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Estimating the Precision of Welfare Measures 

Three methods for constructing standard errors of welfare estimates have been 

employed in the recreation demand literature: a Taylor's series approximation, the 

bootstrap, and a method proposed by Krinsky and Robb. This paper presents the 

results of a simulation experiment designed to examine the accuracy of these methods. 
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Estimating the Precision of Welfare Measures 

Researchers involved in applied welfare analysis have recently begun to stress the 

importance of providing estimates of the precision of welfare measures (Adamowicz, 

Fletcher, and Graham-Tomasi; Creel and Loomis; Kling and Sexton). A variety of 

approaches have been suggested, but since the standard errors of welfare estimates · 

-
must themselves be estimated, the accuracy of these methods is of interest. The 

purpose of this paper is to consider alternative approaches to the estimation of standard 

errors and compare their performance under a variety of circumstances. 

At least three approaches to estimating the standard error of a non-linear function 

of random variables have been proposed. The traditional approach linearizes the 

function via a Taylor's series approximation and computes an estimate of the standard 

error based on this linearized form (Kmenta). More recently, bootstrap methods have 

been proposed (Efron; Freedman and Peters) and applied to elasticities and consumer 

surplus (Dorfman, Kling, and Sexton; Green, Hahn, and Rocke; Kling and Sexton). In 

the bootstrap, the regression residuals are resampled to construct psuedo data sets 

which are used in turn to construct a distribution of the statistic of interest. A third 

method, proposed by Krinsky and Robb, is similar to the bootstrap, but the distribution of 

the estimated coefficients is resampled from directly. 

To examine the accuracy of these three methods, this paper presents the results of 

a simulation study designed to examine the conditions under which each method is 

likely to provide accurate standard error estimates. A series of simulated data sets for 

which the parameters and error distribution are known are generated. This information 

is then used to construct the true standard error of Marshallian and Hicksian welfare 

estimates. Two sizes of welfare measures are examined: the value of loss of access to 
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the good and the value of a change in quality of the good. Next, the steps a researcher 

might follow in doing a typical benefit estimation study are followed: the data sets are 

used to generate point estimates of welfare and each of the three methods is employed 

to estimate the standard error. The important difference between this study and a 

researcher faced with an actual data set is that the true standard error of the welfare 

estimates can be simulated; hence, this known standard error can be compared to the 

estimated standard errors to examine the accuracy of the method. 

Problems and Methods in Estimating the Precision of Welfare Measures 

To motivate the discussion, suppose that an individual consumer's true demand for 

recreation at a site is linear and can be written, 

(1) Xi= a+ J3Pi + 'YYi + c5q + ei, 

where xi is the number of trips individual i takes to the recreation site, Pi is the cost of 

accessing the site, Yi is the individual's income, q is the site quality, ei is an i.i.d. error 

term, and a~ J3, 'Y, and c5 are non-random parameters. 

The issue of precision in welfare estimation arises when the parameters of the 

demand function (1) are unknown; hence, must be estimated. Either Hicksian or 

Marshallian welfare measures can be computed based on the parameter estimates. 

Since the parameter estimates are random variables, so too, are the welfare estimates. 

The sum of the Marshallian and Hicksian surplus associated with the total access to the 

site over all individuals in a sample divided by the sample size (n) is the typically 

reported point estimate of average surplus, denoted cs and cv, 

cs= (1/n)~icsi = (1/n)~i(1/2)x;21l 

(2) and 
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where the hats indicate estimates of the corresponding parameters in (1 ). 

A first order Taylor's series (TS) approximation to the statistics in (2) can be used to 

construct an estimate of their standard errors. The statistic of interest is first 
. ~ 

approximated via Taylor's series and the standard error of the linear approximation is 

constructed. This method is also referred to as the delta method and it produces 

asymptotic standard errors. Kmenta provides a good description of the procedure. 

A second method for estimating the standard error is the bootstrap (BS) attributable 

to-Efron. In the linear case, the estimated demand function is 

,. ,. ,. ,. "· 
(3) xi= a+ PPi + n'i + c5q + ei, 1=1, ... ,n. 

To perform the bootstrap, the empirical distribution of the residuals, the ~i's, are 

randomly sampled with replacement and used to generate a new vector of xj's, i.e., 

* ,. .,. ,. ,. ,.. 
(4) xi =a+ PPi + n'i + c5q + ei, i=1,; .. ,n, 

where ~i is a residual randomly drawn from the distribution of the ~i and xj is the 

resulting bootstrap quantity vector. 

These new quantities are used to re-estimate the demand function resulting in 

A* A* A* A* . 
bootstrap estimates of the parameters, a , p , -y , and c5 . The starred values are then 

used to compute the statistic of interest, namely cs or cv. This process of resampling 

from the empirical distribution of the errors, constructing psuedo data and re.;estimating 

demand and welfare measures is repeated a large number of times. Each trial results in 

* * bootstrapped welfare measures, denoted cs and cv . The standard error of the starred 

welfare estimates is an estimate of the standard error of cs and cv. 

The third method of estimating standard errors is similar to the bootstrap. However, 

this method, proposed by Krinsky and Robb (KR), resamples from the coefficient 

estimates directly. Denote the estimated coefficient vector,~. and its estimated 

3 



variance-covariance matrix, VC. Then, the procedure is to take random drawings from a 

multivariate normal distribution with a mean of 0 and variance-covariance matrix VC, 

generating new coefficient values o•. For each draw from this distribution, the welfare 

measures are computed. Again, denote the welfare measures computed from the o• as 

• * * * cs and cv . A large number of draws results in a distribution of the cs and cv and the 

standard error of this distribution represents an estimate of the standard error of cs and 

CV. 

One might expect that the bootstrap will provide more accurate estimates than the 

other methods when the underlying error distribution is non-normal, particularly when it 

is highly skewed. There may also be differences in the methods' accuracy in small 

samples or when the estimated demand function does not fit the data well, as measured 

by t-statistics or R2. These issues will also be addressed in the simulation study. 

Data Construction and the Simulation Study 

To evaluate the performance of the three methods in estimating the standard error 

of welfare estimates, a simulation experiment is performed. First, a simulated data set is 

constructed by combining data on prices, income, and quality with parameter values and 

an assumed error distribution. This yields simulated quantities of trips. This information, 

prices, incomes, site qualities, and quantities constitutes a simulated data set. Point 

estimates of cs and cv are computed by estimating a demand function as if this were 

observed data. 

The data on incomes and prices are taken from Chesapeake Bay beach users 

surveyed in the summer of 1984 by tr :1esearch Triangle Institute for the Universi:y of 

Maryland (see Bockstael, Hanemann, and Strand). Parameter values were chosen to 
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provide site visitation rates that were similar to observed data. The values of the 

parameters are: a= 5.0, 13 = -0.01, -y = 0.00004, and c5 = 0.06. 

Since the parameters are known, as is the distribution of the error term, it is 

possible to simulate the standard error of welfare estimates, cs and cv. (That is, 

generate through simulation the "true" standard error of cs and cv). To do this, errors are 

redrawn from the assumed error distribution creating new quantities; these new 

·quantities are then used to estimate the model yielding new point estimates of welfare. 

This is conceptually equivalent to drawing a new sample from the population.· An 

empirical distribution of the estimated welfare measures can be constructed by 

repeating the procedure a large number of times and the standard error of the simulated 

welfare measures can be computed from this distribution. 

Note the similarity of this procedure to the bootstrap described above. The key 

difference is that the true error distribution and true parameter values are used for 

resampling, whereas the bootstrap must resample from the empirical distribution and 

parameter estimates since the truth is unknown. Thus, the actual distribution of the 

welfare estimates is formed in the first case, but only an estimate in the second. 
. . 

Having constructed a simulated data set, point estimates of welfare and the 

standard error of the welfare estimates, the next step in the simulation methodology is to 

apply each of the three standard error estimation methods to the data. Since the 

performance of the three standard error estimators may differ under different conditions, 

a series of siIT!ulated data sets is constructed and the simulation experiment outlined 

above performed on each one. The various data sets are differentiated based on 

sample size, distribution of the error term, ei, and the range of the error term (i.e., the 

variance of ei). 
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Three sample sizes (200, 100, and 50) and three error distributions, (normal, 

uniform, and x2) are employed in constructing the data. In addition, two relative sizes of 

the standard error of the error distributions are employed; in the first, the error 

distribution range is about (-1.5, 1.5), and in the second, the range is about (-3.0, 3.0). 1 

In total, 18 simulations based on a linear demand function are performed, exhausting all 

of the combinations of these three characteristics. 

For each of the 18 simulations, standard error estimates of Marshallian consumer 

surplus and Hicksian compensating variation associated with access to the site and 

associated with a doubling of site quality were constructed using the TS, KR and BS 

procedures. To compute the standard error estimates using BS and KR, 100 repetitions 

were performed. 

In each simulation, 100 realizations of the simulated model are examined; that is, 

100 drawings of the e vector were made, creating 100 simulated data sets, and 100 TS, 

KR, and BS estimates of the standard error of the welfare measures. In total, 1800 data 

sets were created, 18 simulations x 100 realizations per simulation. 

An Evaluation of the Methods 

To examine the circumstances under which each method performs well, the 

absolute value of the percentage errors (PE)2 between the estimated standard error 

1. The standard error for the normal distribution small case is 0.25, the large is 1.0. 
For the uniform, the errors range from -1.5 to 1.5 for the small and from -3.0 to 3.0 
for the large. The x2 has 2 degress of freedom and is multiplied by a constant to 
generate a standard error of 0.25 in the small case, and 1.0 in the large, and is 
shifted to have mean zero. 

2. The percentage error is computed for TS simply as (~s - a)*100/a, where a is the 
true standard error and ~S is the standard error as estimated by the TS. An 
equivalent expression is used to compute the PE for KR and BS by substituting in 
the appropriate standard error estimate. 
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and the simulated standard error is computed and reported in tables 1 and 2 for the total 

and quality change consumer surplus, respectively. The numbers reported are averages 

over the 100 realizations of each simulation. The first three columns in the table report 

the characteristics of the data: the distribution of the error term in the demand function, 

the sample size, and the relative range of the error distribution (a large or small error 

standard error). The fourth through sixth columns contain the absolute value of the 

percentage error. The table contains results for only the Marshallian measures since the 

results for the Hicksian measures are nearly identical. 

The bottom of tables 1 and 2 contain overall means of the PE's of the standard 

error estimates, as well as means broken down by characteristic of the data sets. On 

average, TS has the lowest PE for the total cs and KR has the smallest for the quality 

change cs. In both cases, the KR and BS are extremely close: 19.76 vs. 19.60 in the 

total cs case and 20.66 vs. 20.81 in the quality change case. 

To examine the effect that smaller sample size has on the accuracy of the standard 

error estimates, the mean of the percentage errors are computed separately for each 

sample size and reported below the overall means in the tables. For sample sizes of 

200, all three methods estimate the standard error of the total cs quite accurately, falling 

within 6 percentage points of the truth. The quality change cs is apparently more difficult 

for the methods to estimate; the error ranges from 14% (for BS) to 27% (for TS). The 

percentage error jumps sharply when the sample size falls from 200 to 100 for all three 

methods for the total cs case, but surprisingly the PE doesn't increase much for TS and 

KR in the quality change case, and actually falls for BS. However, in moving from 100 to 

50 observations, all of the methods for both size welfare changes yield a large loss in 

accuracy as measured by the PE. 
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The effect of the error distribution on the PE is captured in the next set of means in 

each table. In general, the PE is much larger for the uniform error case than for the 

normal or x2 cases. It appears that on average the methods have more difficulty with 

wide tailed distributions (the uniform) than either bell shaped (the normal) or skewed to 

one side distributions (the x2). Quite surprisingly, these results suggest that the 

bootstrap is not better than the KR procedure at estimating the standard error of 

distributions resulting from residuals with highly non-normal errors. In fact, the KR and 

BS generate very similar PEs for both the total and quality change cases. Since the non­

distributional assumption in the bootstrap is one of its main advantages, it may be that 

the simpler TS or KR procedures can often be used in its place. However, the TS does 

perform noticeably better when the underlying error distribution is normal. 

The effect of the error variance is examined in the final set of means. In the small 

error case, the average regression R2 is about 0.81, and in the large residual case the 

average is about 0.55. When the range of the error doubles (moving from the small to 

large case), the PE more than quadruples for all three methods in the total cs case. The 

increase is just as dramatic in the quality change case for KR and BS where the PE 

inc~eases by over seven times. However, for the TS the increase is much smaller since 

the TS performs poorly even in the small error case. These results dramatically point out 

that the goodness of fit affects the accuracy of the methods. 

Finally, an interesting question to examine is whether the methods have a tendency 

to over or underestimate the standard error. In particular, the Taylor's series has been 

accused of this tendency by several authors (Green, Hahn, and Rocke; Krinsky and 

Robb). To examine this, the difference between the standard error estimates and the 

true standard error were examined. The tendency on the part of TS to underestimate is 
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confirmed in these simulations. In a total of 31 of the 36 combined total cases, TS 

underestimates the standard error; this understatement was particularly pronounced in 

the quality change case where all of the standard error estimates were too small. This 

suggests that the tendency of the Taylor's series to underestimate may depend on the 

statistic of interest. Both BS and KR indicated a tendency to overstate the standard error 

(KR overstated in 30 of the 36 cases and BS overstated in 32). 

Final Remarks and Conclusions 

The precision with which welfare measures are estimated is of great importance to 

policy makers and researchers alike. This study has undertaken to provide an 

assessment of three methods of estimating the precision of welfare measures: the 

Taylor's series, the bootstrap, and a method suggested by Krinsky and Robb. 

The bootstrap and the Krinsky and Robb procedure in most cases produce quite 

similar standard errorestimates. This was true even when the underlying error 

distribution was non-normal. This similarity in the methods suggests that the less 

expensive Krinsky and Robb procedure may often be fruitfully substituted for the full 

fledged bootstrap. 

All of the methods are considerably more accurate with sample sizes near 200 than 

with the smaller sizes of 100 and particularly 50. This is not surprising, but does 

reinforce the need for adequate sample sizes when performing welfare analysis. The TS 

performs best when the underlying error distribution is normal; the KR and BS were less 

sensitive on average to the error distribution, although both performed worse with the 

uniform distribution. 

The TS underestimated the standard error quite often; in contrast, the KR and BS 

tended to overstate the standard error. Since overstating the standard error would 
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seem to more desirable than understating it, researchers may wish to choose the KR or 

BS methods on these grounds. The simulation also indicated that there is little 

difference in the estimated standard errors of Marshallian consumer surplus and 

Hicksian compensating variation of welfare measures using either the TS, KR, or the 

BS. In most cases, all three methods provided reasonable approximations to the 

standard errors. 

An important qualifier to the results presented here is appropriate. In applied 

. recreation demand studies, researchers typically employ more complex estimators or 

functional forms than those used here. Applications using censored or truncated 

· models, discrete choice methods, count data, flexible functional forms, or other 

complications may not experience the same accuracy of the standard error estimation 

methods as found in this set of experiments. For these more complex models, the 

choice of technique may be dominated by analytic or computational advantages of one 

method over another. 
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Tablel 

Mean Absolute Percentage Errors of Marshallian Total Consumer Surplus Standard 
Deviation Estimates 

Krinsky & 
Distribution Sample Size Error Variance Taylor's Series Robb Bootstrap 

normal 200 small ·3.97 2:89 4.18 
normal 100 small 3.10 6.57 · 6.31 
normal 50 small 0.52 5.97 5.29 
uniform 200 small 0.09 4.47 5.73 
uniform 100 small 6.36 4.77 4.38 
uniform 50 small 4.20 24.93 32.64 

x2 200 small 1.67 2.60 3.64 

x2 100 small 1.20 2.96 4.28 

x2 50 small 4.51 1.31 3.08 
- normal 200 large 1.18 7.96 7.57 

normal 100 large 2.71 17.87 11.75 
normal 50 large 10.65 52.83 61.86 
uniform 200 large 17.57 16.31 6.45 
uniform 100 large 36.96 70.47 46.64 
uniform· 50 large 49.79 47.17 63.41 

x2 200 large 0.87 6.73 6.80 

x2 100 large 0.65 27.69 27.43 

x2 50 large 72.62 52.21 51.51 

Mean 12.15 19.76 19.61 
Mean n =200 4.22 6.83 5.73 

n = 100 8.50 21.72 16.80 
n =50 23.71 30.74 36.30 

Mean normal distribution 3.69 15.68 16.16 
uniform distribution 19.16 28.02 26.54 
x2· distribution 13.59 15.58 16.12 

Mean small error variance 2.85 6.27 7.72 
large error variance 21.44 33.25 31.49 
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Table2 

Mean Absolute Percentage Errors of Marshallian Quality Change Consumer Surplus 
Standard Deviation Estimates 

Krinsky & 
Distribution Sample Size Error Variance Taylor's Series Robb Bootstrap 

normal 200 small 28.74 1.79 3.47 
normal 100 small 24.62 0.14 0.65 
normal 50 small 23.57 0.71 1.48 
uniform 200 small 28.00 2.55 3.61 
uniform 100 small 26.89 3.85 3.85 
uniform 50 small 21.50 21.43 26.02 

x2 200 small .23.23 5.48 5.68 

x2 100 small 21.92 2.71 4.19 

x2 50 small 23.71 1.52 1.74 
normal 200 large 22.72 58.38 57.80 
normal 100 large 24.08 14.19 9.21 
normal 50 large 27.12 31.54 47.72 
uniform 200 large 34.21 18.45 7.25 
uniform 100 large 46.50 60.65 37.29 
uniform 50 large 46.97 61.19 76.68 

x2 200 large 23.99 7.46 8.01 

x2 100 large 20.62 23.31 23.28 

x2 50 large 77.59 56.49 56.65 

Mean 30.33 20.66 20.81 
Mean n =200 26.82 15.69 14.30 

n = 100 27.44 17.47 13.08 
n =50 36.74 28.81 35.05 

Mean normal distribution 25.14 17.79 20.06 
uniform distribution 34.01 28.02 25.78 
x2 distribution 31.84 16.16 16.59 

Mean small error variance 24.69 4.47 5.63 
large error variance 35.98 36.85 35.99 
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