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Abstract

In this paper we provide a unified methodology in order to conduct likelihood-based
inference on the unknown parameters of a general class of discrete-time stochastic volatil-
ity models, characterized by both a leverage effect and jumps in returns. Given the non-
linear/non-Gaussian state-space form, approximating the likelihood for the parameters is
conducted with output generated by the particle filter. Methods are employed to ensure
that the approximating likelihood is continuous as a function of the unknown parameters
thus enabling the use of Newton-Raphson type maximization algorithms. Our approach is
robust and efficient relative to alternative Markov Chain Monte Carlo schemes employed in
such contexts. In addition it provides a feasible basis for undertaking the non-trivial task
of model comparison. The technique is applied to daily returns data for various stock price
indices. We find strong evidence in favour of a leverage effect in all cases. Jumps are an
important component in two out of the four series we consider.

Some key words: Particle filter, Simulation, SIR, State space, Leverage effect, Jumps.

1 Introduction

The aim of this paper is to conduct likelihood-based inference on a general class of stochastic
volatility models using a smooth particle filter. Stochastic volatility (SV) models have gained
considerable interest in theoretical options pricing and financial econometrics literature; in the
latter as an alternative to the well documented ARCH/GARCH-type models. The SV framework
allows variance to evolve according to some latent stochastic process.

In studying the relationship between volatility and asset price/return, a so-called “leverage
effect” refers to the increase in future expected volatility following bad news. The reasoning
underlying is that, bad news tends to decrease price thus leading to an increase in debt-to-
equity ratio (i.e. financial leverage). The firms are hence riskier and this translates into an
increase in expected future volatility as captured by a negative relationship between volatility
and price/return. In the finance literature empirical evidence supportive of a leverage effect
has been provided by Black (1976) and Christie (1982). The state-space form of SV model
that is studied in the bulk of the literature assumes that the measurement and state equation
disturbances are uncorrelated, thus ruling out leverage.

Another characteristic of financial data are “jumps” in the returns process. Jumps can basi-
cally be described as rare events; large, infrequent movement is returns which are an important
feature of financial markets (see Merton (1976)). These have been documented to be important
in characterizing the non-Gaussian tail-behaviour of conditional distributions of returns.

The case of SV with leverage has recently been considered by Christofferesen, Jacobs and
Minouni (2007). They analyse various specifications of the stochastic volatility model with
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leverage, e.g. the affine SQR model of Heston (1993) and also various non-affine models. They
demonstrate the generality and robustness of the smooth particle filter for purposes of parameter
estimation (See Pitt (2003)). We add to the literature by providing a very general methodol-
ogy for carrying out maximum likelihood estimation of the parameters of an SV model which
incorporates both leverage and jumps, within a particle filtering framework.

The plan of this paper is as follow. In Section 2 we describe the standard SV model, the SV
with leverage model and the SV with leverage with jumps model along with a brief review of
the literature. In Section 3 we first describe how parameter estimation can be carried out using
particle filters generally, and then specifically in the context of the SV with leverage and jumps
model. We also describe the relevant diagnostic tests. Section 4 provides results for simulation
experiments testing estimator performance. Section 5 provides empirical examples using daily
returns data for S&P500, FTSE 100, Dow Jones and Nasdaq. Section 6 concludes.

2 Volatility Models

2·1 Stochastic Volatility

The standard stochastic volatility (SV) model with uncorrelated measurement and state equation
disturbances is given by,

yt = ǫt exp(ht/2)

ht+1 = µ(1 − φ) + φht + σηηt, t = 1, ...., T (2·1)

(
ǫt

ηt

)
∽ N(0,Σ) and Σ =

(
1 0
0 1

)
.

Here yt is the observed return, {ht} are the unobserved log-volatilities, µ is the drift in the
state equation, σ2

η is the volatility of log-volatility and φ is the persistence parameter. Within
the econometrics literature, this model is seen as a generalization Black-Scholes option pricing
formula that allows for volatility clustering in returns. There have been different methodologies
proposed in the context of parameter estimation for such models. Harvey, Ruiz and Shephard
(1994), advocates a Quasi Maximum Likelihood procedures, whereas Jacquier, Polson and Rossi
(1994) propose an MCMC method in order to construct a Markov chain that can be used to draw
directly from the posterior distributions of the model parameters and unobserved volatilities (see
also Shephard and Pitt (1997)). Shephard and Pitt (1997) and Durbin and Koopman (1997)
consider importance sampling in order to obtain the likelihood.

2·2 Stochastic Volatility with Leverage

We can take the standard SV model just described and adapt it in order to incorporate a leverage
effect. Given that,

yt = ǫt exp(ht/2)

ht+1 = µ(1 − φ) + φht + σηηt, t = 1, ...., T (2·2)

(
ǫt

ηt

)
∽ N(0,Σ),

we now allow for the disturbances to be correlated (see e.g. Heston (1993)) 1 which implies

1 Primary contributions in modelling leverage within an ARCH/GARCH framework have been made by Nel-
son(1991), Glosten, Jagannathan and Runkle (1994) and Engle and Ng (1993). Asymmetric models put forth in
this regard, such as TARCH and EGARCH make conditional variance a function of the sign in addition to the
size of returns.
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that the covariance matrix has the form,

Σ =

(
1 ρ
ρ 1

)
. (2·3)

Furthermore, noting that the disturbances are conditionally Gaussian, we can write ηt = ρ
ǫt +

√
(1 − ρ2)ξt, where ξt ∽ N(0, 1).The state equation can be reformulated as,

ht+1 = µ(1 − φ) + φht + σηρǫt + ση

√
(1 − ρ2)ξt. (2·4)

By substituting, ǫt = yt exp(−ht/2) into (2.4), the model adopts the following Gaussian nonlinear
state-space form where the parameter ρ measures the leverage effect.

yt = ǫt exp(ht/2)

ht+1 = µ(1 − φ) + φht + σηρ yt exp(−ht/2) + ση

√
(1 − ρ2)ξt. (2·5)

Alternatively we could have written ǫt = ρ ηt +
√

(1 − ρ2)ζt, where ζt is again an inde-
pendent standard Gaussian. In which case, the SV with leverage model is given by, yt|ηt ∼
N(ρ exp(ht/2)ηt ; (1 − ρ2) exp(ht)) where ht+1 = µ(1 − φ) + φht + σηηt.

Amongst the earliest contributions in modelling leverage in the stochastic volatility literature
was made by Harvey and Shephard (1996). The authors extend the Quasi Maximum Likelihood
(QML) technique used in parameter estimation in standard SV models (see Harvey et al. (1994))
to handle correlation between disturbances. Recognizing that information on correlation is lost
as result of squaring the observations in the process of linearizing the model; the technique
developed by Harvey and Shephard (1996) allows the information to be recovered by carrying
out inference conditional on the signs of observations, i.e. by relating these to filtered volatilities.
When applied to daily CRSP (Centre for Research in Security Prices) and SP30 (Standard and
Poors), the authors find evidence of a leverage effect. A problem with the QML approach is that
log ǫ2t is poorly approximated by the normal distribution yielding a quasi-likelihood estimator
with poor finite sample properties.

In order to correct for this Kim, Shephard and Chib (1998) develop an alternative approach
for analysis of SV models employing MCMC techniques to provide a likelihood-based framework.
The Kim et al. approach revolves around approximating log ǫ2t by a mixture of seven normal
densities which in turn facilitates the state-space representation associated with the Kalman
Filter. Omori, Chib, Shephard and Nakajima (2007) extend this approach to handle leverage
in SV models. They apply this approach to fit a model to daily returns of TOPIX and find
evidence of leverage.

Jacquier, Polson and Rossi (2004) build upon the MCMC approach put forth in JPR (1994)
to conduct inference in an extended SV model, i.e. to allow for both leverage effect but also
fat-tails in the measurement equation disturbances, where evidence supportive of the latter has
been uncovered by Gallant et al. (1998) and Gweke (1992), amongst others2. Application of
their model to weekly CRSP, daily S&P 500 data as well as a few daily exchange rate series’
yields evidence supportive of the extensions.

Meyer and Yu (2000) also employ a Gibbs sampling approach to perform posterior compu-
tations on an asymmetric SV model and find evidence of a leverage effect in daily Pound/Dollar
exchange rate series. Yu (2005) documents the two main specifications for modelling leverage
in the literature, and notes an important difference between the two which becomes apparent

2Jacquier et al assume ǫt =
√

λtzt where zt is a standard normal variate and λt is distributed as i.i.d. inverse
gamma, whereby the marginal distribution is student-t.

The fat-tailed extension is also explored in Harvey, Ruiz and Shephard (1994) and Kim et al (1998).
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when the two specifications are written in a Gaussian nonlinear state-space form. Whereas,
Kim et al. (1998) and Omori et al. (2007) work with the Euler-Maruyuma approximation for
the continuous time asymmetric SV model. Yu notes that the timing of the variables makes it
difficult to interpret the leverage effect in the Jacquier et al.(2004) specification given we can
not obtain the relationship between E(ht+1|yt) and yt in analytical form. For further discussion,
we refer the reader to Yu (2005, pg 6). He concludes that from an empirical stand point having
tested both specifications on daily S&P 500 and CRSP data, that the specification of the basic
model as used in Kim, Shephard and Chib (1998) is preferred.

2·3 Stochastic Volatility with Leverage and Jumps

The SV model with leverage which allows for jumps in the returns process can be written as,

yt = ǫt exp(ht/2) + Jt̟t

ht+1 = µ(1 − φ) + φht + σηηt, t = 1, ...., T (2·6)

where, (
ǫt

ηt

)
∽ N(0, Σ) and Σ =

(
1 ρ
ρ 1

)
.

Jt = j is the time-t jump arrival where j = 0, 1 is a Bernoulli counter with intensity p. ̟t ∽

N(0, σ2
J) dictates the jump size. The leverage effect is incorporated as before noting f(ηt|ǫt) =

N(ρǫt; 1−ρ2). This model can be considered a discrete-time counterpart to a general, continuous-
time jump-diffusion model (see Duffie, Pan and Singleton (2000) and Johannas, Polson and
Stroud (2009)). In brief, assume log of stock price y(t) and the underlying state variable, i.e.
the volatility X(t) jointly solve:

dy(t) = ay(X(t))dt + σy(X(t))dB(t) + d




Ny
t∑

n=1

Zy
n


 ,

dX(t) = gx(X(t))dt + σx(X(t))dW (t) + d




Nx
t∑

n=1

Zx
n


 .

Here B(t) and W (t) are correlated Brownian motions, Ny
t and NX

t are homogenous (or
non-homogenous) Poisson processes with Zy

n and Zx
n being the jump sizes for stock returns and

volatility respectively. The functions ay(.), σy(.), gx(.) and σx(.) are general functions subject to
certain constraints.

There have been a several recent contributions in estimating SV models with jumps, albeit
mostly within a Bayesian framework. Amongst the earliest are Bates (1996) and Bakshi, Cao
and Chen (1997), which deal with models involving jumps in returns and parameter estimation
carried out via a non-linear generalized least squares/Kalman filtration methodology. This
is extended in Bates(2000) which employs a the same estimation methodology for two-factor
SV models with jumps in returns. Eraker, Johannes and Polson (2003) provide an MCMC
strategy for conducting inference on stochastic volatility models incorporating jumps in returns
and also in the volatility process (initially introduced by Duffie et al.(2000)). They conduct
empirical analysis on S&P500 and Nasdaq 100 index returns and find strong evidence of jumps in
volatility. Jumps have been documented to be important in characterizing the non-Gaussian tail-
behaviour of conditional returns distributions. In order to characterize this feature of returns,
the approach of estimating SV models with student-t errors have been employed by, for example,
Chib, Nedari and Shephard (2006) and Sandmann and Koopman (1998). For the same purposes,
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an alternative approach employed by Durham (2008) is to use a mixture of Gaussians for the
measurement equation disturbance. His paper uses a simulated maximum likelihood approach
to conduct inference.

3 Particle Filter Estimation

This paper is concerned with evaluation of state-space models via particle filter. We model the
time series {yt, t = 1, ....., T} using a state space framework with the state {ht} assumed to be
Markovian. The problem of state estimation within a filtering context can be formulated as
the evaluation of the density f(ht|Yt,), t = 1, ..., T where Yt = (y1, ....., yt) is contemporaneously
available information. In linear Gaussian state space models the density is Gaussian at every
iteration of the filter and the Kalman filter relations propagate and update the mean and covari-
ance of the distribution. In nonlinear and/or non-Gaussian state space models we cannot obtain
a closed form expression for the required conditional density and particle filters are employed in
order to recursively generate (an approximation to) the state density.

There is has been considerable work done on the development of simulation based methods to
perform filtering nonlinear Gaussian state space models. Leading contributions to the literature
are by Gordon, Salmond and Smith (1993), Kitagawa (1996), Isard and Blake (1996), Muller
(1991) and Pitt and Shephard (1999). A review is provided by Doucet et al. (2000). Most of
the literature revolves around on-line filtering of the states with very little work done in the
parameter estimation within this framework; see Liu and West (2000), Pitt (2003) and Polson,
Stroud and Muller (2008).

We begin by providing a description of a particle filter, as put forth in the seminal paper
by Gordon et al. (1993) and then describe how this framework can be adapted for parameter
estimation.

3·1 Preliminaries

We assume a known measurement density f(yt|ht) and the ability to simulate from the transition
density f(ht+1|ht). Particle filters involve using simulation to carry out on-line filtering, i.e. to
learn about the state given contemporaneously available information. Suppose we have a set of
random samples, ‘particles’, h1

t , ....., h
M
t with associated discrete probability masses λ1

t , ...., λ
M
t ,

drawn from the density f(ht|Yt). The principle of Bayesian updating implies that the density
of the state conditional on all available information can be constructed by combining a prior
with a likelihood; recursive implementation of which forms the basis for particle filtering. The
particle filter is hence an algorithm to propagate and update these particles in order to obtain
a sample which is approximately distributed as f(ht+1|Yt+1); the true filtering density,

f(ht+1|Yt+1) ∝ f(yt+1|ht+1)

∫
f(ht+1|ht)dF (ht|Yt). (3·1)

In order to sample from this density we use the Sampling Importance Resampling algorithm
of Gordon, Salmond and Smith (1993) (hence forth referred to as SIR). The basic SIR algorithm
is outlined below. We start at t = 0 with samples from hi

0 ∼ f(h0), i = 1, ...., M, which is
generally the stationary distribution, if it exists.

Algorithm : SIR for t=0,..,T-1:
We have samples hi

t ∼ f(ht|Yt) for i = 1, ..., M.

1. For i = 1 : M, sample h̃i
t+1 ∼ f(ht+1|hi

t).
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2. For i = 1 : M calculate normalized weights,

λi
t+1 =

ωi
t+1∑M

k=1 ωk
t+1

, where ωi
t+1 = f(yt+1|h̃i

t+1) .

3. For i = 1 : M, sample (from the mixture) hi
t+1 ∼ ∑M

k=1 λk
t+1δ(ht+1 − h̃k

t+1).

This will yield an approximation of the desired posterior density, f(ht+1|Yt+1) as t varies.
Here δ(.) is a dirac-delta function. Sampling in Step 3 is a multinomial sampling scheme
(sometimes referred to as the weighted bootstrap) and is computationally O(M). It relies on the
following result of Smith and Gelfand (1993).

Theorem 3.1 Suppose that our required density is proportional to L(x)G(x), for example, and
that we have samples xi

∽ G(x), i = 1, ...., M. If L(x) is a known function then, the theorem
states that the discrete distribution over xi with probability mass L(xi)/ΣL(xi) on xi tends in
distribution to the required density as M → ∞.

The algorithm is iterated through the data to in order to produce empirical filtering densities,

f̂(ht+1|Yt+1) ∝ f(yt+1|ht+1)
M∑

i=1

λi
tf(ht+1|hi

t), (3·2)

for each time step. It is worth noting that we need to know f(yt+1|ht+1) only up to a pro-
portionality. Furthermore, we can estimate all moments, for example E[ht+1|Yt+1] by either
1
M

∑M
i=1 hi

t+1 using Step 3 or Rao-Blackwellisation,
∑M

i=1 h̃i
t+1.λ

i
t+1 using Step 1 and Step 2.

Next we look at how this SIR particle filter framework can be exploiting and modified in order
to carry out likelihood evaluation for parameter estimation.

3·2 Likelihood Evaluation

We now assume the model is indexed, possibly in both state and measurement equations, by a
vector of fixed parameters θ. In order to carry out parameter estimation we need to estimate
the likelihood function, which in log terms is given by;

log L(θ) = log f(y1,....,.yT |θ)

=
T∑

t=1

log f(yt+1|θ; Yt),

via the prediction decomposition (e.g. see Harvey(1993)). In order to estimate this function,
we exploit the relationship,

f(yt+1|θ; Yt) =

∫
f(yt+1|ht+1; θ)f(ht+1|Yt; θ)dht+1. (3·3)

The particle filter delivers samples from f(ht|Yt; θ), and we can sample from the transition
density f(ht+1|ht; θ) in order to estimate the integral. The resampling step is crucial and there
are various methods for implementing Step 3 of the SIR algorithm e.g. stratification. We
replace this step with a smooth resampling procedure. The reason for this is as follows.

As noted in Pitt (2003), if particles hi
t, i = 1, ..., M drawn from the filtering density f(ht|Yt; θ)

are slightly altered then the proposal samples, hi
t+1, i = 1, ...,M will also alter only slightly, as
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in the case of a highly persistent transition function, for example. But on the other hand,
the discrete probabilities associated with these proposals will change as well, the implication
of which is that the even if we generate the same uniforms at each time step, the resampled
particles will not be close. Hence, the conventional weighted bootstrap methods are not smooth,
in the sense of yielding an estimator of the likelihood which is not continuous as a function of
the parameters θ. This has important implications for using gradient based maximization and
computation of standard errors using conventional techniques (see also Liu and West (2000) and
Polson, Stroud and Muller (2008)).

More specifically, it may be seen that in Step 3 of the SIR algorithm we are sampling from
the following empirical distribution function,

F̂ (ht+1) =

M∑

k=1

λk
t+1I(ht+1 − h̃k

t+1),

where I(•) is an indicator function. Sampling from this step function is what leads to the
discontinuities as we change the parameters even if we keep the random number seed fixed.
However, we may replace this empirical distribution function by,

F̃ (ht+1) =
M∑

k=1

λk
t+1G

(
ht+1 − h̃k

t+1

hk+1
t+1 − h̃k

t+1

)
,

where the h̃k
t+1 are sorted in ascending order and some adjustments, found in Appendix A, are

imposed for the smallest and largest points. We have chosen the distribution function G(x) = x
corresponding to a Uniform distribution although other choices are possible. Importantly as
M → ∞, F̃ (ht+1) → F̂ (ht+1) → F (ht+1|Yt). It is straightforward and quick to invert this
function. The computational overhead is in principle O(M × log M) due to sorting though in
practice we found this to be largely irrelevent. The method of smooth resampling is described in
further detail in Appendix A. In the following section we shall describe the general method for
estimation for the stochastic volatility model with both jumps and leverage. The simpler models,
standard SV and SV with leverage, may of course be estimated in the same way imposing the
necessary restrictions.

3·3 Implementation of Stochastic Volatility with Leverage and Jumps Model

Given the replacement of resampling step (Step 3) of the basic SIR algorithm with a smooth
resampling scheme, implementing the particle filter for parameter estimation in the context of
the vanilla SV model (see Section 2.1) is straightforward. In the SV with leverage model equation
(2.5), f(ht+1|ht; yt) is highly non-linear. This make it difficult to obtain a good approximation
via procedures such as the Extended Kalman Filter or by linearizing the state-space form by
taking log-square transformations (See Harvey and Shephard (1996)). There are non-trivial
implementational complications arising due to this non-linearity if we were to estimate such a
model using MCMC or importance sampling, for example. Our method circumvents these issues
since Step 1 of the algorithm is still implemented straightforwardly.

Let us now consider the SV with leverage and jumps model. Steps 2 and 3 remain the
same but Step 1 is now slightly more complicated and nests two additional steps (1a and 1b)
which will be described below. Since the returns process can jump with a certain probability,
this necessitates simulating ǫt from the mixture density f(ǫt|ht, yt), which is then fed into the
state equation, ht+1 = µ(1 − φ) + φht + σηρǫt + ση

√
(1 − ρ2)ξt. Here,

f(ǫt|ht, yt) =
1∑

j=0

f(ǫt|Jt = j;ht, yt) Pr(Jt = j|ht, yt), (3·4)
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where Pr(Jt = 1|ht, yt) is the conditional probability of a jump. We establish that the functional
form of the mixture is given by,

f(ǫt|ht, yt) = δ(
yt

exp(ht/2)
) Pr(Jt = 0|ht, yt) + N(υǫ1 , σ

2
ǫ1).Pr(Jt = 1|ht, yt).

The derivation of this mixture in addition to computation of the moments υǫ1 , σ2
ǫ1 , probability

Pr(Jt = 1|ht, yt) and the associated distribution function is detailed in the Appendix B. We need
to implement a sub-algorithm for Step 1 in the case of SV with leverage and jumps.

Sub-algorithm used within SIR, for t=0,..,T-1:
We have samples hi

t ∼ f(ht|Yt) for i = 1, ..., M.

Step 1.

{
(1a) For i = 1 : M, sample ǫi

t ∽ f(ǫi
t|hi

t, yt).

(1b) For i = 1 : M, sample h̃i
t+1 ∼ f(ht+1|hi

t; yt; ǫ
i
t).

It is evident from the description of the components of f(ǫt|ht, yt) that this density with be
characterized by mass at a unique point, yt exp(−ht/2), but continuous elsewhere, and governed
by the moments of N(υǫ1 , σ

2
ǫ1).

In the context of the particle filter we require samples ǫi
t ∽ f(ǫi

t|hi
t, yt), i = 1, ....., M . The

method for obtaining these sample is provided in the Appendix B. Once these samples are
obtained they are fed through the state equation in order to implement Step 1b. The states

are initialized using the unconditional density f(h1) ∽ N(µ,
σ2

η

1−φ2 ). The non-normalized weights
for Step 2 in the SIR algorithm are of the form,

f(yt+1|h̃i
t+1, σ

2
J) = (1 − p)





1√
2π exp(h̃i

t+1)
exp

(
−1

2

y2
t+1

exp(h̃i
t+1)

)



+ p





1√
2π(exp(h̃i

t+1) + σ2
J)

exp

(
−1

2

y2
t+1

exp(h̃i
t+1) + σ2

J

)

 , (3·5)

for i = 1, ..., M. Once we are able to resample in a smooth manner as described in Section 3.2 and
Appendix A, the log-likelihood function associated with the particle filtering scheme becomes
straight forward to construct3. We record at each time step the Monte Carlo estimator of the
empirical prediction density4, i.e.

l̂t+1 = log f̂(yt+1|θ; Yt) = log

{
1

M

M∑

i=1

f(yt+1|h̃i
t+1, σ

2
J)

}
, (3·6)

3See Pitt (2002) for a detailed discussion of other possible schemes.
4
Bias correction: It should be noted that at the present the log-likelihood will not be unbiased. In order to

correct this we can use the usual Taylor expansion method. Abstarcting from likelihoods we have the large sample

result that our estimated likelihood, L, is unbiased for the true likelihood L, with E[L] = L and V ar[L] = σ2

M
.

Therefore we have,

E[log L] ⋍ log L −
1

2

σ2

M L2
,

an approximation which is very good for large M. Hence we can bias correct by substituting L as L, setting

l̂og L = log L +
1

2

σ̂2

M L
2
.
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After running through time we calculate,

log L̂(θ) =
T∑

t=1

l̂t. (3·7)

Essentially, our approach utilizes simulation to approximate the true likelihood. It has been
demonstrated in Del-Moral (2004) that the particle filter provides unbiased estimate of the true
likelihood function L(θ), such that L̂(θ)

a.s.→ L(θ) as M → ∞ and E[L̂(θ)] = L(θ). The resulting
simulated maximum likelihood estimator has asymptotic properties as discussed in Gourieroux
and Monfort (1996, Ch. 3). The estimator is consistent if T and M → ∞. In addition, when
T and M → ∞ and

√
T/M → 0 the simulated maximum likelihood estimator is asymptotically

equivalent to the maximum likelihood estimator5.
As long as the transition and measurement densities are continuous in ht+1 and θ, we can suf-

ficiently ensure log L̂(θ) will be continuous in θ. The important point to note here is that within
the implementation framework set out for the general SV with leverage and jumps model by
setting parameters, σ2

J and p to zero we recover the SV with leverage specification. Furthermore,
setting ρ = σ2

J = p = 0 we recover the standard SV specification.
Our implementation of the particle filter in the context of the SV with leverage and jumps

also allows us to estimate the probability of a jump, i.e. Pr(Jt = 1|Yt−1) =
∫

Pr(Jt =
1|yt; ht)f(ht|Yt−1)dht straightforwardly as,

P̂r(Jt = 1|Yt−1) =
1

M

M∑

i=1

Pr(Jt = 1|yt, h
i
t). (3·8)

3·4 Diagnostics

Standard approaches involved in specification analysis of time-series models is to investigate
the properties of residuals in terms of their dynamic structure and unconditional distributions.
This is infeasible given the latent dimension of the model under consideration. Alternatively
therefore, in order to test the hypothesis that the prior and model are true, we require the
distribution function,

ut = F (yt|Yt−1) =

∫
F (yt|ht)f(ht|Yt−1)dht. (3·9)

In the specific case of SV with leverage and jumps, the distribution function can be estimated
by,

ût = (1 − p)

{
1

M

M∑

i=1

Φ

(
yt

exp(hi
t/2)

)}
+ p





1

M

M∑

i=1

Φ


 yt√

exp(hi
t) + σ2

J






 ,

(3·10)

where Φ(.) denotes the standard normal distribution function .If the prior and model were true,
then the estimated distribution functions, ût ∽ UID(0, 1), for t = 1, ...., T, as M → ∞ (See
Rosenblatt (1952)).

5These are Propositions 3.1 and 3.2 in Chapter 3 of Gourieroux and Monfort (1996). Simulation-based esti-
mators have been implemented and developed in other contexts such as discrete response models by Pakes and
Pollard (1989), Lee (1992) and Sauer and Keane (2009).
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3·5 Model Comparison

Given the framework described we can conduct model comparison be computing marginal like-
lihoods of competing models. We have the marginal likelihood as,

f(y|Wk) =

∫
f(y|θk; Wk)f(θ;Wk)dθk,

where f(y|θk; Wk) is our likelihood approximation via the particle filter for model Wk (k =
1, ..., K) given the model specific maximum likelihood estimate of the parameter vector θk re-
sulting from the optimization of the likelihood function. We may express this as,

f(y|Wk) =

∫
f(y|θk; Wk)f(θk; Wk)

g(θk|y,Wk)
g(θk|y, Wk)dθk,

where g(θk|y, Wk) is a multivariate Gaussian or t-distribution centered at maximum likelihood
estimate (or the mode of f(y|θk;Wk)f(θk;Wk) ) with the variance given by the inverse of the
observed information matrix. This importance sampling scheme leads to an approximation,

f(y|Wk) =
∑S

j=1

f(y|θj
k;Wk)f(θj

k;Wk)

g(θj
k|y, Wk)

,

where θj
k ∼ g(θk|y, Wk). In practice this may only take a small number of draws as the pos-

terior may be close to being log-quadratic (asymptotically under the usual assumptions this
will be the case). Once the the appropriate prior density f(θk; Wk) is selected this model com-
parison scheme based on the ratios of marginal likelihoods between competing models can be
implemented. Given the fact that we integrate out the parameter vector when computing the
marginal likelihoods, we do not fall victim to the nuisance parameter problem encountered in
similar contexts using likelihood ratio tests.

4 Simulation Experiments

4·1 Stochastic Volatility with Leverage

After running the smooth particle filter we maximize the estimated log-likelihood function with
respect to θ = (µ, φ, σ2

η, ρ). We now investigate the performance of our maximum likelihood
estimator for the SV with leverage case. First we simulate two time series of length 1000 and
2000 with parameter values θ = (µ, φ, σ2

η, ρ) = (0.5, 0.975, 0.02,−0.8) and run the smooth particle
filter 50 times using different random number seeds for the smooth particle filter for each run.
These values for parameters are typical of those used in the literature in similar contexts. The
resulting estimated log-likelihoods for each run are then maximized estimates with respect to
θ. This is carried out for M = 300 and 600. The average of 50 maximum likelihood estimates
(MLs) and 50 variance estimates (V ar) along with the variance for the sample of maximum
likelihood estimates (V ar(MLs)), are reported for each case considered. The variance covariance
matrix is estimated using the variance of the scores, i.e. the outer product of gradients (OPG)
estimator. We chose to use this estimator as opposed to taking the negative of the inverse of
the Hessian matrix at the mode in order to maintain the robustness of our procedure. Results
are given in Table 1.

It is informative to consider the ratio of the variance of the maximum likelihood estimates in
Table 1 to the variance of each parameter with respect to the data. These are, for M = 300, T =
1000 : (0.0281, 0.0124, 0.0095, 0.0497); M = 600, T = 1000:(0.0078, 0.0046, 0.0062, 0.0192) and
M = 300, T = 2000 : ( 0.0171, 0.0142, 0.0094, 0.0223) and M = 600, T = 2000 :( 0.00757,
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M=300, T=1000

MLs V ar × 100 V ar(MLs) × 100

µ 0.5447 0.6491 0.01832

φ 0.9770 0.0033 0.00004

σ2
η 0.0143 0.0015 0.00002

ρ -0.7938 0.1867 0.00931

M=600, T=1000

MLs V ar × 100 V ar(MLs) × 100

µ 0.5461 0.6792 0.00534

φ 0.9767 0.0034 0.000016

σ2
η 0.0144 0.0016 0.0000098

ρ -0.7946 0.1868 0.00392

M=300, T=2000

MLs V ar × 100 V ar(MLs) × 100

µ 0.4087 0.3848 0.0066

φ 0.9766 0.0022 0.00003

σ2
η 0.0153 0.0010 0.000009

ρ -0.8166 0.1106 0.00247

M=600, T=2000

MLs V ar × 100 V ar(MLs) × 100

µ 0.4095 0.4181 0.00322

φ 0.9765 0.0023 0.000012

σ2
η 0.0154 0.0011 0.000004

ρ -0.8175 0.1178 0.00150

Table 1: Fixed dataset. Performance of the smooth particle filter for the stochastic volatility with
leverage model for two cases, T=1000 and 2000; considering M=300, 600 for each case.True
parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and ρ = −0.8.

M=200

MLs V ar × 100 V ar(MLs) × 100

µ 0.5107 1.3207 2.3506

φ 0.9726 0.0081 0.0073

σ2
η 0.0206 0.0043 0.0045

ρ -0.7859 0.80467 0.6067

M=500

MLs V ar × 100 V ar(MLs) × 100

µ 0.5154 1.3499 2.3482

φ 0.9728 0.0087 0.0057

σ2
η 0.0204 0.0042 0.0044

ρ -0.7895 0.8008 0.5722

M=3000

MLs V ar × 100 V ar(MLs) × 100

µ 0.5164 1.3047 2.353

φ 0.9728 0.0097 0.0053

σ2
η 0.0205 0.0043 0.0040

ρ -0.7911 0.7877 0.5627

Table 2: 50 different datasets. Analysis of the maximum likelihood estimator for stochastic
volatility with leverage model for cases, M=200, 500 and 3000. T=1000 in all cases. True
parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and ρ = −0.8
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0.00489, 0.00393, 0.01186). There is a substantial reduction in these ratios as M increase which
is illustrated by kernel density estimates in Figure 1.

Next, we generated 50 different time series each of length T = 1000, with fixed values of
parameters θ = (µ, φ, σ2

η, ρ) = (0.5, 0.975, 0.02,−0.8). Keeping the random number seed fixed
we run the smooth particle filter in turn for each of the time series and maximize the esti-
mated log-likelihood with respect to θ for each run. The average of 50 maximum likelihood
estimates (MLs)and 50 variance estimates (V ar) along with mean squared errors (V ar(MLs))
are reported in Table 2 for each of three cases considered. The histograms in Figure 2 indi-
cate that the distribution of the parameters is not too far from normality. In all cases we find
that biases are not significantly different from zero6 and the true values of the parameters lie
well within their 95% confidence limits. The procedure does not throw up any extreme outliers
and we have no problem with convergence to the mode. It is worth noting that the variance
estimates (V ar) alter only slightly when taking different values of M. The reason for this is
that as |ρ| −→ 1, the state equation (2.5) tends to a deterministic GARCH-type diffusion which
anchors the variability around the point estimate thus decreasing sensitivity to the value of M7.

4·2 Stochastic Volatility with Leverage and Jumps

Now we investigate parameter estimation in the case of SV with leverage and jumps model.
We run the smooth particle filter and maximize the estimated log-likelihood with respect to the
parameter vector θ = (µ, φ, σ2

η, ρ, σ2
J , p).We again begin by simulating two time series of length

1000 and 2000, setting parameters θ = (µ, φ, σ2
η, ρ, σ2

J , p) = (0.5, 0.975, 0.02,−0.8, 10, 0.10). These
values for parameters are in line with those that have been adopted in similar contexts in the
literature.

M=300, T=1000

MLs V ar × 100 V ar(MLs) × 100

µ 0.5595 3.0020 0.06023

φ 0.9648 0.0103 0.00021

σ2
η 0.0458 0.0186 0.00020

ρ -0.7072 1.0326 0.01629

σ2
J 10.176 813.98 6.9054

p 0.0769 0.0754 0.00120

M=600, T=1000

MLs V ar × 100 V ar(MLs) × 100

µ 0.5650 2.9623 0.03853

φ 0.9648 0.0103 0.00013

σ2
η 0.0461 0.0192 0.00012

ρ -0.7026 1.0333 0.00665

σ2
J 10.174 823.13 2.5625

p 0.0764 0.0771 0.00045

M=300, T=2000

MLs V ar × 100 V ar(MLs) × 100

µ 0.4770 1.2653 0.03098

φ 0.9680 0.00522 0.00013

σ2
η 0.0338 0.00661 0.000123

ρ -0.7419 0.7275 0.01352

σ2
J 7.7568 207.71 1.1959

p 0.11263 0.0659 0.00079

M=600, T=2000

MLs V ar × 100 V ar(MLs) × 100

µ 0.4830 1.2760 0.01097

φ 0.9681 0.0052 0.00005

σ2
η 0.0338 0.0067 0.00008

ρ -0.7394 0.7425 0.00622

σ2
J 7.7929 216.21 0.87021

p 0.1115 0.0667 0.00047

Table 3: Fixed dataset. Performance of the smooth particle filter for the stochastic volatility
model with leverage and jumps for two cases, T=1000 and 2000; considering M=300, 600 for
each case.

6E(θ̂) − θ = Bias ∽ N(0, MSE
50

) where the mean squared error (MSE) is E[(θ̂ − θ)2] .
7As a conseuence of this, since now we only require small M, incorporating leverage also indirectly also reduces

computation time of our procedure.
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M=200

MLs V ar × 100 V ar(MLs) × 100

µ 0.49151 2.0908 1.7937

φ 0.97101 0.013972 0.018073

σ2
η 0.022110 0.0086659 0.0071614

ρ -0.84684 1.3943 1.1835

σ2
J 9.8470 954.42 621.81

p 0.10458 0.13002 0.069915

M=500

MLs V ar × 100 V ar(MLs) × 100

µ 0.50006 2.2045 1.5714

φ 0.97186 0.015317 0.010667

σ2
η 0.022389 0.0097163 0.0064737

ρ -0.83714 1.4793 1.1215

σ2
J 9.8013 1018.7 637.60

p 0.10358 0.13667 0.063125

M=900

MLs V ar × 100 V ar(MLs) × 100

µ 0.49720 2.1724 1.6280

φ 0.97203 0.014559 0.0099983

σ2
η 0.022474 0.0090217 0.0075645

ρ -0.84500 1.5008 1.1664

σ2
J 9.8524 1007.0 648.20

p 0.10367 0.13505 0.065325

Table 4: 50 different datasets. Analysis of the maximum likelihood estimator for stochastic
volatility with leverage and jumps model for cases, M=200, 500 and 900. T=1000 in all cases.

The smooth particle filter is run 50 times using a different random number seed but keeping
the dataset fixed. The estimated log-likelihood is maximized with respect to θ for each run.
In Table 3, the average of the resulting 50 maximum likelihood estimates (MLs)and 50 vari-
ance estimates (V ar), along with the variance for the sample of maximum likelihood estimates
(V ar(MLs)),are reported for different cases considered. The variance covariance matrix is again
estimated using the OPG estimator.

We examine the ratio of the variance of the maximum likelihood estimates to the variance
of each parameter with respect to the data. These are, for M = 300, T = 1000 : (0.0201,
0.0209, 0.0108, 0.01578, 0.0085, 0.0159); M = 600, T = 1000:(0.0131, 0.0132, 0.0062, 0.0064,
0.0032, 0.0059); M = 300, T = 2000 : (0.0245, 0.0251, 0.0186, 0.0186, 0.0058, 0.0121) and
M = 600, T = 2000 : (0.0086, 0.0095, 0.0121, 0.0084, 0.0040, 0.0070). These ratios suggest that
the variance of the simulated estimates is small in comparison to the variance induced by the
data. The reduction in these ratios as M increases is illustrated by kernel density estimates in
Figure 3.

Next, we generate 50 different time series each of length T = 1000, setting values of pa-
rameters θ = (µ, φ, σ2

η, ρ, σ2
J , p) = (0.5, 0.975, 0.02,−0.8, 10, 0.10). Keeping the random number

seed fixed we run the smooth particle filter in turn for each of the time series and maximize the
estimated log-likelihood with respect to θ for each run. The average of 50 maximum likelihood
estimates (MLs) and 50 variance estimates (V ar) along with mean squared errors (V ar(MLs))
are reported in Table 4, for each of three cases considered. Variance estimates are computed
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using the OPG estimator for the variance covariance matrix.

Small Jump - High Intensity

MLs V ar × 100 V ar(MLs) × 100

µ 0.21240 3.4545 2.7098

φ 0.97290 0.0066247 0.0072527

σ2
η 0.029170 0.013178 0.014784

ρ -0.85636 0.70314 0.66880

σ2
J 0.63322 95.169 60.103

p 0.23544 4.3614 6.8037

Table 5: 50 different datasets. Analysis of the maximum likelihood estimator for stochastic
volatility with leverage and jumps model. We set parameter values; µ = 0.25, φ = 0.975,
σ2

η = 0.025, ρ = −0.8, σ2
J = 0.5 and p = 0.10. M=300 and T=1000 .

Large Jump - Low Intensity

MLs V ar × 100 V ar(MLs) × 100

µ 0.25359 1.9024 1.3926

φ 0.97293 0.0063159 0.0074348

σ2
η 0.026733 0.0066633 0.0070814

ρ -0.82253 0.55547 0.42255

σ2
J 9.6201 2162.1 3884.2

p 0.013252 0.075626 0.020192

Table 6: 50 different datasets. Analysis of the maximum likelihood estimator for stochastic
volatility with leverage and jumps model. We set parameter values; µ = 0.25, φ = 0.975,
σ2

η = 0.025, ρ = −0.8, σ2
J = 10 and p = 0.01. M=300 and T=1000 .

The corresponding histograms in Figure 4 suggest convergence towards the mode and that
we are not far from normality. In testing for bias we find very encouraging results. We find
that all parameters, except the leverage parameter ρ which is estimated with slight bias, are
either within, or on the boundary of their 95% confidence limits. It should be pointed out that
unbiasedness is an asymptotic property associated with the likelihood and there is no reason for
us to not expect some degree of bias given a time series of moderate length such as what we are
considering for purposes of our experiments. The results are stable across different values of M .
We note that the settings for this experiment were one of a large jump variance σ2

J with very
high intensity, p. One would expect the additional noise induced by these setting to render the
estimation of the stochastic volatility components less accurate. Our findings suggest that in
spite of having large jumps with high intensity, our procedure delivers highly reliable estimates
for all the parameters.

We proceed to investigate how the error in estimation is affected by varying the intensity and
jump size. The results in Table 5 suggest that having small jumps occurring with high intensity
induces a slight amount of bias is estimating of σ2

η, ρ and p. In contrast, if large jumps occur at
a very low frequency, i.e. setting p = 0.01, the accuracy of our estimates is greatly enhanced
(see Table 6). All parameters fall well within their 95% confidence limits with only moderate
bias in the estimate of leverage (see Figures 5 and 6). Using simulated data generated with large
jump-low intensity calibration for θ, we provide the diagnostic check (see Section 3.4) for the SV
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with leverage and jumps model in addition to a plot of the data, filtered standard deviation and
filtered jump probabilities in Figure 7 8. The diagnostic test appears to be indicate the prior
and model are correct.

5 Empirical Examples

We now employ our methodology to estimate the three models; (i) stochastic volatility (SV), (ii)
stochastic volatility with leverage (SVL) and (iii) stochastic volatility with leverage and jumps
(SVLJ) using daily returns data for four different price indices, namely S&P 500, FTSE 100,
Dow Jones and Nasdaq. For each of the series, the parameter estimates along with standard
errors9, log-likelihood values and Akaike information criterion (AIC) for the three specifications
are reported in Tables 7,8,9 and10. The results reported indicate that the gain in likelihood
points moving from the SVL to SVLJ specification is small compared to the gain in points by
incorporating only leverage in the SV specification.

ML Estimate Standard Error

SV: Log-lik value = −3044.1, AIC = 6094.2

µ 0.1717 0.1872

φ 0.9832 0.0056

σ2
η 0.0218 0.0048

SVL: Log-lik value = −2996.4, AIC = 6000.8

µ 0.2432 0.0983

φ 0.9739 0.0040

σ2
η 0.0307 0.0044

ρ -0.7944 0.0426

SVLJ: Log-lik value = −2993.7, AIC = 5999.4

µ 0.2498 0.1010

φ 0.9766 0.0041

σ2
η 0.0266 0.0048

ρ -0.8303 0.0444

σ2
J 5.2607 2.0453

p 0.0079 0.0026

Table 7: Parameter estimates for S&P 500 daily returns data for period, 16/05/1995 -
24/04/2003. M=500.

For the time span of data considered we find that leverage is extremely important compo-
nent in modelling stochastic volatility whereas including jumps in addition to leverage yield a
statistically significant gain in the case of Dow Jones and Nasdaq. We illustrate the actual re-
turns data, along with the quantiles of filtered standard deviation and filtered jump probabilities
for S&P 500 and Dow Jones in Figure 8 and 9. Results of the diagnostic check on the SVLJ
specification for all four series are provided in Figure 10.

8Note that the plots in each of these figures illustrate output generated by a single run of the smooth particle
filter.

9We use the outer product of gradients estimator for the variance covariance matrix.
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ML Estimate Standard Error

SV: Log-lik value = −3004.4, AIC = 6014.8

µ 0.0751 0.2093

φ 0.9859 0.0052

σ2
η 0.0176 0.0046

SVL: Log-lik value = −2972.8, AIC = 5965

µ 0.1135 0.1257

φ 0.9842 0.0037

σ2
η 0.0201 0.0040

ρ -0.7825 0.0509

SVLJ: Log-lik value = −2972.2, AIC = 5956.4

µ 0.0638 0.1262

φ 0.9836 0.0038

σ2
η 0.0212 0.0042

ρ -0.8029 0.0584

σ2
J 1.4652 1.0376

p 0.0132 0.0229

Table 8: Parameter estimates for FTSE 100 daily returns data for period, 01/07/1996 -
01/03/2004. M=500.

ML Estimate Standard Error

SV: Log-lik value = −2623.5, AIC = 5253

µ -0.2379 0.1717

φ 0.9830 0.0061

σ2
η 0.0183 0.0043

SVL: Log-lik value = −2586.7, AIC = 5181.4

µ -0.1745 0.0963

φ 0.9805 0.0035

σ2
η 0.0213 0.0037

ρ -0.8282 0.0410

SVLJ: Log-lik value = −2579.2, AIC = 5170.4

µ -0.1557 0.0988

φ 0.9825 0.0034

σ2
η 0.0189 0.0036

ρ -0.8640 0.0451

σ2
J 18.706 12.43

p 0.0018 0.0014

Table 9: Parameter estimates for Dow Jones Composite daily returns data for period,
01/05/2000 - 31/12/2007. M=500.
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ML Estimate Standard Error

SV: Log-lik value = −3457.6, AIC = 6921.2

µ 0.7193 0.5488

φ 0.9973 0.0016

σ2
η 0.0054 0.0156

SVL: Log-lik value = −3429.3, AIC = 6866.6

µ 0.4877 0.1834

φ 0.9942 0.0014

σ2
η 0.0077 0.0016

ρ -0.8291 0.0543

SVLJ: Log-lik value = −3423.3, AIC = 6858.6

µ 0.2615 0.1564

φ 0.9930 0.2284

σ2
η 0.0131 0.0016

ρ -0.8411 0.0034

σ2
J 0.4781 0.0503

p 0.5599 0.0848

Table 10: Parameter estimates for Nasdaq Composite daily returns data for period, 01/05/2000
- 31/12/2007. M=500.

6 Conclusion

In this paper we have attempted to provide a unified methodology in order to conduct likelihood-
based inference on the unknown parameters of discrete-time stochastic volatility models incorpo-
rating a leverage effect and jumps in the returns process. It is demonstrated how the likelihood
can be approximated using output generated by the particle filter and how smooth resampling
can be undertaken in order ensure that the likelihood estimator is continuous as a function
of the unknown parameters. The latter enabling the use of gradient-based (Newton-Raphson
type) maximization algorithms. A great advantage of our unified methodology is that it allows
us to easily obtain the filtered path of the states, jump probabilities (i.e. in the case of SV
with leverage and jumps) and output required to perform diagnostics. This is in contrast to
competing methodologies which deliver these objects following often complicated modifications
to their basic structures.

Implementation is easy and has the benefit of being both faster is terms of CPU computation
time and more general than many alternatives in the literature. With regards to generality,
we note that the standard SV and SV with leverage models are restricted forms of the SV
with leverage and jumps model; it is highlighted how the proposed methodology can easily
facilitate parameter estimation for all three types of models without any alteration in the basic
structure of the algorithm and as a consequence also allow for model comparison. Our Monte
Carlo experiments indicate that the method is both robust and efficient. Especially, when
examining finite sample bias we find very encouraging results even when considering very high
jump intensity. On our simulated data, the methodology was efficient and quick even for very
long time series. In unreported results we tried T = 20, 000.

As empirical examples we model four different daily returns series using our approach. Our
results reveal that the inclusion of a leverage effect is extremely important when modelling
stochastic volatility, as indicated by the substantial gain in the log-likelihood over the standard
SV model. Additionally, we find that inclusion of jumps in returns, after having incorporated
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leverage leads to a relatively less dramatic gain in log-likelihood.
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7 Appendix A

Smooth Resampling

This procedure works by replacing the discrete cumulative distribution function (cdf) given
by one that is smooth, thus providing particles from the filter which are smooth as a function
of θ. Let us begin by assuming that we have a 1 × M vector of elements hi sorted in ascending
order, with associated discrete probabilities, λi. The time subscript is suppressed for notational
convenience. Abstracting from the notation used in the main text slightly, let the discrete cdf
used in SIR be given by F̂ (h) =

∑M
i=1 λiI(h < hi). This approximates the true cdf F (h). In

order to obtain a continuous interpolation for, F̂ (h) we proceed as follows.
We construct partitions of the sample space for h by defining region.i, Si = [hi, hi+1], i =

1, ..., M − 1. Next we assign Pr(i)=1
2(λi + λi+1), Pr(1)=1

2(2λ1 + λ2) and Pr(M − 1)=1
2(λM−1 +

2λM ), such that these probabilities sum to unity. Within each region we have conditional
densities given by,

g(h|i) =
1

hi+1 − hi
, h ∈ Si, i = 2, ....,M − 2

g(h|1) =

{
λ1

2λ1+λ2 , when h = h1

λ1+λ2

2λ1+λ2

1
(h2

−h1)
, when h ∈ S1

g(h|M − 1) =

{
λM

λM−1+2λM , when h = hM

λ1+λ2

λ1+2λ2

1
(hM

−hM−1)
, when h ∈ SM−1
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By following the above procedure we obtain a continuous interpolation for the discrete cdf;
this ‘continuous’ cdf F̃ (h) will pass through the mid-point of each step. As M → ∞, F̃ (h) →
F̂ (h) → F (h). We sample from the continuous density by selecting region i with Pr(i) and the
sample from g(h|i).We detail this resampling procedure below.

Once we obtain the continuous empirical cdf we the task is to implement smooth sampling,
which will yield an ordered sample of particles, say, h∗1, ....., h∗M .We use a stratified sampling
scheme for purposes of this paper. Stratification reduces sample impoverishment and has been
suggested by Kitagawa (1996), Carpenter et al. (1999) and Liu and Chen (1998). In an extreme
case, after a certain amount of updates, the particle system may collapse to a single point
resulting in a poor approximation to the required density10. In contrast to SIR which involves
generating uniforms u

1
, ...., uM ∽ UID(0, 1), stratified sampling will require us to generate a

single random variate u ∽ UID(0, 1) from which we can propagate sorted uniforms given by
uj = (j − 1)/M + u/M, j = 1, ....,M.

If Pr(i) = λ̃i = 1
2(λi + λi+1), then the cumulative probability is given by λ

i
=

∑i
s=1 λ̃s,

where i = 1, ..., M − 1. Next we define the interval corresponding to region i as,

(
i−1∑

s=1

λ̃s ,
i∑

s=1

λ̃s

]
,

and the uniform(s) falling within the interval by,

u∗

j =
uj − (

∑i−1
s=1 λ̃s)

λ̃i
.

We can now sample conditional upon that region, i.e. from g(h|i) using the corresponding
uniform(s) u∗

j . Since g(h|i) is uniform, the sampled particles can be backed-out as

h∗i = (hi +1 − hi) × u∗

j + hi. (7·1)

Alrorithm: Smooth resampling
The algorithm given below samples the index corresponding to the region which are stored

as, r1, r2....., rM and also the uniforms u∗

1, ....., u
∗

M .
set s=0,j=1;
for (i=1 to M -1)
{
s=s+λ̃i;

while (uj ≤ s AND j ≤ M)
{

rj = i;
u∗

j = ( uj − (s − λ̃i )) / λ̃i;
j = j + 1;

}
}

10In the less extreme case, a few particles may survive, but as noted by Carpenter et al (1999), the high degree of
internal correlation yields summary statistics reflective of a substantially smaller sample. In order to compensate
a very large number of particle will need to be generated.
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8 Appendix B

Deriving the functional form of density f(ǫt|ht, yt)

The conditional probability of a jump is given by,

Pr(Jt = 1|ht, yt) =
Pr(yt|J = 1) Pr(J = 1)

Pr(yt|J = 1)Pr(J = 1) + Pr(yt|J = 0) Pr(J = 0)
,

=
N(yt|0; exp(ht) + σ2

J)p

N(yt|0; exp(ht) + σ2
J)p + N(yt|0; exp(ht))(1 − p)

. (8·1)

Hence, Pr(Jt = 0|ht, yt) = 1 − Pr(Jt = 1|ht, yt). Now since,

f(ǫt|J = 1;ht, yt) ∝ f(yt|J = 1, ht, ǫt)f(ǫt), (8·2)

we can reformulate the conditional density f(ǫt|J = 1;ht, yt) ∝ N( yt| ǫt exp(ht/2); σ2
J) ×

N(ǫt|0; 1) in logarithmic form as,

log f(ǫt|J = 1;ht, yt) = const − 1

2

(yt − ǫt exp(ht/2))2

σ2
J

− 1

2
ǫ2t , (8·3)

The resultant quadratic form facilitates completing the square to yield,

log f(ǫt|Jt = 1;ht, yt) = K − 1

2

(ǫt − υǫ1)
2

σ2
ǫ1

. (8·4)

Computing moments υǫ1 and σ2
ǫ1

Taking the expression log f(ǫt|J = 1;ht, yt) = const − 1
2

(yt − ǫt exp(ht/2))2

σ2

J

− 1
2ǫ2t ,

First collect the squared terms corresponding to −1
2ǫ2t ;

1
σ2

ǫ1

= exp(ht)
σ2

J

+ 1 =
exp(ht)+σ2

J

σ2

J

,

=⇒ σ2
ǫ1 =

σ2

J

exp(ht) + σ2

J

.

Next those corresponding to ǫt;

υǫ1

σ2
ǫ1

= yt exp(ht/2)
σ2

J

,

=⇒ υǫ1 = yt exp(ht/2)
exp(ht) + σ2

J

.

We hence establish that,

f(ǫt|Jt = 1;ht, yt) = N(υǫ1 , σ
2
ǫ1) where, υǫ1 =

yt exp(ht/2)

exp(ht) + σ2
J

and σ2
ǫ1 =

σ2
J

exp(ht) + σ2
J

,

If the process does not jump, there is a dirac delta mass at the point,

f(ǫt|Jt = 0;ht, yt) =
yt

exp(ht/2)
. (8·5)
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Functional form of distribution funtion F (ǫt|ht, yt)

F (ǫt|ht, yt) can thus be split into three regions with boundaries delineated as follows.

• Pr(Jt = 1|ht, yt).
∫ ǫt

−∞
f(ǫt|Jt = 1, ht, yt)dǫt for ǫt < yt exp(−ht/2)

• Pr(Jt = 1|ht, yt).
∫ yt exp(−ht/2)
−∞

f(ǫt|Jt = 1, ht, yt)dǫt + (1 − Pr(Jt = 1|ht, yt)) for ǫt =
yt exp(−ht/2)

• Pr(Jt = 1|ht, yt).
∫ yt exp(−ht/2)
−∞

f(ǫt|Jt = 1, ht, yt)dǫt + (1 − Pr(Jt = 1|ht, yt))

+ Pr(Jt = 1|ht, yt).
∫ +∞

ǫt
f(ǫt|Jt = 1, ht, yt)dǫt for ǫt > yt exp(−ht/2)

Sampling continuously from the mixture density f(ǫt|ht, yt)

In the context of the particle filter, the generation of hi
t, i = 1, ....., M particles each time

step, will give rise to densities, f(ǫi
t|hi

t, yt), i = 1, ..., M. The aim is thus to simulate ǫ1t , ....., ǫ
M
t ,

from corresponding densities f(ǫ1t |h1
t , yt), ....., f(ǫM

t |hM
t , yt). We shall illustrate the procedure to

simulate ǫ1t from density f(ǫ1t |h1
t , yt) =

∑1
j=0 f(ǫ1t |Jt = j;h1

t , yt) Pr(Jt = j|h1
t , yt). Given that

the density corresponding to particle h1
t is of the form,

f(ǫ1t |h1
t , yt) = δ(yt exp(−h1

t /2)). Pr(Jt = 0|h1
t , yt) + N(υ1

ǫ1 , σ
21

ǫ1 ). Pr(Jt = 1|h1
t , yt).

For notational simplicity we set x∗ = yt exp(−h1
t /2) and the conditional probability of a jump

to be PrJ = Pr(Jt = 1|h1
t , yt). The associated distribution function F (ǫ1t |h1

t , yt) is thus of the
form.

F (ǫ1t |h1
t , yt) = PrJ .

∫ ǫ1t
−∞

f(ǫ1t |Jt = 1, ht, yt)dǫ1t for ǫ1t < x∗

F (ǫ1t |h1
t , yt) = PrJ .

∫ x∗

−∞
f(ǫ1t |Jt = 1, h1

t , yt)dǫ1t + (1 − PrJ) for ǫ1t = x∗

F (ǫ1t |h1
t , yt) = PrJ .

∫ x∗

−∞
f(ǫ1t |Jt = 1, h1

t , yt)dǫ1t + (1 − PrJ) + PrJ .
∫ +∞

ǫ1t
f(ǫ1t |Jt = 1, h1

t , yt)dǫ1
t for ǫ1t > x∗

As is evident from the form of F (ǫ1t |h1
t , yt), the height of this distribution function can be split

into three distinct regions. First generate a uniform random variate u1 ∽ UID(0, 1), then record
within which region u1 falls. Conditional on the recorded region we then invert in accordance
with the following scheme.

• If u1 ≤ Φ(
x∗

−υ1
ǫ1

σ1
ǫ1

).PrJ , we sample ǫ1t = υ1
ǫ1 + σ1

ǫ1Φ
−1( u1

PrJ ).

• If Φ(
x∗

−υ1
ǫ1

σ1
ǫ1

). PrJ < u1 ≤ Φ(
x∗

−υ1
ǫ1

σ1
ǫ1

). PrJ +(1 − PrJ), we sample ǫ1t = yt exp(−h1
t /2).

• If u1 > Φ(
x∗

−υ1
ǫ1

σ1
ǫ1

).PrJ +(1 − PrJ), we sample ǫ1t = υ1
ǫ1 + σ1

ǫ1Φ
−1(u1−(1−PrJ )

PrJ ).

Φ(.) denotes the standard normal distribution function. The above probability integral
transform procedure is repeated for each of the generated uniforms u1,......, uM ∽ UID(0, 1) in
order to obtain the required sample ǫi

t ∽ f(ǫi
t|hi

t, yt), i = 1, ....., M.
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Figure 1: Fixed dataset. Dashed line:Kernel density estimate of the ML estimator for θ =
(µ, φ, σ2

η, ρ), for SV with leverage model; T = 2000 and M = 300. Solid line: Kernel density
estimate of the ML estimator for θ = (µ, φ, σ2

η, ρ), for SV with leverage model; T = 2000 and
M = 600. True parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and ρ = −0.8.
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Figure 2: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ), for SV with leverage model. True parameters, µ = 0.5, φ = 0.975, σ2
η = 0.02

and ρ = −0.8. M = 500 and T = 1000.
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Figure 3: Fixed datasets. Dashed line:Kernel density estimate of the ML estimator for θ =
(µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model; T = 2000 and M = 300. Solid line:

Kernel density estimate of the ML estimator for θ = (µ, φ, σ2
η, ρ, σ2

J , p), for SV with leverage
and jumps model; T = 2000 and M = 600. True parameters, µ = 0.5, φ = 0.975, σ2

η = 0.02 and
ρ = −0.8, σ2

J = 10 and p = 0.10.
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Figure 4: 50 different dataset. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.5, φ =

0.975, σ2
η = 0.02 and ρ = −0.8, σ2

J = 10 and p = 0.10. M = 500 and T = 1000.
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Figure 5: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.25, φ =

0.975, σ2
η = 0.025 and ρ = −0.8, σ2

J = 0.5 and p = 0.10. M = 300 and T = 1000.
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Figure 6: 50 different datasets. Histogram of the Monte Carlo samples of the ML estimates for
θ = (µ, φ, σ2

η, ρ, σ2
J , p), for SV with leverage and jumps model. True parameters, µ = 0.25, φ =

0.975, σ2
η = 0.025 and ρ = −0.8, σ2

J = 10 and p = 0.01. M = 300 and T = 1000.
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Figure 7: Using simulated data with θ = (µ, φ, σ2
η, ρ, σ2

J , p) = (0.25, 0.975, 0.025,−0.8, 10, 0.01)
and a single run of the smooth particle filter. LEFT PANEL: (i) Plot of data, (ii) filtered
standard deviation, (iii) estimated jump probabilities. RIGHT PANEL: (i)QQ-plot of estimated
distribution functions, ûJ

t (ii) correlogram of ûJ
t . M = 500, T = 2000.
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Figure 8: SV with leverage and jumps model. Daily S&P 500 returns over the period 16/05/1995
- 24/04/2003. (i) returns data, (ii) quantiles of filtered standard deviation and (iii) estimated
jump probabilities. M = 500.
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Figure 9: SV with leverage and jumps model. Dow Jones Composite 65 Stock Average returns
over the period 01/05/2000 - 31/12/2007.(i) returns data, (ii) quantiles of filtered standard
deviation and (iii) estimated jump probabilities. M = 500.
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Figure 10: Diagnostic tests in the context of modelling stochastic volatility with leverage and
jumps. Left panel: QQ-plot of estimated distribution functions, ûJ

t . Right panel: Associated
correlogram of ûJ

t . The first row provides diagnostics for the case of S&P 500, the second row
FTSE 100, the third row, Dow Jones and fourth row, Nasdaq.
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