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Abstract 

This paper outlines a model for pricing options when the underlying futures pnce 

exhibits time-varying volatility. Futures price movements are characterized using a GARCH 

model. In an empirical application, the GARCH option pricing model predicts market 

premmms significantly better than the standard Black model, which assumes volatility is 

constant. 



PRICING COMMODITY OPTIONS WHEN THE UNDERLYING FUTURES 
PRICE EXHIBITS TIME-VARYING VOLATILITY 

There is now considerable evidence that proportional changes in commodity futures 

prices are not independent draws from an identical normal distribution. Gordon finds evidence 

of excess kurtosis and time-varying volatility in commodity futures price movements, suggesting 

systematic deviations from normality. He modeled these phenomena using the stable Paretian 

family of distributions. Baillie and Myers find that a generalized autoregressive conditional 

heteroscedastic (GARCH) model, assuming a student t density for the conditional distribution of 

price changes, does a good job of modeling the excess kurtosis and volatility changes in 

commodity futures price movements. The advantage of the GARCH specification is that 

convenient assumptions about the conditional density of price changes, such as the normal or 

student t, lead to a rich model which allows for time-varying volatility and excess kurtosis in the 

unconditional distribution of price changes. 

Despite this growing body of evidence, the standard model used to price commodity 

options continues to assume that proportional changes in the underlying futures price are 

identically independently distributed (i.i.d.) and normal (Black).1 Empirical tests comparing 

prices predicted by Black's model to actual market option prices generally conclude that the 

model does a poor job of pricing deep in-the-money and deep out-of-the-money options; 

although near-the-money options are often predicted well ( e.g. Hauser and Neff). These failures 

of the model could be explained by the inappropriate distributional assumption on commodity 

futures prices. 

This paper outlines methods for pricing commodity options when time-varying volatility 

in the underlying futures price follows a GARCH process. There is no closed form solution to 

1 A commodity call (put) option gives the buyer the right, but not the obligation, to buy 
(sell) a specified futures contract at the maturity date on the option for a predetermined fixed 
price, called the strike price. These instruments can be used to manage risks and speculate on 
commodity price changes. 
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the option pricing problem but the procedure is easy to implement using monte carlo methods 

and a simulation model. We also derive some closed form approximations to the simulation 

model. Because they account more carefully for the true distributional properties of futures 

price changes, it might be expected that GARCH option pricing models will outperform Black's 

model in predicting actual market option prices. This proposition is tested by applying 

alternative models to the problem of pricing options for soybean futures on the Chicago Board 

of Trade. It is found that the GARCH option pricing model predicts actual prices significantly 

better than Black's model using historical volatilities. 

Option Pricing Models 

Cox and Ross have developed a simple way of deriving the Black-Scholes option pricing 

formula on which Black's model for commodity options is based. They note that the Black

Scholes model provides an option pricing formula which is preference free. Therefore, if an 

equilibrium option price can be derived assuming one particular preference structure, then it 

must be a solution for any preference structure which permits equilibrium. This suggests solving 

the problem for the preference structure which is the most tractable, that of risk neutrality. 

In a risk-neutral world, two important restrictions would hold. First, the option will be 

priced according to its expected value at maturity, discounted back to the current period at the 

risk-free rate. For commodity call options this implies 

(1) P, = e r,(t-7) E, { max [O, FT - K]} 

where P, is the price at time t of an option maturing at T; r, is the current risk-free interest rate; 

E, is expectation conditional on information available at time t; Fr is the price of the futures 
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contract at maturity; and K is the strike price on the option. If the futures price is above the 

strike price at maturity then the call will have a value equal to the difference between the two 

prices, otherwise it will be worthless. The second restriction is that the current futures price is 

an unbiased predictor of the futures price at maturity, F, = E,(Fr)- If these restrictions did not 

hold in a risk-neutral world then there would be u_nexploited ( expected) profit opportunities. 

To operationalize the option pricing formula, a distributional assumption must be made 

on futures price changes so that the conditional expectation in (1) can be evaluated. Black's 

assumption is that period-to-period changes in the logarithm of futures prices are i.i.d. normal: 

(2) t:./=µ,+e. ':It t , 

where ,1.f, = In F, - In F,_1; and cl- is a (constant) one-period variance. Using this distributional 

assumption, and the unbiased futures restriction, then (1) can be evaluated to give the standard 

formula derived by Black to price commodity options (Rubinstein). This formula is usually 

operationalized by estimating cl- with a moving sample variance of past price changes ( say over 

the most recent 30 days). 

One of the major problems with Black's formula is that proportional futures price 

changes appear to violate iid. normality. In particular, price changes exhibit excess kurtosis and 

time-varying volatility (Gordon, Baillie and Myers). Suppose we generalize the probability 

model for futures price movements to 

(3) ,1.£ = Jl, + € • ':It t , e,I 0,_1 - t(O,h,,v) ; 2 
h, = CJJ + <XE t-1 + {Jh,-1 
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where o,_1 is a set of information available in period t -1; h, is the conditional variance of 

futures price changes; and t(O,h,, v) is the student t distribution with variance h, and v degrees of 

freedom. This is a GARCH(l,1) model first introduced by Bollerslev and used successfully by 

Baillie and Myers to model the excess kurtosis and time-varying volatility in commodity futures 

price movements. 

Suppose that options can still be priced using the risk-neutral valuation expression (1). 

This is not an innoculous assumption because when futures price volatilities are time-varying 

and stochastic (as under the GARCH model) then it will not generally be possible to construct a 

( continuously adjusted) portfolio of options and underlying futures which is risk free. The 

reason is that stochastic volatility adds an additional source of risk which is not generally 

diversifiable (Hull and White; Johnson and Shanno). Thus, the arbitrage argument which forms 

the foundation of the Black-Scholes valuation approach breaks down. 

Despite this, however, there are good reasons for assuming that options are valued as 

they would be in a risk-neutral world (risk-neutral valuation) even when volatilities are 

stochastic. First, Brennan has developed a set of conditions under which risk-neutral valuation 

occurs in equilibrium even when agents are risk averse and cannot embed the option in a risk

free portfolio. While somewhat restrictive, these conditions do suggest that risk-neutral 

valuation can be applicable even in the case of stochastic volatility. Second, risk-neutral 

valuation may be an adequate approximation, particularly when a significant number of risk

neutral, or nearly risk-neutral, agents are operating in the market. Third, the alternative to a 

risk-neutral valuation is an option pricing formula which depends on the risk preferences of all 

of the agents operating in the market. Because information on individual risk preferences is 

generally unknown, such a formula would be of little practical use. For these reasons we 

proceed using a risk-neutral approach to valuation. 
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Unfortunately there is no closed form solution to the integration implied by the risk

neutral valuation formula (1) under the GARCH model (3). The problem is that the GARCH 

model implies that the logarithm of the futures price at maturity, f n equals the logarithm of the 

initial futures price, Ji, plus a sum of weakly dependent and heterogeneously distributed GARCH 

innovations, { t: i+ii=~'. Thus, not only is the resulting distribution for f T not normal but it can be 

shown that it has no closed form solution (Engle). In the absence of a closed form solution 

there are two ways to proceed in developing an option pricing model: monte carlo simulation 

and closed form approximations to the true distribution off T- Each will be discussed in turn. 

A Monte Carlo Approach 

The monte carlo approach involves evaluating the expected option price at maturity via 

numerical methods. Suppose that the GARCH model (3) has been estimated using data 

available at time t. Then make m random draws from the t-distribution with 1' degrees of 

freedom, where m is the number of periods to maturity of the option and v is estimated from 

the GARCH model. Using the GARCH model and these random draws, the initial futures 

price F, can be simulated forward to generate one realization of the terminal futures price at 

maturity.2 Denote this realization F .J.. 

To obtain an estimate of the expected terminal option price at maturity, PT• repeat this 

procedure n times to get n sample values of F .J.. Then use3 

2 A detailed outline of the simulation method is available from the authors on request. 

3 In the empirical results which follow we set n = 1000 but improve the precision of the 
estimate by applying the control variate method (Boyle). Details are available from the authors 
on request. 
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A 1 n i 
Pr= -L max[O, Fr - K]. 

n i=t 

The current option price is obtained by simply discounting f> T back to t at the risk-free rate of 

interest, P, = e r,(,-1) Pr· The result can be compared with the actual market price for the 

relevant option at the relevant date, and/or to option prices generated using Black's model. 

Closed Form Approximations 

We examine two simple closed form approximations to the expected option price under 

the GARCH simulation model. The first involves taking the one-period-ahead conditional 

variance, iz,+t • estimated with the GARCH model using data up until period t, and assuming that 

all subsequent price changes are i.i.d. normal with constant variance iz,+t. This leads to the 

standard Black formula with fz,+t replacing the u2 estimated with historical volatilities. This 

approximation is easy to implement once the GARCH model has been estimated. However, it 

has the obvious disadvantage of assuming (incorrectly) that, even though there has been time

varying volatility in the past, future conditional variances will be constant up until the maturity 

date on the option. 

The second approximation involves using the GARCH model to forecast future 

conditional variances of price innovations over the time to maturity of the option. From results 

for predicting conditional variances given in Baillie and Bollerslev, this leads to a formula for 

estimating the conditional variance of/r in the GARCH(l,1) model of 

A T~ T~ 
(5) Varlf r I!,) = w [T - t - L (& + ,ay-11 + iz,+1L (& + ,ay-1. 

(1 - & - fJ) J=l J=l 
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Thus, if the distribution of fr conditional on f, is approximately normal with variance given by (5) 

then it can be shown ( e.g. Rubinstein) that the option pricing formula is 

(6) p = er,(t-T){Fc[_ln_(F_J--:K)==+=O=.S=Va=-r(f._r_lJ,_1)]- KC[-ln_(F_J_K)::=-=0.=5Vi=a=-r(f._r_lJ,_,)l} 

I I Jvarifr I!,) . Jvar(JT I!,) 

where C( ·) is the cumulative distribution function for the standard normal. 

This approximation is straightforward to compute and has the advantage of taking time

varying volatility directly into account. Nevertheless, the assumption of normality is generally 

violated in practice because the actual distribution of f T conditional on f, has excess kurtosis 

compared to the normal. Thus, it is expected that this approximation will not predict market 

prices as well as the monte carlo simulation which takes excess kurtosis in futures price changes 

into account. 

Empirical Results 

Four alternative -option pricing models have been outlined: (a) the standard Black 

model with historical 30 day volatilities (Black's model); (b) the GAR CH option pricing model 

estimated via monte carlo simulation (GARCH model); (c) Black's model with a GARCH 

volatility estimate (GARCH Approximation I); and (d) Black's model with a predicted GARCH 

volatility path (GARCH Approximation 11). The performance of each of these models is now 

compared by applying them to the task of pricing options for soybean futures on the Chicago 

Board of Trade. 
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Daily closing prices for soybean futures with a July delivery date were obtained from the 

Chicago Board of Trade database. The sample consists of day-to-day changes in the logarithm 

of July futures prices between July 1987 and July 1990, a total of 758 observations. When each 

July contract matures, the data switch to the next July contract maturing in the following year. 

A dummy variable is introduced into the GARCH model to account for the effect of switching 

contracts at annual intervals. All data are for July contracts because the aim is to price options 

written on July soybeans. 

We began estimating call option prices for July 1990 soybeans futures contracts on April 

2, 1990 (three months prior to maturity). The procedure is to take data available at the date 

the option is being priced and first estimate the GARCH model and the historical 30 day 

volatility. These results are used to compute option prices using each of the four alternative 

models discussed above. The data set is then updated by adding the next day's observation and 

the process is repeated. An update of the GARCH model and historical volatilities are 

computed and option prices are then estimated for the next day. This updating process 

continues for every day up until the option expires so that we get a sequence of estimated 

option prices under each of the alternative models. At each step, we were careful to use only 

data that would be available at the date the option is being priced in order to implement each of 

the option pricing models. All options valued had a $6.00 strike price. 

Results from the initial GARCH estimation using data from July 1987 to April 1, 1990 

are shown in Table 1. Two notable features of the results are the high asymptotic !-ratios on the 

degrees of freedom and GARCH parameters, indicating the importance of excess kurtosis and 

time-varying volatility in soybean futures prices; and the lack of residual serial correlation in the 

errors or squared standardized errors, indicating an appropriate model specification. 
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Table 2 provides a summary of the performance of each pricing model over the three 

month period from the beginning of April to the end of June 1990. The mean square error, 

root mean square error (RMSE), and average absolute deviation (AAD) of the difference 

between each models predicted option value and the realized market premium are used as 

indicators of the model's ability to predict the market value of the option. Of the four models, 

the standard Black model has the most difficulty predicting the market option value with an 

AAD of 1.59 cents and a RMSE of 1.92 cents over the sample period. The GARCH model 

results in an AAD of 1.02 cents and a RMSE of 1.33 cents, clearly outperforming all of the 

other valuation techniques. Thus, the ability of the GARCH model to account for the true 

distribution properties of futures price changes appears to result in superior performance in 

predicting the market prices of the options. 

The GARCH Approximation I produces some improvement over the standard Black 

model as evidenced by the lower AAD and RMSE of 1.34 and 1.69 cents, respectively. The one-
i 

period-ahead conditional variance estimate from the GARCH model therefore appears to 

provide a better variance forecast than the 30-day historical variance. As expected, the GARCH 

Approximation II results in further improvement over Black's model with an AAD of 1.13 cents 

and a RMSE of 1.56 cents. 

Even though the GARCH Approximation II model still assumes normality, incorporating 

the predicted path of conditional variances implied by the GARCH model has improved the 

predictive power of the model over that obtainable from assuming that variances are constant 

over time. However, the restriction of normality clearly decreases the ability to predict option 

prices as evidenced by the superior performance of the monte carlo simulation method. Table 3 

presents the option prices for the standard Black model, the GARCH modei and the market 

premium for the last three months of the July 1990 soybean futures option contract. 
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Conclusions 

Black's standard valuation model for commodity options assumes that proportional 

changes in the underlying futures price are i.i.d. normal. Empirical evidence suggests that 

commodity futures price movements exhibit excess kurtosis and time-varying volatilities. This 

paper presents methods for pricing commodity options when time-varying volatility in the 

underlying futures price follows a GARCH process. Because the resulting valuation problem 

has no closed form solution, numerical methods are used to determine option prices. In 

addition, two closed form approximations models are derived. Empirical results show that the 

ability of the GARCH simulation model to better account for the true distributional properties 

of futures prices allows it to outperform the standard Black option pricing model in predicting 

market premiums. The approximation models also outperform Black's model, but are not as 

accurate as the GARCH simulation model 

A limitation of the study is that empirical results have examined only one option contract 

over a short period of time. Furthermore, while the GARCH option pricing model clearly 

predicts option prices better than the standard Black modei we have not yet determined the 

economic value of this improved performance. Future research will concentrate on relaxing 

these limitations. 
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Table 1 
Estimation Results for the Initial GARCH Model 

100df, = µ + E, ; E, - t(O, h,, v) ; 
2 

h = W + Od + Ci€ I 1 + {3h 1 I I - ~ 

Parameter Estimate Standard Error t-Value 

µ 0.037 0.044 0.833 

w 0.024 0.014 1.761 

l, 4.841 3.066 1.579 

& 0.090 0.021 4.330 

{3 0.901 0.020 44.608 

v -1 0.113 0.032 3.523 

Statistic p-Value Statistic p-Value 

Q(l) = 1.415 0.23 Q2(1) = 1.178 0.28 

Q(5) = 4.272 0.51 Q2(5) = 2.503 0.78 

Q(10) = 15.928 0.10 Q2(10) = 4.063 0.94 

Notes: d, is a dummy variable with value 1 if the observation is the first observation on a new 
futures contract and zero otherwise; Q(df) is a Q test for df degree autocorrelation in 
the residuals; and Q2(df) is a Q test for df degree autocorrelation in the squared 
standardized residuals ( a test for residual GAR CH effects not captured by the 
model). 

Table 2 
Performance of Alternative Models in Predicting Market Option Premiums 

Mean-Squared Root Mean- Average 
Pricing Model Error Squared Error Absolute Deviation 

Black Model 3.67 1.92 1.59 

GARCH Model 1.76 1.33 1.02 

GARCH Approximation I 2.87 1.69 1.34 

GARCH Approximation II 2.43 1.56 1.13 

Note: The root mean-squared errors and average absolute deviation are in cents per bushel. 
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Table 3 Black Model, GARCH Model, and Market Prices for July 1990 Soybean Futures Options 

Option Prices Option Prices 

Black GARCH Black GARCH 
Date Model Model Market Date Model Model Market 

4/2 15.07 20.14 18 5/14 39.22 41.34 40 

4/3 15.49 19.95 17.5 5/15 30.58 33.55 30 

4/4 18.15 22.50 21 5/16 30.55 31.91 30.5 

4/5 20.96 24.78 23 5/17 34.82 36.84 35 

4/6 20.03 23.61 23 5/18 27.12 29.20 27 

4/9 18.29 21.21 20.75 5/21 20.40 2239 19 

4/10 17.75 20.64 21 5/22 19.16 19.60 18.25 

4/11 1830 20.46 21 5/23 18.69 18.65 17 

4/12 15.46 17.26 18 5/24 22.86 22.96 22.25 

4/16 -17.56 19.55 19.5 5/25 24.91 24.45 25 

4/17 20.84 2238 23 5/29 16.70 17.01 15 

4/18 18.85 20.89 21 5/30 15.79 15.26 14.63 

4/19 23.04 2435 24.75 5/31 16.58 15.75 16 

4/20 26.13 27.27 28.5 6/1 13.15 1235 10.13 

4/23 26.50 27.49 29.75 6/4 8.52 833 5.15 

4/24 21.61 23.04 23.88 6/5 8.10 ·6.92 6.75 

4/25 3139 3333 31.75 6/6 8.09 6.77 7 

4/26 45.10 48.14 48 6/7 11.61 10.85 12 

4/27 52.21 54.54 56.5 6/8 8.90 8.57 9 

4/30 49.93 52.53 51 6/11 13.26 1330 13.25 

5/1 45.42 47.74 48 6/12 12.32 11.87 13 

5/2 52.79 54.79 54.25 6/13_ 10.85 10.05 11.5 

5/3 46.04 48.24 48.5 6/14 3.52 3.95 4.5 

5/4 42.98 44.48 45 6/15 1.68 1.93 2.75 

5/7 51.96 53.69 54 6/18 4.22 4.54 4.13 

5/8 48.07 49.62 50.5 6/19 233 236 2.13 

5/9 60.04 61.43 62.25 6/20 3.22 3.10 3 

5/10 60.62 61.83 62 6/21 4.73 4.77 438 

5/11 45.93 48.96 49 

Note: Option prices are in cents per bushel for call options with a $6.00 exercise price. 
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