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Estimating the Precision of Welfare Measures

Three methods for constructing standard errors of welfare estimates have been

employed in the recreation demand literature: a Taylor's series approximation, the

bootstrap, and a method proposed by Krinsky and Robb. This paper presents the

results of a simulation experiment designed to examine the accuracy of these methods.




Estimating the Precision of Welfare Measures
Researchers involved in applied welfare analysis have recently begun to stress the
impor’tance of providing estimates of the precision of welfare measures (Adamowicz,
Fletcher‘, and Graham-Tomasi; Creel and Loomis; Kling and Sexfon). A variety of
approaches have been suggested, but since the standard errors of welfare estimates

must themselves be estimated, the accuracy of these methods is of interest. The

purpose of this paper is to consider alternative approaches to the estimation of standard

errors and compare their performance under a variety of circumstances.

At least three approaches to estimating the standard error of a non-linear function
of random variables have been prdpqsed. The traditional approach linearizes the
function via a Taylor’s series approximation and computes an estimate of the standard
error based on this linearized form (Kmenta). More recently, bootstrap methods have
been proposed (Efron; Freedman and Peters) and applied to elasticities and consumer
surplus (Dorfman, Kling, and Sexton; Green, Hahn, and Rocke; Kling and Sexton). |
the bootstrap, the regression residuals are resampled to construct psuedo data sets
which are used in turn to construct a distribution of the statistic of interest. A third
method, proposed by Krinsky and Robb, is similar to the bootstrap, but the distribution of
the estimated coefficients is resampled from directly.

To examine the accuracy of these three methods, this paper presents the results of
a simulation study designed to examine the conditions under which each method is
likely to provide accurate standard error estimates. A series of simulated data sets for
which the parameters and error distribution are known are generated. This information
is then used to construct the true standard error of Marshallian and Hicksian welfare

estimates. Two sizes of welfare measures are examined: the value of loss of access to




‘the good and the value of a change in quality of the good. Next, the steps a researcher
might follow in doing a typical benefit estimation study are followed: the data sets are
used to generate point estimates of welfare and each of the three methods is employed
to estimate the standard error. The important difference between this study and a
researcher faced with an actual data set is that the true standard error of the welfare
estimates can be simulated; hence, this known standard error can be compared to the
estimated standard errors to examine the accuracy of the method.
Problems and Methods in Estimating the Precision of Welfare Measures

To motivate the discussion, suppose that an individual consumer’s true demand for
recreation at a site is linear and can bé written,
(1) Xj=a+ Bpj + 7Y; + 86Q + ¢,
where x; is the number of trips individual i takes to the recreation site, p; is the cost of
accessing the site, y; is the individual's income, q is the site quality, e is an i.i.d. error
term, and «, B, v, and § are non-random parameters.

The issue of precision in welfare estimation arises when the parameters of the
demand function (1) are unknown; hence, must be estimated. Either Hicksian or
Marshallian welfare measures can be computed based on the parameter estimates.

Since the parameter estimates are random variables, so too, are the welfare estimates.

The sum of the Marshallian and Hicksian surplus associated with the total access to the

site over all individuals in a sample divided by the sample size (n) is the typically
reported point estimate of average surplus, denoted cs and cv,

cs = (1/n)Zics; = (1/n)E;(1/2)x2/,
(2) and

cv = (1/n)Zicv; = ( 1/n)zi[-'/\3/'~\,2 + exp(-f\yxi/';\i)(xi/'-\y + '5/92)],
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where the hats indicate estimates of the corresponding parameters in (1).

A first order Taylor’s series (TS) approximation to the statistics in (2) can be used to
construct an estimate of their standard errors. The statistic of interest is first
approximated ’\;ia Taylor's series and the standard error of the linear approximation is
constructed. This method is also referred to as the delta method and it produces
asymptotic standard errors. Kmenta provides a good description of the proced.ure.

A second method for estimatihg the standard error is the bootstrap (BS) attributable
to Efron. In the linear case, the estimated demand function is
(3) xj= o+ ’fipi + ’—}yi + %q + /‘t’i' i=1,...,n.

To perform the bootstrap, the empirical distribution of the residuals, the 'éi's, are

randomly sampled with replacement and used to generate a new vector of x;'s, i.e.,

(4) x; = 3:+?3pi + %yi + %q + Ic\:': i=1,...,n,

where 2: is a residual randomly drawn from the distribution of the léi and x; is the

resulting bootstrap quantity vector.

These new quantities are used to re-estimate the demand function resulting in
bootstrap estimates of the parameters, o, ?3*, l'\y*, and 3 . The starred valu-es are then
used to compute the statistic of interest, namely cs or cv. This process of resampling
from the empirical distribution of the errors, constructing psuedo data and re-estimating
demand and welfare measures is repeated a large numbér df times. Each trial results in
bootstrapped welfare measures, denoted cs and cv . The standard error of the starred
welfare estimates is an estimate of the standard error of cs and cv.

The third method of estimating standard errors is similar to the bootstrap. However,
this method, proposed by Krinsky and Robb (KR), resamples from the coefficient

estimates directly. Denote the estimated coefficient vector, ®, and its estimated
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variance-covariance matrix, VC. Then, the procedure is to take random drawings from a
multivariate normal distribution with a mean of ¢ and variance-éovariance matrix VC,
generating new coefficient values §*. For each draw from this distribution, the welfare
measures are computed. Again, denote the welfare measures computed from the §* as
cs and ov. A large number of draws results in a distribution of the cs” and cv” and the
standard error of this distribution represents an estimate of the standard error of cs and
cv. |

One might expect that the bootstrap will provide more accurate estimates than the
other methods when the underlying error distribution is non-normal, particularly when it
is high‘ly skewed. There may also be differences in the methods’ accuracy in small
samples or when the estimated demand function does not fit the data well, as measured
by t-statistics or R2. These issues will also be addressed in the simulation study.
Data Construction and the Simulation Study

To evaluate the performance of the three methods in estimating the standard error
of welfare estimates, a simulation experiment is performed. First, a simulated data set is
constructed by combining data on prices, income, and quality with parameter values and
an assumed error distribution. This yields simulated quantities of trips. This information,
prices, incomes, site qualities, and quantities constitutes a simulated data set. Point
estimates of ¢s and cv are computed by estimating a demand function as if this were
observed data.

The data on incomes and prices are taken from Chesapeake Bay beach users

surveyed in the summer of 1984 by th - 3esearch Triangle Institute for the Universiwy of

Maryland (see Bockstael, Hanemann, and Strand). Parameter values were chosen to




provide site visitation rates that were similar to observed data. The values of the
parameters are: « = 5.0,  =-0.01, ¥ = 0.00004, and § = 0.06.

Since the parameters are known, as-is the distribution of the error term, it is
possible to simulate the standard error of welfare estimates, cs and cv. (That is,
generate through simulation the "true" standard error of cs and cv). To do this, errors are
redrawn from the assumed error distribution creating new quantities; these new
‘quantities are then used to estimate the model yielding new point estimates of welfare.
This is conceptually equivalent to drawing a new sample from the population. An
empirical distribution of the estimated welfare measures can be constructed by

repeafing the procedure a large number of times and the standard error of the simulated

welfare measures can be computed from this distribution.

Note the similarity of this procedure to the bootstrap described above. The key
difference is that the true error distribution and true parameter values are used for
resampling, whereas the bootstrap must resample frpm the empirical distribution and
parameter estimates since the truth is unknown. Thus, the actual distribution of the
welfare estimates is formed in the first case, but only an estimate in the second.

Having constructed a simulated data set, point\ estimates of welfare and the
standard error of the welfare estimates, the next step in the simulation methodology is to
apply each 6f the three standard error estimation methods to the data. Since the
performance of the three standard error estimators may differ under different conditions,
a series of simulaied data sets is constructed and the simulation experiment outlined
above performed on each one. The various data sets are differentiated based on

sample size, distribution of the error term, ej, and the range of the error term (i.e., the

variance of ¢;).




Three sample sizes (200, 100, and 50) and three error distributions, (nérmal,
uniform, and x2) are employed in constructihg the data. In addition, two relative sizes of
the standard error of the error distributions are employed; in the first, the error
distribution range is about (-1.5, 1.5), and in the second, the range is about (-3.0, 3.0).1
In total, 18 simulations based on a linear demand function are performed, exhausting all
of the combinations of these three characteristics.
| For each of the 18 simulations, standard error estimates of Marshallian consumer
surplus and Hicksian compensating variation associated with access to the site and
associated with a doubling of site quality were constructed using the TS, KR and BS
procedures. To compute the standard error estimates using BS and KR, 100 repetitions
were performed.

In each simulation, 100 realizations of the simulated model are examined; that is,
100 drawings of the e vector were made, creerting 100 simulated data sets, and 100 TS,
KR, and BS estimates of the standard error of the welfare measures. In total, 1800 data
sets were created, 18 simulations x 100 realizations per simulation.

An E\raluation of the Methods
To examine the circumstances under which each method performs well, the

absolute value of the percentage errors (PE)2 between the estimated standard error

1. The standard error for the normal distribution small case is 0.25, the large is 1.0.
For the uniform, the errors range from -1.5 to 1.5 for the small and from -3.0 to 3.0
for the large. The x has 2 degress of freedom and is multiplied by a constant to
generate a standard error of 0.25 in the small case, and 1.0 in the large, and is
shifted to have mean zero.

2. The percentage error is computed for TS simply as (?JTS - 0)*100/0, where o is the
true standard error and og is the standard error as estimated by the TS. An
equivalent expression is used to compute the PE for KR and BS by substituting in
the appropriate standard error estimate.
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and the simulated standard error is computed and reported in tables 1 and 2 for the total
and quality change consumer surplus, respectively. The numbers reported are averages
over the 100 realizations of each simulation. The first three columns in the table report
the characteriétics of the data: the distribution of the error term in the demand function,
the sample size, and the relative range of the error distribution (a large or small error
standard error). The fourth through sixth columns contain the absolute value of the
percentage error. The table contains results for only the Marshallian measures since the
results for the Hicksian measures are nearly identical.

The bottom of tables 1 and 2 contain overall means of the PE’s of the standard
error estimates, as well as means broken down by characteristic of the data sets. On
- average, TS has the lowest PE for the total cs and KR has the smallest for the quality
chénge cs. In both cases, the KR and BS are extremely close: 19.76 vs. 19.60 in the

total cs case and 20.66 vs. 20.81 in the quality change case.

To examine the effect that smaller sample size has on the accuracy of the standard

error estimates, the mean of the percentage errors are computed separately for each
sample size and reported below the overall means in the tables. For sample éizes of
200, all three methods estimate the staﬁdard error of the total cs quite accurately, falling
within 6 percentage points of the truth. The quality change cs is apparently more difficult
for the methods to estimate; the error ranges from 14% (for BS) to 27% (for TS). The
percentage error jumps sharply when the sample size falls from 200 to 100 for all three
methods for the total cs case, but surprisingly the PE doesn't increase mljch for TS and
KR in the quality change case, and actually falls for BS. However, in moving from 100 to
50 observations, all of the methods for both size welfare changes yield a large loss in

accuracy as measured by the PE.




The effect of the error distribution on the PE is captured in the next set of means in
each table. In general, the PE is much larger for the uniform error case than for the

2 cases. It appears that on average the methods have more difficulty with

normal or x
wide tailed distributions (the uniform) than either bell shaped (the normal) or skewed to
one side distributions (the x2). Quite surprisingly, these results suggest that the
bootstrap is not better than the KR procedure at estimating the standard error of
distributions resulting from residuals with highly non-normal errors. In fact, the KR and
BS generate very similar PEs for both the total and quality change cases. Since the non-
distributional assumption in the bootstrap is one of its main advantages, it may be that
the simpler TS or KR procedures can often be used in its place. However, the TS does
. perform noticeably better when the underlying error distribution is normalT

The effect of the error variance is examined in the final set of means. In the small
error case, the average regression R2 is about 0.81, and in the large residual case the
average is about 0.55. When the range of the error doubles (moving from the small to
large case), the PE more than quadruples for all three methods in the total cs case. The
increase is just as dramatic in the quality change case for KR and BS whére the PE
increases by over seven times. However, for the TS the increase is much smaller since
the TS performs poorly even in the small error case. These results dramatically point out

that the goodness of fit affects the accuracy of the methods.

Finally, an interesting question to examine is whether the methods have a tendency

to over or underestimate the standard error. In particular, the Taylor’s series has been

~accused of this tendency by several authors (Green, Hahn, and Rocke; Krinsky and
Robb). To examine this, the difference between the standard error estimates and the

true standard error were examined. The tendency on the part of TS to underestimate is
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confirmed in these simulations. In a total of 31 of the 36 combined total cases, TS
underestimates the standard error; this understatement wasvparticularly pronounced in
the quality change case where all of the standard error estimates were too small. This
suggests that the tendency of the Taylor's series to underestimate may depend on the
statistic of interest. Both BS and KR indicated a tendency to overstate the standard error
(KR overstated in 30 of the 36 cases and BS overstated in 32).
Final Remarks and Conclusions

The precision with which welfare measures are estimated is of great importance to
policy makers and researchers alike. This study has undertaken to provide an
assessment of three methods of estimating the precision of welfare measures: the
Taylor's series, the bootstrap, and a method suggested by Krinsky and Robb.

The bootstrap and the Krinsky and Robb procedure in most cases produce quite

similar standard error estimates. This was true even when the underlying error

distribution was non-normal. This similarity in the methods suggests that the less
expensive Krinsky and Robb procedure may often be fruitfully substituted for the full
fledged bootstrap.

All of the methods are considerably more accurate with sample sizes near 200 than
with the smaller sizes of 100 and particularly 50. This is not surprising, but does |
reinforce the need for adeqvuate sample sizes when performing welfare analysis. The TS
performs best when the underlying error distribution is normal; the KR and BS were less
sensitive on average to the error distribution, although both performed worse with the
uniform distribution.

The TS underestimated the standard error quite often; in contrast, the KR and BS

tended to overstate the standard error. Since overstating the standard error would
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seem to more desirable than understating it, researchers may wish to choose the KR or

BS methods on these grounds. The simulation also indicated that there is little
difference in the estimated standard errors of Marshallian consumer surplus and
Hicksian compensating variation of welfare measures using either the TS, KR, or the
BS. In most cases, all three methods provided reasonable approximations to the
standard errors.
An important qualifier to the results presented here is appropriate. In applied

“recreation demand studies, researchers typically' employ more complex estimators or
functional forms than those used here. Applications using censored or truncated
- models, discrete choice methods, count data, flexible funcﬁonal forms, or other
complications may not experience the same accuracy of the standard error estimation
methods as found in this set of experiments. For these more complex models, the
choice of technique may be dominated by analytic or computational advantages of one

method over another.




Table 1

Mean Absolute Percentage Errors of Marshallian Total Consumer Surplus Standard
Deviation Estimates

Krinsky &
Distribution Sample Size | Error Variance | Taylor’s Series | Robb Bootstrap

normal 200 small 3.97 2.89 4.18
normal 100 small 3.10 6.57 6.31
‘normal 50 - small 0.52 5.97 5.29
uniform 200 small 0.09 4.47 5.73
uniform 100 small 6.36 4.77 4.38
uniform 50 small 4.20 2493 32.64
200 small 1.67 2.60 3.64
100 small 1.20 2.96 4.28
50 - small 4.51 1.31 3.08
"normal | 200 large - 1.18 7.96 7.57
normal 100 large 2.71 17.87 11.75
normal 50 large 10.65 52.83 61.86
uniform 200 large 17.57 16.31 6.45
uniform 100 large 36.96 . 70.47 46.64
uniform 50 large 49.79 4717 63.41
200 large 0.87 6.73 6.80

100 large | 0.65 27.69 2743
50 large 72.62 52.21 51.51
Mean 12.15 19.76 19.61
Mean n =200 422 6.83 5.73
n =100 8.50 21.72 16.80

n=>50 2371 : 30.74 36.30

Mean normal distribution 3.69 15.68 16.16
uniform distribution 19.16 28.02 - 26.54

2 distribution 13.59 15.58 16.12

small error variance 2.85 6.27 7.72

large error variance 21.44 33.25 31.49




Table 2

Mean Absolute Percentage Errors of Marshallian Quality Change Consumer Surplus
Standard Deviation Estimates

Krinsky &
Distribution Sample Size | Error Variance | Taylor’s Series Robb Bootstrap

normal 200 small 28.74 1.79 3.47
normal 100 small 24.62 0.14 0.65
normal 50 small 23.57 0.71 1.48
uniform 200 small 28.00 . 2.55 3.61
uniform 100 small 26.89 3.85 3.85
uniform 50 - small 21.50 21.43 26.02
200 small .23.23 5.48 5.68
100 small 21.92 2.71 4.19
50 small 23.71 1.52 1.74
normal 200 large 22.72 58.38 57.80
normal 100 large 24.08 14.19 9.21
normal 50 large 27.12 31.54 47.72
uniform 200 large 34.21 18.45 7.25
uniform 100 large 46.50 60.65 37.29
uniform 50 large : 46.97 61.19 76.68
2 200 large - 23.99 7.46 8.01

2 100 large 20.62 23.31 23.28
2 50 large 77.59 56.49 56.65

Mean 30.33 20.66 20.81
Mean n =200 26.82 15.69 14.30
n =100 27.44 17.47 13.08

n=>50 36.74 28.81 35.05

Mean normal distribution 25.14 17.79 20.06
’ uniform distribution 34.01 28.02 25.78

2 distribution 31.84 16.16 16.59

Mean small error variance 24.69 447 5.63
large error variance 35.98 3685 | 3599
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