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ABSTRACT 

This paper explores the theoretical and empirical issues in 

unit root non-stationarity for multiproduct acreage response 

systems. The policy implication of a unit root in a multivariate 

autoregressive time series like a system of acreage responses is 

very disturbing; it implies that even a one-shot government 

policy that influences acreage will have a permanent response 

associated with it. A wheat/barley acreage response system for 

the Prairie province region of Canada is estimated and the 

existence of a unit root cannot ~e rejected empirically. The 

response of the stationary system of acreage responses to a 

policy shock is shown to be radically different from the response 

of a non-stationary system of acreage responses even though the 

empirical estimates of the reduced form parameters are only 

marginally different between the two models. 



1. INTRODUCTION 

It is well-known that the economic implications of an 

economic time series that contains a unit root are radically 

different from that of a stationary proc~ss (Nelson and Plosser). 

In a time series containing a unit root, the response to any 

shock in the system can be decomposed into "permanent" and 

"transitory" components. That is, any shock in the system will 

cause a permanent response. In contrast, a stationary time 

series contains only a transitory component. In this paper, we 

use the concepts of permanent and transitory components to argue 

that a system of acreage responses for agricultural crops can 

contain a unit root. The policy implication associated with the 

existence of a unit root in a system of acreage response 

functions is very disturbing: it implies that even a one-shot 

government policy that influences acreage will have a permanent 

response associated with it. Therefore, the,response to 

government policies is not simply a "policy on", "policy off" 

choice, as is the underlying assumption of static models. Once a 

government policy is put into place, there will be a permanent 

response, even if it is only a temporary policy. Further, the 

policies put in place today may just be a reaction to permanent 

responses created by policy "mistakes" made in the past. This 

argument is quite similar to Friedman's regarding the impact of 

changes in the money supply on aggregate output. If the time 

series generating a system of acreage responses contains a unit 

root, then the response of the system to even an unanticipated 

policy shock will never return to the pre-shock level without an 
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equal shock in the opposite direction. 

The gravity of the policy implications when unit roots are 

present in acreage response systems are as wide-ranging as they 

are disturbing. For example, if systems of acreage responses in 

the United States and the European Community have unit roots, it 

implies that even a successful conclusion to the latest round of 

the GATT negotiations in eliminating the price war between these 

two regions may not be able to undo the damage created by the 

agricultural policies of governments in the two regions. or, 

given the predisposition of governments to provide output

enhancing subsidies to agriculture, large misallocations of 

resources can be permanently embedded in markets. The effects of 

these domestic policies can in turn be passed to the world market 

so that the permanent misallocation of resources may spread to 

all trading nations. Retaliatory measures introduced by 

governments to mitigate the permanent effects of policies 

instituted by other governments may only compound the permanent 

responses in the system. 

The purpose of this paper is to theoretically motivate and 

then test for the existence of a unit root in a vector

autoregression (VAR) model of supply responses. Both our 

theoretical and empirical mod~ls are applied to a multiproduct 

system of acreage responses. Treating acreage response in a 

multiproduct system is preferable to treating it in the more 

traditional way using single-product relationships in that the 

former explicitly recognizes the interrelationship among the 
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acreages of different crops. 

2. THEORETICAL CONSIDERATIONS 

In this section, we develop two alternative but 

observationally equivalent theoretical structur~s that can 

generate a linear dynamic system of acreage response functions: 

1) a Nerlovian partial adjustment model and 2) a linear-quadratic 

optimal control problem with costly adjustment. In doing so, our 

interest is not to empirically distinguish between the two, but 

to motivate the multiproduct system of equations on the basis of 

some underlying theoretical structure. 

Supply Model with Nerlovian Partial Adjustment: The simpler 

of the two, although somewhat ad hoc, is the multiproduct partial 

adjustment model developed by Clark, Siemans and Fleming (1990). 

In this model, a vector of desired acreages is defined in the 

typical Nerlovian manner 

* at = a + PEt-1 Pt (1) 

* where at is a vector of desired acreages in year t, Et-1 Pt is a 

vector of expectations made in year t-1 of the prices of all crop 

alternatives in year t, and pis a matrix of response 

coefficients associated with Et-1 Pt• Now assume that the change 

in actual acreage is governed by the multiproduct partial 

adjustment principle. Thus: 

(2) 

where at is a vector of actual acreage in year t, Dis a matrix 

of partial adjustment coefficients, and €tis a vector of error 
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terms in year t. Note that if Dis diagonal, then the model 

reduces to the special case of the single product partial 

adjustment principle. Substituting equation (1) into equation 

(2) and rearranging terms, we have 

where c = Da, r = (I-D) and R = op. 

(3) 

The feedback matrix, r, 

given in equation (3) is, in general, not diagonal except in the 

special case where matrix Din equation (1) is diagonal. 

A reduced form a vector autoregression (VAR) for the system 

of acreage responses can be found once an explicit price 

expectations process is specified. In this paper, we assume 

economic agents have rational expectations. Thus, suppose the 

VAR generating prices is given by 

Pt = -Yo + '11 (L) Pt-1 + '12 (L) Xt-1 + 11.t (4) 

where -.., 0 is a vector of intercept terms, Pt is a vector of prices 

in year t, Xt-1 is a vector of all variables helpful in predicting 

prices other than prices themselves, -y 1(L) and -..,2(L) are matrices 

of prediction coefficients associated with Pt-1 and Xt-1 

respectively, Jl.t is a vector of error terms in year t and Lis 

the lag operator. Given rational expectations then 

Et-1 Pt = -Yo + '11 (L) Pt-1 + '12 (L) Xt-1 (5) 

Substituting equation (5) into equation (3), we have 

at= IIo + r at-1 + II1(L)Pt-1 + II2(L) Xt-1 + €t (6) 

where IIo = c + R-yo, II1(L) = R-y1(L) and rr2 (L) = R-.., 2 (L). Equation 

(6) is the reduced form VAR for a system of acreage response 

functions that can be derived from a multiproduct partial 
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adjustment model. The VAR given by equation (6) will have at 

least one unit root if det (I-r) = det D = o. Therefore, if the 

partial adjustment matrix Dis such that it has an eigenvalue 

that is equal to zero, then r in equation (6) will have an 

eigenvalue equal to one. Note that this result is independent of 

the solution to the prediction problem we postulated in equation 

(5). Therefore, the existence of the unit root is independent of 

the assumed expectation formation hypothesis. 

Supply Model with Linear-Quadratic Costs: The derivation of 

a reduced form model observationally equivalent to equation (6) 

using optimal control techniques is more complicated but has the 

advantage that it is derived from explicit optimizing principles. 

The model we specify is similar to that derived by Eckstein 

(1984) and Tegene, Huffman and Miranowski (1988). Although the 

derivation in this paper uses the three-output case to simplify 

the notation, the model could be expanded to as many outputs as 

desired. 

Consider an agricultural producer who produces three crops 

in year t denoted Y1t, Y2t and Y3t, respectively. Crops 1 and 2 

are assumed to be produced via linear production functions and a 

single input land. 1 That is: 

Y1t = f1 a1t· and , (7) 

(8) 

where a1t and a2t are the acreages devoted to Y1t and Yzt, 

respectively and f 1 and f 2 are response coefficients to a1t and 

a2t associated with Y1t and Y2t, respectively. The third crop is 
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assumed to be produced via the quadratic production function 

where g1, g11 > o are response coefficients and a3t .is the acreage 

devoted to the third crop. The total acreage that can be allo

cated to the three crops is limited by the constraint 

(9) 

where a is the total amount of land available for crop produc

tion. Denote the shadow value associated with land constraint 

(9) as At and assume there is no costly adjustment associated 

with the third crop. Then the equilibrium condition for the 

third crop will be 

(10) 

where P3t is the price of Y3t• 

Now, the static cost function associated with using a1t and 

a2t in the production of Y1t and Y2t would be 

Ct = At (a1t + a2t) 

= P3t (g, - g,1a3t) (a1t + a2t) 

= P3t (g1 a1t + g, a2t - g,1 a1t a3t - g,1 a2t a3t). (11) 

Using land constraint (9) to substitute a3t out of equation (11), 

the static cost function becomes 

(12) 

where at = [a1t, a2t] ', h = · [g1 - g11a, g1 - g11 a] 1 and H is a 2x 2 

matrix whose elements hi j = 2g11 ( i, j =l, 2) • Now choose p3t as the 

numeraire price and let 

Pt = [P1t!P3t, P2tfp3t] 1 , 
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where P1t and P2t are prices of Y1t and Y2t respectively. 

Finally, assume that there are costs of adjustment associated 

with changing acreage between Y1t and Y2t of the form 

where Mis a symmetric positive definite matrix of cost of 

adjustment parameters and t.at = at - at-1 • Given these assump

tions, the optimal control model becomes 

co 
Vt= max Eo [ l: bt (Pt' Fat - h'at - lat'Hat - ,lllat' Mllat)] (13) 

{at} t=O 2 2 

where Eo is the expectations operator conditioned on information 

available at time O, bis the discount factor, and F = diag(f1, 

f2)• Equation (13) is of the form of a standard linear-quadratic 

model studied by Hansen and Sargent (1981) and therefore has the 

solution (without the prediction problem solved): 

at = IIo + rat-1 + o [ (I - L) M" 1 F 
.\2 

00 

00 

i:: (b.\1) iEt-1Pt+i 
i=O 

- (I - L) M-1 F 
.\1 

i:: (b.\2) i Et-1Pt+d 
i=O 

where r is chosen to satisfy the restrictions 

r + (br) ·1 = (1 + 1/b) I + (bM) · 1H, 

(14) 

(15) 

.\1 and .\2 are the eigenvalues ~f the feedback matrix, r, IIo is a 

vector of intercept terms and o = .\1.\2/(.\1 - .\2) (Hansen and 

Sargent (1981) and Clark (1987)). 

The prediction aspect of equation (14) can be solved using 

Hansen and Sargent's (1980) optimal prediction formula once the 
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VAR generating prices given by equation (4) is known. 2 This 

results in the reduced form VAR: 

at = IIo + rat-1 + II1 (L) Pt-1 + Ilz (L) Xt-1 • (16) 

Note that equation (16) is observationally equivalent to equation 

(5). It also has the property that det (I-r) = o, or it contains 

a unit root. This is due to the fact that det H=O in equation 

(13) . 3 As in the Nerlovian multiproduct partial adjustment 

model, the unit root in equation (16) is the result of the 

underlying structural model and is independent of the solution to 

the prediction problem embedded in equation (14). 

The existence of a unit root in the Nerlovian model is the 

result of an entirely different structural aspect of the problem 

than the existence of a unit root in the linear-quadratic model. 

Recall that the Nerlovian multiproduct partial adjustment model 

will have a unit root if det D=O, tha~.is, °if the partial adjust

ment matrix has a zero root. ·This arises as a special case of 

the short-run principle of partial adjustment. In contrast, the 

existence of a unit root in the linear-quadratic model arises 

because det H=O. This is due to a long-run singular quadratic 

cost function, the long-run in the case of the linear-quadratic 

model being when 8at = o in equation (13) so that costs of ad

justment no longer affect acreage response. Therefore, although 

the existence of a unit root in a system of acreage response 

functions can be justified in either a Nerlovian or a linear

quadratic framework, the justification is fundamentally different 

in each case. 
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3. EMPIRICAL CONSIDERATIONS 

The reduced form multivariate system of acreage responses 

that can be derived from either a Nerlovian multiproduct partial 

adjustment model or a linear-quadratic model can be written as: 

at = Po + fJ1at-1 + /J2 (L) Pt-1 + /J3 (L) Xt-1 + Et ( 17) 

where /J; (i = o, ••• ,3) are parameter matrices to be estimated. 

From our previous discussion, the matrix /J1 will have a unit root 

if either det D=0 in the Nerlovian model or det H=0 in the 

linear-quadratic model. The empirical problem is to test for the 

existence of a unit root within the framework of equation (17). 

To do this, we use a method based on Dickey and Fountis (1989). 

Care must be taken when applying the Dickey-Fountis pro

cedure since the critical values of their test are sensitive to 

the time-series properties of the forcing variables, Pt and Xt. 

It can be shown (see Clark, 1990) that the Dickey-Fountis test 

applied to (17) is only appropriate if at does not Granger-cause 

the forcing variabies and if there is no contemporaneous correla

tion between the error terms of (17) and the error terms of VAR 1 s 

generating the forcing variables. One way to circumvent the 

problem is to include VAR's generating the forcing variables as 

part of an expanded VAR system. This system would include (17) 

as well as the VAR's for the forcing variables. The Dickey

Fountis test would then be applied to this expanded VAR system. 

The disadvantage of this approach is that it greatly increases 

the size of the system that needs to be estimated. An alterna-
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tive, possibly simpler approach would involve carrying out 

preliminary tests on the null hypotheses that at does not Grang

er-cause the forcing variables. If any of the null hypotheses 

are rejected then the Dickey-Fountis test must be applied to the 

expanded VAR system. If, however, the null hypotheses are not 

rejected then the Dickey-Fountis test may be applied simply to 

(17). For this alternative approach it is necessary to assume no 

contemporaneous correlation between the errors of (17) and those 

of the VAR's generating the forcing variables. For our analysis, 

the preliminary tests were carried out and the null hypotheses 

could not be rejected at the 10 percent significance level. (See 

Section 4 for the test results.) Hence we continue discussion of 

the Dickey-Fountis test applied only to (17). 

Consider estimating (17) as a system of seemingly unrelated 

regressions (SUR), where E(€t€t') = n. Let the unrestricted 

estimator be 

(18) 
,. 

Consider finding the canonical form of the matrix (I - {31): 

I - 131 = C A c·1 (19) 
,. 

where A. is the diagonal matrix of eigenvalues of (I-{31) and c is 

the associated matrix of eigenvectors. Equation (19) can be 

rewritten 

131 = I - C A c·1• (20) 

Substituting (20) into (18), we have 
A -1 A A 

at = f3o + (I - C AC ) at-1 + f32(L)Pt-1 + f33(L)Xt-1 + €t• (21) 

Premultiplying (21) by c·1 and setting Zt = c· 1at gives 
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-1 A A A -1 
6Zt = - AZt-1 + c (Po + P2(L)Pt-1 + p3(L)Xt-1) + C ft• (22) 

where 6Zt = Zt - Zt-l· Dickey and Fountis show that if (22) is 

estimated by generalized least squares regression, then the 

highest eigenvalue of the estimated P1 matrix (p) can be tested 

for the existence of a unit root. Given the number of observa

tions (n), the procedure is to compare n(p - 1) against the 

appropriate critical value from the Pµ Table in Fuller (1976, 

p.371). 

Our estimator is slightly different from that of Dickey and 

Fountis because we allow for contemporaneous correlation between 

the error terms in (22). Therefore the covariance matrix used in 

the GLS estimation of (22) is 

(23) 

If the null hypothesis of a unit root is not rejected, (22) is 

re-estimated with the restriction that a unit root exists. This 

is accomplished by restricting the relevant diagonal element of 

the eigenvalue matrix (A) to zero. 

Let the restricted estimator of {31 be defined as /31- This 

can be recovered from the restricted estimator of (22) by the 

transformation 

-1 /31 = I - C A C 

where A is the restricted diagonal matrix of eigenvalues. The 

resulting {31 matrix will have precisely one unit root. 
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4. EMPIRICAL EXAMPLE 

As an illustration of the above test procedure and the 

implications of a unit root, consider the example of the wheat/ 

barley acreage response system for the prairie region of Canada. 

These two crops account for about 75 percent of the cropped 

acreage in the region. The model to be estimated is: 

This is similar to the form of (17) with first-order polynomials 

in the lag operator. The difference is in the addition of Wt, a 

vector of variables not included in our theoretical model but 

which are deemed to be helpful in explaining prairie wheat/barley 

acreages. In this model: 

. 
I Pt-1 = . , 

PBt-1 

Xt-1 = . , . , 
IPBt LIFT 

where: 

AWt = planted wheat area in Saskatchewan, Manitoba and 

Alberta in year t, thousand acres [Source: Statistics 

Canada, #22-002]. 

ABt = planted barley area in Saskatchewan, Manitoba and 

Alberta in year t, thousand acres (Source: Statistics 

Canada, #22-002]. 

PWt = average price received by Saskatchewan, Manitoba and 

Alberta farmers for wheat in year t, $/tonne [Source: 
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Statistics Canada, #22-002]. 

PBt = average price received by Saskatchewan, Manitoba and 

Alberta farmers for barley in.year t, $/tonne [Sourc

e: Statistics Canada, #22-002]. 

IPWt = initial payment made by the Canadian Wheat Board 

(CWB) on No. 1 CWRS wheat in year t, $/tonne [Source: 

CWB Annual Reports]. 

IPBt = initial payment made by the CWB on No. 1 feed barley 

in year t, $/tonne [Source: CWB Annaul Reports]. 

WSt-1 = July 31 Canadian wheat stocks in all positions, at 

the end of year t-1, million bushels [Source: CWB 

Annual Reports]. 

LIFT= zero-one variable to represent the impact of the 

federal government's LIFT (lower inventories for 

tomorrow) program in 1970. The variable takes on a 

value of 1 in 1970 and 0 otherwise. 

In this model, all of the variables in Pt-1 and Xt-1 were deflated 

by the aggregate input price index for Western Canada [Source: 

Statistics Canada, #62-002 and #62-004]. The variables included 

in Wt were lagged wheat stocks-and a zero-one dummy variable. 

Lagged wheat stocks was included to represent the restrictive 

effect on wheat acreage of the CWB's delivery quota policy. The 

zero-one variable was included to represent the restrictive 

effect on wheat acreage of the federal government's LIFT program 

instituted in 1970 for just the one year. These variables have 

been frequently used in other studies that have attempted to 



' . 

14 

estimate Canadian prairie acreage response functions (e.g., 

Meilke, 1976). 

To determine whether a straightforward application of the 

Dickey-Fountis test is appropriate, preliminary tests were 

carried out on the null hypotheses that the components of at do 

not Granger-cause ( denoted "-+" below) the components of Pt or Xt. 

Allowing for lag responses of up to two years, the relevant F 

test statistics are as follows: 

F (at -+ PWt) = 1.72; 

F (at -+ PBt) = 1.57; 

F (at -+ IWt) = 0.35; 

F (at -+ IBt) = 1.02. 

These values may be compared with the critical value from an 

F ( 4, 24) distribution. At the 10 percent significance l_evel we 

fail to reject the null hypotheses that the components of at do 

not Granger-cause the forcing variables. Hence we can proceed to 

the straightforward application of the Dickey-Fountis test. 

In Table 1 are presented the estimation results. In columns 

(1) and (2) are presented the coefficient estimates for the 

unrestricted model. The largest eigenvalue of the feedback 

matrix (fe1) is 0.91. This is close enough to 1 to suggest the 

possibility of a unit root. The appropriate test statistic is 

n(p - 1) which in this case is -3.33 (n = 37, p = 0.91). This is 

compared against the appropriate critical value from the Pµ Table 

in Fuller (1976). Using a five percent significance level, 

example critical values are -12.5 for n = 25 and -13.3 for n = 
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50. Hence we fail to reject the null hypothesis of a unit root 

in p1 • The model was re-estimated, imposing the restriction that 

the largest eigenvalue of p1 is one. The results of the 

restricted regression are presented in columns (3) and (4) of 

Table 1. Note that the coefficients in the restricted model are 

only marginally different from those in the unrestricted model. 

However, as we shall see below the prediction implications of the 

two models are very different. 

In what follows, we consider an illustration of the 

prediction implications of the two models given a one-time 

exogenous shock to the system of supply equations. The shock is 

provided by the 1987 Special Canadian Grains Payment (SCGP). 

The SCGP was introduced in December 1986 by the Canadian 

Government. It was designed to offset the impact on Canadian 

grain producers of the subsidy war between the United States and 

the European Community. The program provided for a payout of $1 
•,. 

billion in 1987, of which $860 million was provided to Western 

Canada. This transfer amounted to $17.82 per tonne on wheat and 

$11.77 per tonne on coarse grains (including barley). Many 

observers have argued that this policy did not distort produc

tion since the payment was based on historical yields. However, 

since the policy was introduce_d to off set a price decline 

attributable to the subsidy war between the U.S. and the EC, pro

ducers may have interpreted the subsidy as a price support which 

would have a production effect. Suppose that, in determining 

production plans for period T, producers interpret the expected 
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price vector to include both price and the SCGP in period T-1. 

Then, with respect to (24), the output price component can be 

factored as follows: 

/32 (L) Pr-1 = /321 (Pr-1 + sr-1) + /322 Pr-2 

where, 

Pt= output price vector, year t and 

St = vector of SCGP ' s per unit of output, year t. 

In this way the SCGP for 1987 enters the supply model as a one

period price shock. Given the estimated equations in Table 1, 

the purpose of this illustration is to compare the effects of 

this temporary shock on the supply model when the model has a 

unit root and when it does not. 

The results of the dynamic simulation over a so-year time 

horizon beginning in 1988 are presented in Figure 1. This figure 

shows that in the short run there is very little difference 

between the two models. Both models suggest that in the first 

year following the announcement there would be an expansion in 

wheat area and a contraction in barley area. This situation is 

reversed in the second year when barley area expands while wheat 

area contracts. However, in the longer run, Figure 1 reveals 

that the two models yield very different response paths. In the 

case of the stationary supply model, the effect of the price 

shock in period O (1987) declines to zero. However, when the 

supply model is assumed to have a unit root, the effect of this 

price shock does not decline to zero. There is a permanent 

effect on wheat and barley acreage. Wheat area stabilizes at 
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approximately 300,000 acres below the levels that would have been 

achieved without the 1987 price shock while barley area 

stabilizes at approximately 350,000 acres above the levels that 

would have been achieved without the 1987 price shock. The 

magnitude of the difference between the stationary model and the 

unit root model suggests that the determination of whether or not 

a supply model has a unit root is not insignificant. 

One interesting implication of the feedback model is that 

the presence of one unit root generally implies that a temporary 

shock has a permanent effect on all acreage variables. Only in 

the special case where r is a diagonal matrix will one unit root 

permanently affect only one acreage variable. An example of this 

would be a system of a single product feedback equations, such as 

a set of acreage equations involving Nerlove•s single-product 

partial adjustment principle. A unit root would be the limiting 

case in which the Nerlovian partial adjustment coefficient would 

be equal to zero. 

5. SUMMARY AND CONCLUSIONS 

This paper has been concerned with the prediction 

implications of a multiproduct acreage response model with a 

feedback component. Two alte~native but observationally 

equivalent theoretical structures were discussed which yield such 

a model. They were the Nerlovian multiproduct partial adjustment 

model and the supply model with linear-quadratic costs. 

For prediction purposes, a critical feature of such a model 
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is whether or not the feedback matrix contains a unit root. A 

computational procedure developed by Dickey and Fountis was used 

to determine the presence of a unit root. 

To illustrate the prediction implications of a unit root, we 

estimated a simple two-equation acreage response model for the 

Canadian prairies. We found that the null hypothesis of one unit 

root could not be rejected at the five percent significance 

level. In a restricted version of the model, we imposed a unit 

root on the feedback matrix. The resulting coefficients were 

only marginally different from those of the unrestricted model. 

The prediction implications of the unrestricted and restricted 

models were then compared with reference to a single one-period 

shock. The shock was assumed to arise from the 1987 Special 

Canadian Grains Payment. In the first three years the responses 

predicted by the unrestricted and restricted models were very 

similar. However, thereafter the responses diverged markedly. 

The response in the unrestricted ~odel tapered off to zero, while 

that of the restricted model tapered off to some non-zero value. 

This latter-result implies that the presence of a unit root leads 

to a permanent response to a temporary shock. 

Consequently, the time-series containing a unit root implies 

a permanent maladjustment within the wheat/barley acreage 

response system due to the special Canadian grains payment 

instituted in 1986 by the Canadian government. At first blush, 

this policy would seem to be rather innocuous when compared to 

the size of the subsidy programs introduced in the U. s. and the 
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E. c .. However, our results show that in fact this policy could 

have been far from harmless, leading to a permanent reduction of 

approximately 300,000 acres planted to wheat and a permanent 

increase of approximately 350,000 acres planted to barley. If the 

results of this paper are robust in the sense that acreage 

response systems in other countries also contain unit roots, then 

one can speculate that the permanent misallocation of resources 

caused by governments will continue to blight world grain markets 

for years to come. This last comment applies even if the present 

subsidy programs to grain producers that are in place around the 

world are removed. 
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Table 1: Seemingly Unrelated Regression Results for Wheat and 
Barley Acreage Response System (OOO's acres, 1949-1986)* 

Restricted 
Unrestricted Model Model 
Wheat Barley Wheat Barley 

Regress or Acreage Acreage Acreage Acreage 
(1) (2) (3) (4) 

Intercept 30505.75 5189.06 30963.83 3447.33 
(5.12) (1.49) (6.34) (1.60) 

AWt-1 .356 -.179 .388 -.197 
(2.89) (-3.28) 

ABt-1 -.439 .770 -.483 .845 
(-2.92) (7 .15) 

PWt-1 18.56 -22.93 19.21 -23.89 
(1.81) (-3. 03) (1.90) (-3.20) 

PWt-2 -33.61 37.72 -34.93 40.64 
(-2.10) (3.32) (-2.26) (3.79) 

PBt-1 2.06 17.55 -1.84 20.96 
( .15) (1.97) (-.16) (2. 69) 

PBt-2 -10.68 -15.80 -5.56 -18.93 ,, 
(-.57) (-1.59) (-.36) (-2.07) ., . . 

IPWt 67.58 -18.43 64.76 -13.14 
(2.58) (-.95) (2.57) (-. 72). 

IPWt-1 -68.66 .70 -64.37 -6.30 
(-2.28) (. 03) (-2.26) (-.31) 

IPBt -71.63 68.94 -82.96 80.67 
(-1.93) {2.75) (-2.90) (3.96) 

IPBt-1 58.10 -76.84 66.42 -87.64 
(1.66) (-2.99) (2.23) (-4.02) 

WSt-1 -8.08 -1:30 
(-2.33) (-2.49) 

LIFT -12555.98 -12870.10 
(-7.57) (-8.32) 

R2 .90 .80 .90 .79 

Durbin-M -1.10 .94 -1.13 .98 

* t-values in parentheses. 
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FOOTNOTES 

1 The reader is referred to Tegene, Huffman and Miranowski 
.(1988) for the assumptions required to make output a 
function of the single input land. 

2 This statement is not quite correct because the vector 
autoregression generating the vector Xt also needs to be 
estimated before a reduced form VAR can be derived from 
this system. To do this, we will change the notation 
slightly from_ that used in the main body of the text. Let 

X1t = [Pt, xt]' and redefine equation (3) as Xtt = 80 + 8(L)X1t-1 
+ µt where the 80 and 8(L) matrices are now of appropriate 
dimension for the Xtt vector. Using the above notation, the 
reduced form autoregression for the linear-quadratic model 
can be derived using Hansen and Sargent's (1980) optimal 
Wiener-Kolmogorov prediction formula given by; 

00 r-1 r 
I: (b.Xe) 1Et-1Pt+i = U 8 (b>.e) -1 [ (I + I: I: (b.Xe) j-k 8jLk] 

i=0 j=1 k=j+l 

-1 - (b>.e) I] X1t-1, e = 1,2 

:~ and r is the length of the autoregression associated with 
X1t• The above equation is slightly different from that given 
in Hansen and Sargent (1980) because it has been modified to 
account for the fact that Pt is a vector rather than a scalar. 

3 This can be shown as follows. The long-run or steady state 
is defined in the linear-quadratic model when at= a* for all 
t, and Et-1 Pt = p* for all t. Imposing these restrictions on 
the linear-quadratic objective function given in equation 
(12) would yield a long-run acreage response system of 

a* = H- 1 F P* • 

Since det H=0, this system of acreage responses do not 
satisfy the second order conditions for a maximum and an 
infinite steady-state response is implied. Imposing the same 
steady-state restrictions on the system of acreage responses 
without prediction solved given in equation (13) would yield 
the solution 

a*= (I - I')-1 R M-1 F P*, 
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where R = o[(I - r )/(1-bA1) - (I - r )/(1-bAz)J. 

Equating the above two steady state systems 

H = M R- 1 (I - r) 

and therefore 

det H = det M det R-1 det (I-r) • 

If either det M = o or det R- 1 = o then, in view of equation 
(13), a finite solution for acreage in the short-run would be 
violated. Therefore 

-
det H=O implies det (I-r) =O • 
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