Cores of Convex Games,” International Journal of Game Theory, 1,

11–26.

29

