%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

PRICING COMMODITY OPTIONS WHEN THE UNDERLYING FUTURES
PRICE EXHIBITS TIME-VARYING VOLATILITY

by

Robert J .&yers and Steven D. Hanson®

February, 1991

Adeph Q91

"Assistant Professors, Department of Agricultural Economics, Michigan State University,
East Lansing, MI. '




Abstract

This paper outlines a model for pricing options when the underlying futures price

exhibits time-varying volatility. Futures price movements are characterized using a GARCH

model. In an empirical application, the GARCH option pricing model predicts market
premiums significantly better than the standard Black model, which assumes volatility is

constant.




PRICING COMMODITY OPTIONS WHEN THE UNDERLYING FUTURES
PRICE EXHIBITS TIME-VARYING VOLATILITY

There is now considerable evidence that proportional changes in commodity futures
prices are not independent draws from an identical normal distribution. Gordon finds evidence
of excess kurtosis and time-varying volatility in commodity futures price movements, suggesting
systematic deviations from normality. He modeled these phenomena using the stable Paretian
family of distributions. Baillie and Myers find that a generalized autoregressive ’conditional
heteroscedastic (GARCH) model, assuming a student ¢ density for the conditional distribution of
price changes, does a good job of modeling the excess kurtosis and volatility changes in
commodity futures price movements. The advantage of the GARCH specification is that
convenient assumptions about the conditional density of price changes, such as the normal or
student ¢, lead to a rich model which allows for tﬁne-varying volatility and excess kurtosis in the
unconditional distribution of price changes.

Despite this growing body of evidence, the standard model used to price commodity
options continues to assume that proportional changes in the underlying futures price are
identically independently distributed (i.i.d.) and normal (Black).! Empirical tests comparing
prices predicted by Black’s model to actual market option prices generally conclude that the

model does a poor job of pricing deep in-the-money and deep out-of-the-money options;

although near-the-money options are often predicted well (e.g. Hauser and Neff). These failures

of the model could be explained by the inappropriate distributional assumption on commodity
futures prices.
This paper outlines methods for pricing commodity options when time-varying volatility

in the underlying futures price follows a GARCH process. There is no closed form solution to

! A commodity call (put) option gives the buyer the right, but not the obligation, to buy

(sell) a specified futures contract at the maturity date on the option for a predetermined fixed
price, called the strike price. These instruments can be used to manage risks and speculate on
commodity price changes.




the option pricing problem but the procedure is easy to implement using monte carlo methods
and a simulation model. We also derive some closed form approximations to thé simulation
model. Because they account more carefully for the true distributional properties of futures
price changes, it might be expected that GARCH option pricing models will outperform Black’s
model in predicting actual market option prices. This proposition is tested by applying
alternative models to the problem of pricing options for soybean futures on the Chicago Board
of Trade. It is found that the GARCH option pricing model predicts actual prices significantly

better than Black’s model using historical volatilities.

Option Pricing Models

Cox and Ross have developed a simple way of deriving the Black-Scholes option pricing

formula on which Black’s model for commodity options is based. They note that the Black-
Scholes model provides an option pricing formula which is preference free. Therefore, if an
equilibrium option price can be derived assuming one particular preference structure, then it
must be a solution for any preference structure which permits equilibrium. This suggests solving
the problem for the preference structure which is the most tractable, that of risk neutrality.

In a risk-neutral world, two important restrictions would hold. First, the option will be
priced according to its expected value at maturity, discounted back to the current period at the

risk-free rate. For commodity call options this implies

P, = ¢"“PE {max[0, F, - K]}

t

where P, is the price at time ¢ of an option maturing at T; r, is the current risk-free interest rate;

E, is expectation conditional on information available at time ¢; F; is the price of the futures




contract at maturity; and K is the strike price on the option. If the futures price is above the
strike price at maturity then the call will have a value equal to the difference between the two
prices, otherwise it will be worthless. The second restriction is that the current futures price is
an unbiased predictor of the futures price at maturity, F, = E,(F,). If these restrictions did not
hold in a risk-neutral world then there would be unexploited (expected) profit opportunities.

| To operationalize the option pricing formula, a distributional assumption must be made
on futures price changes so that the conditional expectation in (1) can be evaluated. Black’s

assumption is that period-to-period changes in the logarithm of futures prices are i.i.d. normal:
Af, =p +€,; e, ~ N(0, 0%

where Af, =In F, - In F,; and ¢ is a (constant) one-period variance. Using this distributional
assumption, and the unbiased futures restriction, then (1) can be evaluated to give the standard
formula derived by Black to price commodity options (Rubinstein). This formula is usually
operationalized by estimating ¢* with a moving sample variance of past price changes (say over
the most recent 30 days). |
One of the major problems with Black’s formula is that proportional futures price
changes appear to violate i.i.d. normality. In particular, price changes exhibit excess kurtosis and
time-varying volatility (Gordon, Baillie and Myers). Suppose we generalize the probability

model for futures price movements to

2
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where Q,_ is a set of information available in period ¢-1; h, is the conditional variance of
futures price changes; and #(0,4,v) is the student ¢ distribution with variance #, and v degrees of
freedom. This is a GARCH(1,1) model first introduced by Bollerslev and used successfully by
Baillie and Myers to model the excess kurtosis and time-varying volatility in commodity futures
price movements.

Suppose that options can still be priced using the risk-neutral valuation expression (1)
This is not an innoculous assumption because when futures price volatilities are time-varying
and stochastic (as under the GARCH model) then it will not generally be possible to construct a
(continuously adjusted) portfolio of options and underlying futures which is risk free. The
reason is that stochastic volatility adds an additional source of risk which is not generally

diversifiable (Hull and White; Johnson and Shanno). Thus, the arbitrage argument which forms

the foundation of the Black-Scholes valuation approach breaks down.

Despite this, however, there are good reasons for assuming that options are valued as
they would be in a risk-neutral world (risk-neutral valuation) even when volatilities are
stochastic. First, Brennan has developed a set of conditions under which risk-neutral valuation
occurs in equilibrium even when agents are risk averse and cannot embed the option in a risk-
free portfolio. While somewhat restrictive, these conditions do suggest that risk-neutral
valuation can be applicable even in the case of stochastic volatility. Second, risk-neutral
valuation may be an adequate approximation, particularly when a significant number of risk-
neutral, or nearly risk-neutral, agents are operating in the market. Third, the alternative to a
risk-neutral valuation is an option pricing formula which depends on the risk preferences of all
of the agents operating in the market. Because information on individual risk preferences is
generally unknown, such a formula would be of little practical use. For these reasons we

proceed using a risk-neutral approach to valuation.




Unfortunately there is no closed form solution to the integration implied by the risk-
neutral valuation formula (1) under the GARCH model (3). The problem is that the GARCH
model implies that the logarithm of the futures price at maturity, f;, equals the logarithm of the
initial futures price, f,, plus a sum of weakly dependent and heterogeneously distributed GARCH
innovations, {e, ﬂ},T:_I' Thus, not only is the resulting distribution for f not normal but it can be
shown that it has no closed form solution (Engle). In the absence of a closed form solution
there are two ways to proceed in developing an option pricing model: monte carlo simulation

and closed form approximations to the true distribution of f;. Each will be discussed in turn.

A Monte Carlo Approach

The monte carlo approach involves evaluating the expected option price at maturity via
numerical methods. Suppose that the GARCH model (3) has been estimated using data
available at time ¢z. Then make m random draws from the #-distribution with ¢ degrees of
freedom, where m is the number of periods to maturity of the option and v is estimated from
the GARCH model. Using the GARCH model and these random draws, the initial futures
price F, can be simulated forward to generate one realization of the terminal futures price at
maturity? Denote this realization F.

To obtain an estimate of the expected terminal option price at maturity, 13,., repeat this

procedure n times to get n sample values of F,. Then use?

? A detailed outline of the simulation method is available from the authors on request.

3 In the empirical results which follow we set n = 1000 but improve the precision of the

estimate by applying the control variate method (Boyle). Details are available from the authors
on request.




£ =1y maxpo, Ff - k1.
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The current option price is obtained by simply discounting P,. back to ¢ at the risk-free rate of
interest, P, = e"("nf’r. The result can be compared with the actual market price for the

relevant option at the relevant date, and/or to option prices generated using Black’s model.

Closed Form Approximations
We examine two simple closed form approximations to the expected option price under
the GARCH simulation model. The first involves taking the one-period-ahead conditional

variancé, h, ., estimated with the GARCH model using data up until period ¢, and assuming that

1+1?
all subsequent price changes are i.id. normal with constant variance fzm. This leads to the

standard Black formula with A, replacing the ¢® estimated with historical volatilities. This

1+1
approximation is easy to implement once the GARCH model has been estimated. However, it
has the obvious disadvantage of assuming (incorrectly) that, even though there has been time-
varying volatility in the past, future conditional variances will be constant up until the maturity
date on the option.

The second approximation involves using the GARCH model to forecast future
conditional variances of price innovations over the time to maturity of the option. From results

for predicting conditional variances given in Baillie and Bollerslev, this leads to a formula for

estimating the conditional variance of f; in the GARCH(1,1) model of

n T+ T-t
Ve =Y _[T-t- & + BY + A & + py.
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Thus, if the distribution of f; conditional on f; is approximately normal with variance given by (5)

then it can be shown (e.g. Rubinstein) that the option pricing formula is

InF,/K) + 05Var(fylf) | _ o 0 /K) - 05Var(f, 1)

VVar(frlfx) B VVar(fTIf,)

P =e"“DiFC

t

where C(+) is the cumulative distribution function for the standard normal.

This approximation is straightforward to compute and has the advantage of taking time-
varying volatility directly into account. Nevertheless, the assumption of normality is generally
violated in practice because the actual distribution of f conditional on f, has excess kurtosis
compared to the normal. Thus, it is expected that this approximation will not predict market

prices as well as the monte carlo simulation which takes excess kurtosis in futures price changes

into account.

Empirical Results
Four alternative -option pricing models have been outlined: (a) the standard Black
model with historical 30 day volatilities (Black’s model); (b) the GARCH option pricing model

estimated via monte carlo simulation (GARCH model); (c) Black’s model with a GARCH

volatility estimate (GARCH Approximation I); and (d) Black’s model with a predicted GARCH

volatility path (GARCH Approximation II). The performance of each of these models is now

compared by applying them to the task of pricing options for soybean futures on the Chicago

Board of Trade.




Daily closing prices for soybean futures with a July delivery date were obtained from the
Chicago Board of Trade database. The sample consists of day-to-day changes in the logarithm
of July futures prices between July 1987 and July 1990, a total of 758 observations. When each
July contract matures, the data switch to the next July contract maturing in the following year.
A dummy variable is introduced into the GARCH model to account for the effect of switching
contracts at annual intervals. All data are for July contracts because the aim is to price options
written on July soybeans.

We began estimating call option prices for July 1990 soybeans futures contracts on April
2, 1990 (three months prior to maturity). The procedure is to take data available at the date
the option is being priced and first estimate the GARCH model and the historical 30 day
volatility. These results are used to compute option prices using each of the four alternative
models discussed above. The data set is then updated by adding the next day’s observation and
the process is repeated. An update of the GARCH model and historical volatilities are
computed and option prices are then estimated for the next day. This updating process
continues for every day up until the option expires so that we get a sequence of estimated
option prices under each of the alternative models. At each step, we were careful to use only
data that would be available at the date the option is being priced in order to implement each of
the option pricing models. All options valued had a $6.00 strike price.

Results from the initial GARCH estimation using data from July 1987 to April 1, 1990

are shown in Table 1. Two notable features of the results are the high asymptotic #-ratios on the

degrees of freedom and GARCH parameters, indicating the importance of excess kurtosis and

time-varying volatility in soybean futures prices; and the lack of residual serial correlation in the

errors or squared standardized errors, indicating an appropriate model specification.




Table 2 provides a summary of the performance of each pricing model over the three
month period from the beginning of April to the end of June 1990. The mean square error,
root mean square error (RMSE), and average absolute deviation (AAD) of the difference
between each models predicted option value and the realized market premium are used as
indicators of the model’s ability to predict the market value of the option. Of the four models,
the standard Black model has the most difficulty predicting the market option value with an
AAD of 1.59 cents and a RMSE of 1.92 cents over the sample period. The GARCH model
results in an AAD of 1.02 cents and a RMSE of 1.33 cents, clearly outperforming all of the
other valuation techniques. Thus, the ability of the GARCH model to account for the true
distribution properties of futures price changes appears to result in superior performance in
predicting the market prices of the options.

The GARCH Approximation I produces some improvement over the standard Black
model as evidenced by the lower AAD and RMSE of 1.34 and 1.69 cents, respectively. The one-

8
period-ahead conditional variance estimate from the GARCH model therefore appears to
provide a better variance forecast than the 30-day historical variance. As expected, the GARCH
Approximation II results in further improvement over Black’s model with an AAD of 1.13 cents

and a RMSE of 1.56 cents.

Even though the GARCH Approximation II model still assumes normality, incorporating

the predicted path of conditional variances implied by the GARCH model has improved the

predictive power of the model over that obtainable from assuming that variances are constant
over time. However, the restriction of normality clearly decreases the ability to predict option
prices as evidenced by the superior performance of the monte carlo simulation method. Table 3
presents the option prices for the standard Black model, the GARCH model, and the market

premium for the last three months of the July 1990 soybean futures option contract.




Conclusions

Black’s standard valuation model for commodity options assumes that proportional
changes in the underlying futures price are ii.d. normal. Empirical evidence suggests that
commodity futures price movements exhibit excess kurtosis and time-varying volatilities. This
paper presents methods for pricing commodity options when time-varying volatility in the
underlying futures price follows a GARCH process. Because the resulting valuation problem
has no closed form solution, numerical methods are used to determine option prices. In
addition, two closed form approximations models are derived. Empirical results show that the
ability of the GARCH simulation model to better account for the true distributional properties
of futures prices allows it to outperform the standard Black option pricing model in predicting
market premiums. The approximation models also outperform Black’s model, but are not as
accurate as the GARCH simulation model.

A limitation of the study is that empirical results have examined only one option contract
over a short period of time. Furthermore, while the GARCH option pricing model clearly

predicts option prices better than the standard Black model, we have not yet determined the

economic value of this improved performance. Future research will concentrate on relaxing

these limitations.




Table 1
Estimation Results for the Initial GARCH Model

100Af, = p + €, ; e, ~ t(0, h,v); h, = w + 4d, + el + Bh

-1

Parameter Estimate Standard Error t-Value

0.037 _ 0.044 0.833
0.024 ' 0.014 1.761
4.841 3.066 1.579
0.090 0.021 4.330
0.901 0.020 44.608
0.113 0.032 3.523

Statistic p-Value Statistic p-Value

o(1) = 1415 0.23 Q¥(1) = 1.178 0.28
0(5) = 4272 0.51 QX(5) = 2.503 0.78
0(10) = 15.928 0.10 0(10) = 4.063 0.94

Notes:  d, is a dummy variable with value 1 if the observation is the first observation on a new
futures contract and zero otherwise; Q(df) is a Q test for df degree autocorrelation in
the residuals; and Q*(df) is a Q test for df degree autocorrelation in the squared
standardized residuals (a test for residual GARCH effects not captured by the
model).

Table 2
Performance of Alternative Models in Predicting Market Option Premiums

‘ Mean-Squared Root Mean- Average
Pricing Model Error Squared Error  Absolute Deviation

Black Model 3.67 1.92 1.59
GARCH Model 1.76 1.33 1.02
GARCH Approximation I 2.87 1.69 1.34
GARCH Approximation II 2.43 1.56 1.13

Note: The root mean-squared errors and average absolute deviation are in cents per bushel.




Table 3 Black Model, GARCH Model, and Market Prices for July 1990 Soybean Futures Options

Option Prices ‘ Option Prices

Black GARCH GARCH
Date Model Model Market Date Model

4/2 15.07 20.14 18 5/14 4134
4/3 15.49 19.95 . 5/15 3355
4/4 18.15 22.50 5/16 31.91
4/5 20.96 2478 5/17 36.84
4/6 20.03 23.61 5/18 29.20
4/9 1829 21.21 5/21 2239
4/10 17.75 20.64 5/22 19.60
4/11 1830 20.46 5/23 18.65
4/12 15.46 17.26 5/24 22.96
4/16 - 1156 19.55 ) 5/25 24.45
4/17 20.84 2238 5/29 17.01
4/18 18.85 20.89 5/30 1526
4/19 2304 2435 5/31 15.75
4/20 2727 i 6/1 1235
4/23 27.49 6/4 8. 833
4/24 23.04 : 6/5 ' 6.92
4/25 3333 6/6 8. 6.77
4/26 48.14 6/7

4/21 54.54 ! 6/8

4/30 52.53 6/11

5/1 47.74 v 6/12

5/2 54.79 6/13, .

5/3 46.04 48.24 6/14

5/4 4298 44.48 6/15

5/7 51.96 53.69 6/18

5/8 48.07 49.62 . 6/19
5/9 60.04 61.43 6/20
5/10 60.62 61.83 62 6/

5/11 45.93 48.96 49

Note: ~ Option prices are in cents per bushel for call options with a $6.00 exercise price.
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