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Abstract

We investigate the problem of Nash implementation in the presence of
“partially honest” individuals. A partially honest player is one who has a
strict preference for revealing the true state over lying when truthtelling
does not lead to a worse outcome (according to preferences in the true
state) than that which obtains when lying. We show that when there are
at least three individuals, the presence of even a single partially honest
individual (whose identity is not known to the planner) can lead to a
dramatic increase in the class of Nash implementable social choice cor-
respondences. In particular, all social choice correspondences satisfying
No Veto Power can be implemented. We also provide necessary and suf-
ficient conditions for implementation in the two-person case when there
is exactly one partially honest individual and when both individuals are
partially honest. We describe some implications of the characterization
conditions for the two-person case. Finally, we extend our three or more
individual result to the case where there is an individual with an arbitrary
small but strictly positive probability of being partially honest.

∗We are most grateful to M.Kandori, H.Matsushima and T.Sjostrom for helpful comments
and discussions.

†Dutta is in the Department of Economics, University of Warwick, Coventry CV4 7AL,
England. Sen is in the Planning Unit, Indian Statistical Institute, 7 SJS Sansanwal Marg,
New Delhi 110016, India.
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1 Introduction

The theory of mechanism design investigates the goals that a planner or princi-
pal can achieve when these goals depend on private information held by various
agents. The planner designs a mechanism and elicits the private information
from the agents. The cornerstone of the theory is the assumption that agents
act purely to further their own self-interest. This is of course in common with
much of the literature in economics which too assumes that individual agents’
behaviors are solely motivated by material self-interest. However, there is a
fair amount of both empirical and experimental evidence suggesting that con-
siderations of fairness, and reciprocity do influence individual behavior. The
recent literature in behavioral economics builds on this evidence to construct
theoretical models of individual behavior. 1

In this paper, we too depart from the traditional assumption that all agents
are solely motivated by the pursuit of self-interest. In particular we assume that
there are some agents who have a “small” intrinsic preference for honesty. In the
context of mechanism design, this implies that such agents have preferences not
just on the outcomes but also directly on the messages that they are required to
send to the “mechanism designer”. Specifically, we assume the following: these
agents strictly prefer to report the “true” state rather than a “false” state when
reporting the former leads to an outcome (given some message profile of the
other agents) which is at least as preferred as the outcome which obtains when
reporting the false state (given the same message profile of the other agents).
Suppose for instance, that an agent i believes that the other agents will send
the message profile m−i. Suppose that the true state is R and the message
mi reports R while the message m′

i reports a false state. Now let the message
profiles (mi,mi) and (m′

i, m−i) lead to the same outcome in the mechanism, say
a. Then this agent will strictly prefer to report mi rather than m′

i. Of course,
in the conventional theory, the agent would be indifferent between the two.

It is important to emphasize that the agent whose preferences have been
described above has only a limited or partial preference for honesty.2 She has a
strict preference for telling the truth only when truthtelling leads to an outcome
which is not worse than the outcome which occurs when she lies. We consider
such behaviour quite plausible at least for some agents.

We investigate the theory of Nash implementation pioneered by Maskin [10]3

in the presence of partially honest individuals. Our conclusion is that even a
small departure from the standard model in this respect can lead to dramatically
different results. In the case where there are at least three or more individuals,
the presence of even a single partially honest individual implies that all social
choice correspondences satisfying the weak requirement of No Veto Power can
be Nash implemented. The stringent requirement of Monotonicity is no longer

1For a sample of some papers, see for instance Kahneman, Knetsch and Thaler[9], Roth
[17], Fehr and Schmidt [5], Fehr, Fischbacher and Gachter [6], Rabin [16].

2Of course, if agents have a very strong or outright preference for telling the truth, then
the entire theory of mechanism design may be rendered trivial and redundant.

3See Jackson [8] and Maskin and Sjostrom [11] for comprehensive surveys of the literature.
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a necessary condition. It is vital to emphasize here that the informational
requirements for the planner are minimal; although he is assumed to know of
the existence of at least one partially honest agent, he does not know of her
identity (or their identities).

Although the “many person” result is striking enough, the main focus of
our paper is the case of two agents. The two-agent implementation problem is
important in view of its potential applications to bilateral contracts and bar-
gaining. We consider separately the case where there is exactly one partially
honest individual and the case where both individuals are partially honest. We
derive necessary and sufficient conditions for implementation in both cases un-
der the assumption that individuals have strict preferences over outcomes. We
then go on to derive some implications of these characterization conditions. In
contrast to the many-person case, it turns out that non-trivial restrictions re-
main on the class of social choice correspondences which can be implemented
even when both individuals are known to be partially honest. This reflects the
fact that the two-person Nash implementation problem is “harder” than the
many-person case. However, we show that despite these non-trivial restrictions,
the possibilities for implementation increase. In particular, the negative result
of Hurwicz and Schmeidler [7] and Maskin [10] no longer applies - there are
sub-correspondences of the Pareto correspondence which can be implemented.

We also demonstrate that our permissive result in the three or more indi-
viduals case is robust to a particular change in the informational assumption.
Specifically it is assumed that there exists a particular individual who is par-
tially honest with a strictly positive but arbitrary probability. We show that
any social choice correspondence satisfying No Veto Power can be implemented
in Bayes-Nash equilibrium.

Some recent papers very similar in spirit to ours, though different in sub-
stance are Matsushima [12] and Matsushima[13]. We discuss his work in greater
detail in Section 4.

In the next section we describe the model and notation. Section 3 introduces
the notion of partially honest individuals. Sections 4 and 5 present results
pertaining to the many-person and the two-person implementation problems
respectively. Section 6 analyzes the incomplete information model while Section
7 concludes.

2 The Background

Consider an environment with a finite set N = {1, 2, . . . , n} of agents or indi-
viduals and a set A of feasible outcomes. Each individual i has a preference
ordering Ri over A where for all x, y ∈ A, xRiy signifies “x is at least preferred
as y under Ri”. A preference profile (R1, . . . , Rn) specifies a preference ordering
for each i ∈ N . Letting R be the set of all orderings over A, Rn will denote
the set of all preference profiles. A domain is a set D ⊂ Rn. An admissible
preference profile will be represented by R, R′ ∈ D. We will also refer to an
admissible preference profile as a state of the world.
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We assume that each agent observes the state of the world, so that there is
complete information. Of course, the planner does not observe the state of the
world. This gives rise to the implementation problem since her objective or goal
does depend upon the state of the world.

Definition 1 A social choice correspondence (scc) is a mapping f that specifies
a nonempty set f(R) ⊆ A for each R ∈ D. A scc which is always singlevalued
will be called a social choice function (scf).

The social choice correspondence represents the goals of the planner. For
any R ∈ D, f(R) is the set of “socially desirable” outcomes which the planner
wants to achieve. Since the planner does not observe the state of the world,
she has to use a mechanism which will induce individuals to reveal their private
information.

Definition 2 A mechanism g consists of a pair (M,π), where M is the product
of individual strategy sets Mi and π is the outcome function mapping each vector
of individual messages into an outcome in A.

A mechanism g together with any state of the world induces a game with
player set N , strategy sets Mi for each player i, and payoffs given by the compo-
sition of the outcome function π and preference ordering Ri. Let N(g,R) denote
the set of Nash equilibrium outcomes in the game corresponding to (g, R).

Definition 3 A scc f is implementable in Nash equilibrium if there is some
game form g such that for all R ∈ D, f(R) = N(g, R).

We introduce some notation which we will need later on.
For any set B ⊆ A and preference Ri, M(Ri, B) = {a ∈ B|aRib ∀b ∈ B},

is the set of maximal elements in B according to Ri. The lower contour set of
a ∈ A for individual i and Ri ∈ R, is L(Ri, a) = {b ∈ A|aRib}.

3 Partially Honest Individuals

With a few exceptions, the literature on implementation assumes that individ-
uals are completely strategic - they only care about the outcome(s) obtained
from the mechanism. However, it is not unrealistic to assume that at least some
individuals may have an intrinsic preference for honesty. Of course, there are
various options about how to model such a preference for honesty. In this paper,
we adopt a very weak notion of such preference for honesty. In particular, we
assume the following. Suppose the mechanism used by the planner requires each
agent to announce the state of the world. Then, an individual is said to have
a preference for honesty if she prefers to announce the true state of the world
whenever a lie does not change the outcome given the messages announced by
the others. Notice that this is a very weak preference for honesty since an “hon-
est” individual may prefer to lie whenever the lie allows the individual to obtain
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a more preferred outcome. An alternative way of describing an honest individ-
ual’s preference for honesty is that the preference ordering is lexicographic in the
sense that the preference for honesty becomes operational only if the individual
is indifferent on the outcome dimension.

We focus on mechanisms in which one component of each individual’s mes-
sage set involves the announcement of the state of the world. We know from
Maskin [10] that there is no loss of generality in restricting ourselves to mecha-
nisms of this kind. Therefore, consider a mechanism g in which for each i ∈ N ,
Mi = Rn × Si, where Si denotes the other components of the message space.
For each i and R ∈ D, let Ti(R) = {R} × Si. For any R ∈ D and i ∈ N , we
interpret mi ∈ Ti(R) as a truthful message as individual i is reporting the true
state of the world.

Given such a mechanism, we need to “extend” an individual’s ordering over
A to an ordering over the message space M since the individual’s preference
between being honest and dishonest depends upon what messages others are
sending as well as the outcome(s) obtained from them. Let ºR

i denote individual
i’s ordering over M in state R. The asymmetric component of ºR

i will be
denoted by ÂR

i .

Definition 4 Let g = (M, π) be a mechanism where Mi = D×Si. An individual
i is partially honest whenever for all states R ∈ D and for all
(mi,m−i), (m′

i,m−i) ∈ M ,

(i) If π(mi,m−i)Riπ(m′
i,m−i) and mi ∈ Ti(R), m′

i /∈ Ti(R), then
(mi,m−i) ÂR

i (m′
i,m−i).

(ii) In all other cases, (mi, m−i) ºR
i (m′

i,m−i) iff π(mi,m−i)Riπ(m′
i, m−i).

The first part of the definition captures the individual’s (limited) preference
for honesty - she strictly prefers the message vector (mi,m−i) to (m′

i,m−i)
when she reports truthfully in (mi,m−i) but not in (m′

i,m−i) provided the
outcome corresponding to (mi,m−i) is at least as good as that corresponding
to (m′

i,m−i).
Since individuals who are not partially honest care only about the outcomes

associated with any set of messages, their preference over M is straightfor-
ward to define. That is, for any state R, (mi,m−i) ºR

i (m′
i,m−i) iff only

π(mi,m−i)Riπ(m′
i,m−i).

Any mechanism together with the preference profile ºR now defines a mod-
ified normal form game, and the objective of the planner is to ensure that the
set of Nash equilibrium outcomes corresponds with f(R) in every state R.4 We
omit formal definitions.

4 Many Person Implementation

The seminal paper of Maskin [10] derived a necessary and “almost sufficient”
condition for Nash implementation. Maskin showed that if a social choice cor-

4We denote this set as N(g,ºR).
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respondence is to be Nash implementable, then it must satisfy a monotonicity
condition which requires that if an outcome a is deemed to be socially desirable
in state of the world R, but not in R′, then some individual must reverse her
preference ranking between a and some other outcome b. This condition seems
mild and innocuous. However, it has powerful implications. For instance, only
the dictatorial single-valued social choice correspondence can satisfy this condi-
tion if there is no restriction on the domain of preferences. Maskin also showed
that when there are three or more individuals, this monotonicity condition and
a very weak condition of No Veto Power are sufficient for Nash implementation.
No veto power requires that (n− 1) individuals can together ensure that if they
unanimously prefer an alternative a to all others, then a must be socially de-
sirable. Notice that this condition will be vacuously satisfied in environments
where there is some good such as money which all individuals “like”. Even
in voting environments where preferences are unrestricted, most well-behaved
social choice correspondences such as those which select majority winners when
they exist, scoring correspondences and so on, satisfy the No Veto Power con-
dition.

These two conditions are defined formally below.

Definition 5 The scc f satisfies Monotonicity if for all R,R′ ∈ D, for all
a ∈ A, if a ∈ f(R) \ f(R′), then there is i ∈ N and b ∈ A such that aRib and
bP ′ia.

Definition 6 A scc f satisfies No Veto Power if for all a ∈ A, for all R ∈ D,
if |{i ∈ N |aRib for all b 6= a}| ≥ n− 1, then a ∈ f(R).

In this section we make the following assumption.

Assumption A: There exists at least one partially honest individual and this
fact is known to the planner. However, the identity of this individual is not
known to her.

We show here that the presence of even one partially honest individual -
even when the identity of the individual is not known - results in a dramatically
different result. In particular, we show that Monotonicity is no longer required,
so that any social choice correspondence satisfying No Veto Power can now be
implemented.

Theorem 1 Let n ≥ 3 and suppose Assumption A holds. Then, every scc
satisfying No Veto Power can be implemented.

Proof. Let f be any scc satisfying No Veto Power.
We prove the theorem by using a mechanism which is similar to the canonical

mechanisms used in the context of Nash implementation. In particular, the
message sets are identical, although there is a slight difference in the outcome
function.

For each i ∈ N , Mi = D ×A× Z+, where Z+ is the set of positive integers.
Hence, for each agent i, a typical message or strategy consists of a state of world
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R, an outcome a, and a positive integer. The outcome function is specified by
the following rules :

(R.1) : If at least (n− 1) agents announce the same state R, together with the
same outcome a where a ∈ f(R), then the outcome is a.

(R.2) : In all other cases, the outcome is the one announced by i∗, where ki∗ > kj

for all j 6= i∗. A tie in the highest integer announced is broken in favour
of the individual with the lowest index.

Let us check that this mechanism implements f .
Suppose the “true” state of the world is R ∈ D. Let a ∈ f(R). Suppose

for each i ∈ N , mi = (R, a, ki) where ki ∈ {1, . . . , n}. Then, from (R.1), the
outcome is a. No unilateral deviation can change the outcome. Moreover, each
individual is announcing the truth. Hence, this unanimous announcement must
constitute a Nash equilibrium, and so f(R) ⊆ N(g,ºR).

We now show that N(g,ºR) ⊆ f(R). Consider any n-tuple of messages m.
Suppose no more than (n− 1) individuals announce the same state of the world
R′ (where R′ may be distinct from R), the same a ∈ f(R′). Let the outcome be
some b ∈ A. Then, any one of (n − 1) individuals can deviate, precipitate the
modulo game, and be the winner of the modulo game. Clearly, if the original
announcement is to be a Nash equilibrium, then it must be the case that b is
Ri-maximal for (n− 1) individuals. But, then since f satisfies No Veto Power,
b ∈ f(R).

Suppose now that all individuals unanimously announce R′, b ∈ f(R′), where
R′ 6= R. Then, the outcome is b. However, this n-tuple of announcements cannot
constitute a Nash equilibrium. For, let i be a partially honest individual. Then,
i can deviate to the truthful announcement of R, that is to some mi(R) ∈ Ti(R).
The outcome will still remain b, but i gains from telling the truth.

Remark 1 Matsushima [13] also focuses on Nash implementation with honest
players. However, there are several differences between his framework and ours.
In his framework, the social choice function selects a lottery over the basic set
of outcomes. Individuals have vNM preferences over lotteries. He also assumes
that all players have an intrinsic preference for honesty, suffering a small utility
loss from lying. In his framework, the planner can also impose small fines on
the individuals.5 In this setting, he shows that when there are three or more
individuals, every social choice function is implementable in the iterative elim-
ination of strictly dominated strategies, and hence in Nash equilibrium when
there are three or more individuals. Matsushima [12] focuses on the incom-
plete information framework and proves a similar permissive result for Bayesian
implementation when players suffer a small utility loss from lying.

5Notice that our model is purely ordinal and so also accommodates the important context
of voting problems.
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5 Two-person Implementation

The two-person implementation problem is an important one theoretically. How-
ever it is well-known that analytically, it has to be treated differently from the
“more than two” or many-person case. The general necessary and sufficient
condition for the two-person case are due to Dutta and Sen [4] and Moore
and Repullo [14].6 These conditions are more stringent than those required for
implementation in the many-person case. Monotonicity remains necessary; in
addition, some non-trivial conditions specific to the two-person case also become
necessary.

Theorem 1 and Matsushima’s result show that when there are at least three
individuals, the presence of a partially honest player even though her identity
is not known to the planner allows for a very permissive result since monotonic-
ity is no longer a necessary condition for implementation. In this section, we
investigate social choice correspondences which are implementable under two
alternative scenarios - when there is exactly exactly one partially honest indi-
vidual, as well as when both individuals are partially honest.

In order to simplify notation and analysis, we shall assume throughout this
subsection that the admissible domain consists of strict orders, i.e. indifference
is not permitted. (Later we shall discuss some of the complications which arise
when indifference in individual orderings is permitted.) We shall write individual
i’s preference ordering as Pi with the interpretation that if xPiy, then “x is
strictly preferred to y under Pi. The set of all strict preference orderings is
denoted by P. A preference profile or state of the world will be denoted by P ≡
(P1, . . . Pn). The set of states will continue to be denoted by D ⊂ Pn. For any
set B ⊆ A and preference Pi, the set of maximal elements in B according to Pi is
M(Pi, B) = {a ∈ B| there does not exist b such that bPia}. The lower contour
set of a ∈ A for individual i and Pi ∈ D, is L(Ri, a) = {b ∈ A|aRib} ∪ {a}.
Other definitions carry over to this setting with appropriate notational changes.

Our results establish two general facts. The first is that the necessary condi-
tions for implementation are restrictive in the two-person case even when both
individuals are partially honest. For instance, no correspondence which con-
tains the union of maximal elements of the two individuals, is implementable.
We also show that if the number of alternatives is even, then no anonymous
and neutral social choice correspondence is implementable. The second fact is
that the presence of partially honest individuals makes implementation easier
relative to the case when individuals are not partially honest. Consider, for
instance, a classic result due to Hurwicz and Schmeidler [7] and Maskin [10]
which states that if a two-person, Pareto efficient, social choice correspondence
defined on the domain of all possible strict orderings is implementable, then it
must be dictatorial. We show that this result no longer holds when both in-
dividuals are partially honest. To summarize: the presence of partially honest
individuals, ameliorates the difficulties involved in two-person implementation
relative to the case where individuals are not partially honest; however, unlike

6See also Busetto and Codognato [3]
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the case of many-person implementation with partially honest individuals, it
does not remove these difficulties completely.

We now proceed to the analysis of the two cases.

5.1 Both Individuals Partially Honest

In this subsection, we make the following informational assumption.

Assumption A2: Both individuals are partially honest and the planner knows
this fact.

A fundamental condition for implementation in this case is stated below. In
what follows, we shall refer to the players as i and j.

Definition 7 A scc f satisfies Condition β2 if there exists a set B which con-
tains the range of f , and for each i ∈ N , P ∈ D and a ∈ f(P ), there exists a
set C(Pi, a) ⊆ B with a ∈ C(Pi, a) ⊆ L(Pi, a) such that

(i) C(Pi, a) ∩ C(P 1
j , b) 6= ∅ for all P 1 ∈ D and b ∈ f(P 1).

(ii) [a ∈ M(Pi, B) ∩M(Pj , B)] ⇒ [a ∈ f(P )].

Condition β2 comprises two parts. The first is an intersection property which
requires appropriate lower contour sets to have a non-empty interesction. The
second is a unanimity condition which requires alternatives which are maximal
in an appropriate set for both individuals, to be included in the value of the scc
at that state. Conditions of this sort are familiar in the literature on two-person
Nash implementation.

Theorem 2 Assume n = 2 and suppose Assumption A2 holds. Let f be a SCC
defined on a domain of strict orders. Then f is implementable if and only if it
satisfies Condition β2.

Proof. We first show if a scc f is implementable, it satisfies Condition β2.
Let f be an implementable scc and let g = (M,π) be the mechanism which

implements it. Let B = {a ∈ A|π(m) = a for some m ∈ M}. For each P ∈
D and a ∈ f(P ), let m∗(P, a) be the Nash equilibrium strategy profile with
π(m∗(P, a)) = a. Such a strategy profile must exist if f is implementable. For
each i, let C(Pi, a) = {c ∈ A|π(mi,m

∗
j (P, a)) = c for some mi ∈ Mi}. It follows

that a ∈ C(Pi, a) ⊆ L(Pi, a) and that C(Pi, a) ⊆ B.
Take any P 1 ∈ D and b ∈ f(P 1), and suppose x = π(m∗

i (P, b),m∗
j (P

1, a)).
Then, x ∈ C(P 1

i , a) ∩ C(Pj , b). Hence, f satisfies (i) of Condition β2.
Now fix a state P ∈ D and let a ∈ A be such that a ∈ M(Pi, B)∩M(Pj , B).

Since a ∈ B, there exists a message profile m such that π(m) = a. If m is a Nash
equilibrium in state P , then a ∈ f(P ). If m is not a Nash equilibrium, then
there is an individual, say i and m̂i ∈ Ti(P ) such that π(m̂i,mj)Pia. However,
a ∈ M(Pi, B) and π(m̂i,mj) ∈ B implies that π(m̂i,mj)Pia. Since Pi is a
strict order, we must have π(m̂i, mj) = a. If (m̂i,mj) is a Nash equilibrium,
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then again a ∈ f(P ). Otherwise, j 6= i deviates to some m̂j ∈ Tj(P ) with
π(m̂i, m̂j) = a (using the same argument as before). But there cannot be any
further deviation from (m̂i, m̂j), and so a ∈ f(P ). Hence f satisfies (ii) of
Condition β2.

To prove sufficiency, let f be any scc satisfying Condition β2. For all P ∈ D
and a ∈ f(P ), let C(Pi, a) and B be the sets specified in Condition β2.

For each i, let Mi = D × A× A× {T, F} × Z+. The outcome function π is
defined as follows.

(i) If mi = (P, a, b, T, ki) and mj = (P, a, c, T, kj) where a ∈ f(P ), then
π(m) = a.

(ii) If mi = (P, a, c, T, ki) and mj = (P 1, b, d, T, kj) where a ∈ f(P ) and b ∈
f(P 1) with (a, P ) 6= (b, P 1), then π(m) = x where x ∈ C(P 1

i , b)∩C(Pj , a).

(iii) If mi = (P, a, c, F, ki) and mj = (P 1, b, d, T, kj), with a ∈ f(P ) and
b ∈ f(P 1), then π(m) = c if c ∈ C(P 1

i , b) and π(m) = b otherwise.

(iv) In all other cases, the outcome is the alternative figuring as the third
component of mi∗ , where i∗ is the winner of the integer game.

The mechanism is similar, but not identical to that used by Dutta and
Sen [4]. Essentially, when both individuals announce the same (P, a) where
a ∈ f(P ) and T , then the mechanism identifies this as the “equilibrium” mes-
sage for (P, a). However, if the two individuals send these equilibrium messages
corresponding to different states of the world, then the planner cannot iden-
tify which individual is telling the truth, and so the outcome corresponding to
these conflicting messages has to be in the intersection of the appropriate lower
contour sets. If one individual appears to be sending the equilibrium message
corresponding to (P, a), while the other individual i announces F instead of T
(even if the other components correspond to some equilibrium), then the latter
individual is allowed to select any outcome in C(Pi, a). Finally, in all other
cases, the integer game is employed.

Let us check that this mechanism implements f in Nash equilibrium. Through-
out the remaining proof, let the true state be P .

Consider any a ∈ f(P ). Let m∗
i = (P, a, ., T, ki) for both i. where ki is any

positive integer. Then, π(m∗) = a. Any deviation by i can only result in an
outcome in L(Pi, a), and so m∗ must be a Nash equilibrium.

We complete the proof of Sufficiency by showing that all Nash equilibrium
outcomes are in f(P ). Consider a message profile m and suppose that it is a
Nash equilibrium in state P . We consider all possibilities below.

Case 1: Suppose mi = (P 1, a, ., T, ki) for all i, where a ∈ f(P 1). Then, π(m) =
a. If P = P 1, there is nothing to prove, since a ∈ f(P ). Assume therefore
that P 6= P 1.7 Let i deviate to m′

i = (P, b, a, F, ki), where b ∈ f(P ). Then
π(m

′
i,mj) = a. But, this remains a profitable deviation for i since m′

i ∈ Ti(P ).
Hence m is not a Nash equilibrium.

7That is, both individuals “coordinate” on a lie about the state of the world.
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Case 2: Suppose mi = (P 1, a, c, T, ki) and mj = (P 2, b, d, T, kj) where a ∈
f(P 1) and b ∈ f(P 2) with (a, P 1) 6= (b, P 2). Then π(m) = x where x ∈
C(P 2

i , b) ∩ C(P 1
j , a). Suppose that P = P 1 = P 2 does not hold. So, either

P 1 6= P or P 2 6= P . Suppose w.l.o.g that P 1 6= P . Then, i can deviate to
m′

i ∈ Ti(P ) such that m′
i = (P, b, x, F, ki). Since x ∈ C(P 2

i , b) by assumption,
π(m

′
i,mj) = x. However, m

′
i ∈ Ti(P ) so that i gains by deviating. Hence m is

not a Nash Equilibrium.
Suppose instead that P = P 1 = P 2 holds and m is a Nash equilibrium.

Then it must be the case that x ∈ M(Pi, C(Pi, b)) (Recall that P = P 2), i.e.
xPib. However bPix since x ∈ C(Pi, b) by assumption. Since Pi is a strict order,
we have b = x. Since b ∈ f(P ), it follows that π(m) ∈ f(P ).

Case 3: Suppose mi = (P 1, a, c, F, ki) and mj = (P 2, b, d, T, kj) where a ∈
f(P 1) and b ∈ f(P 2). Then π(m) = x where x ∈ C(P 2

i , b). Suppose that
P = P 1 = P 2 does not hold. So, either P 1 6= P or P 2 6= P . Suppose first, that
P 1 6= P . Then, replicating the argument in Case 2 above, it follows that i can
profitably deviate to m′

i ∈ Ti(P ) such that m′
i = (P, b, x, F, ki) establishing that

m is not a Nash Equilibrium. Suppose then that P 2 6= P . Then, j can deviate
to m′

j ∈ Ti(P ) such that m′
j = (P, b, x, F, kj) and win the integer game (by a

suitable choice of kj). Then π(mi,m
′
j) = x. and m

′
j is a profitable deviation

since m
′
j ∈ Tj(P ). Hence m is not a Nash Equilibrium.

The only remaining case is P = P 1 = P 2. Observe that since m is a Nash
equilibrium, x ∈ M(Pi, C(Pi, b)), i.e xPib. Since bPix as well, we have b = x
since Pi is a strict order. Since b ∈ f(P ) by hypothesis, we conclude that
π(m) ∈ f(P ).

Case 4: The remaining possibility is that m is such that the integer game
decides the outcome. In this case, if m is a Nash equilibrium, then π(m) ∈
M(Pi, B) ∩M(Pj , B). From (ii) of Condition β2, we have π(m) ∈ f(P ).

As we have seen above, assuming that all admissible preferences are strict
orders leads to a simple characterization of implementable sccs. Matters are
more complicated and subtle when we allow for indifference. For instance, even
Unanimity is no longer necessary. Let R be a state of the world where the
maximal elements for i and j are {a, b} and {a, c}. We can no longer argue
that a is f -optimal at this state for the following reason. Suppose that the
message profile m which leads to a involves individual i announcing a non-
truthful state of the world. However a truthful message from i (holding j’s
message constant) may lead to the outcome b which is not maximal for j. If
this is the case, then m is no longer a Nash equilibrium. It is not difficult to show
that a weaker Unanimity condition is necessary. The complications associated
with weak orders extend beyond that arising from Unanimity. However, we
can establish weaker necessary conditions and prove a version of Theorem 2
with a “gap” between the necessary and sufficient conditions. This requires
considerable investment in notation, which we do not consider worthwhile at
this point since the main points of this exercise are brought out by Theorem 2
in its present form.
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5.2 Exactly One Partially Honest Individual

Here we make the following informational assumption.

Assumption A1: There is exactly one partially honest individual. The planner
knows this fact but does not know the identity of the honest individual.

The condition which is necessary and sufficient for implementation under
Assumption A1 (assuming strict orders) is slightly more complicated than the
earlier case.

Definition 8 The scc f satisfies Condition β1 if there is a set B which contains
the range of f , and for each i ∈ N , P ∈ D and a ∈ f(P ), there exists a set
C(Pi, a) ⊆ B with a ∈ C(Pi, a) ⊆ L(Pi, a) such that

(i) C(Pi, a) ∩ C(P 1
j , b) 6= ∅ for all P 1 ∈ D and for all b ∈ f(P 1).

(ii) for all P 2 ∈ D, [a ∈ M(P 2
i , B) ∩M(P 2

j , B)] ⇒ [a ∈ f(P 2)].

(iii) for all P 2 ∈ D, if b ∈ C(Pi, a) and b ∈ M(P 2
i , C(Pi, a)) ∩M(P 2

j , B), then
b ∈ f(P 2).

The only difference between Conditions β1 and β2 is the extra requirement
(iii) in the former. Our next result shows that Condition β1 is the exact coun-
terpart of Condition β2 in the case where Assumption A1 holds.

Theorem 3 Assume n = 2 and suppose Assumption A1 holds. Let f be a SCC
defined on a domain of strict orders. Then f is implementable if and only if it
satisfies Condition β1.

Proof. Again, we start with the proof of necessity. Let (M, π) be the mechanism
which implements f . Consider part(i) of Condition β1. Clearly, the intersection
condition remains necessary.

The proof of part (ii) of Condition β1 is similar though not identical to
the proof of its counterpart in β2. Let P 2 ∈ D and consider a such that a ∈
M(P 2

i , B)∩M(P 2
j , B). Since a ∈ B, there exists a message profile m such that

π(m) = a. Suppose w.l.o.g. that i is the partially honest individual. If m is
not a Nash equilibrium, then it must be the case that there exists m̂i ∈ Ti(P 2)
such that π(m̂i,mj)P 2

i a. However, a ∈ M(P 2
i , B) and π(m̂i,mj) ∈ B implies

that π(m̂i,mj)P 2
i a. Since P 2

i is a strict order, we must have π(m̂i, mj) = a.
Since a ∈ M(P 2

j , B), it must be the case that (m̂i,mj) is a Nash equilibrium
and a ∈ f(P 2).

Consider part (iii) of Condition β1. Let P 2 ∈ D. We need to show that
if b ∈ C(Pi, a) and b ∈ M(P 2

i , C(Pi, a)) ∩ M(P 2
j , B), then b ∈ f(P 2). Let

π(m) = b with mj = m∗
j (P, a) being the equilibrium message of j supporting

a as a Nash equilibrium when the state is P . Suppose the state is P 2. Let
i be the partially honest individual. Since b ∈ M(P 2

i , C(Pi, a)), i can have a
profitable deviation from mi only if mi /∈ Ti(P 2) and there is m′

i ∈ T (P 2) such
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that π(m′
i,mj) = b, the last fact following from our assumption that P 2

i is a
strict order. But, now consider (m′

i,mj). Individual i cannot have a profitable
deviation since m′

i ∈ T (P 2) and b is P 2
i -maximal in C(Pi, a). Neither can j

since b is P 2
j -maximal in B and j is not partially honest. So, (m′

i,mj) must be
a Nash equilibrium corresponding to P 2, and hence b ∈ f(P 2).

We now turn to the proof of sufficiency. Let f be any scc satisfying Condition
β1. Consider the same mechanism used in the proof of Theorem 2.

Let P be the true state of the world. The proof that every a ∈ f(P ) is
supported as a Nash equilibrium is identical to that of Theorem 2.

We need to show that every outcome corresponding to a Nash equilibrium is
in f(P ). Let m be any candidate Nash equilibrium strategy profile. Once again,
we consider all possibilities exhaustively. Suppose m is covered by Case 1 of
Theorem 2. Then, the proof is identical to that of Theorem 2 since the partially
honest individual can deviate to a truthtelling strategy without changing the
outcome.

Case 2: Suppose mi = (P 1, a, c, T, ki) and mj = (P 2, b, d, T, kj) where a ∈
f(P 1) and b ∈ f(P 2) with (a, P 1) 6= (b, P 2). Let π(m) = x ∈ C(P 2

i , b) ∩
C(P 1

j , a). Suppose w.l.o.g that i is the partially honest individual. We claim that
P 1 = P . Otherwise i can deviate to m′

i = (P, z, x, F, ki) so that π(m′
i,mj) = x

since x ∈ C(P 2
i , b). Since mi /∈ T (P ) while m′

i ∈ T (P ), it follows that the
deviation is profitable and m is not a Nash equilibrium.

Suppose therefore that P 1 = P . Since m is a Nash equilibrium, it must be
true that x ∈ M(Pj , C(Pj , a)), i.e xPja. However, since x ∈ C(Pj , a) and Pj

is a strict order, we must have x = a. Since a ∈ f(P ) by assumption, we have
shown π(m) ∈ f(P ) as required.

Case 3: Suppose mi = (P 1, a, c, F, ki) and mj = (P 2, b, d, T, kj) where a ∈
f(P 1) and b ∈ f(P 2). Let π(m) = x. We know that x ∈ C(P 2

i , b). Suppose
P 6= P 1 and P 6= P 2 hold. As we have seen in the proof of Case 3 in Theorem
2, both individuals can unilaterally deviate to a truth-telling strategy without
changing the outcome. The partially honest individual will find this deviation
profitable contradicting our hypothesis that m is a Nash equilibrium.

Suppose P = P 1, i.e i is the partially honest individual. Note that individual
j can trigger the integer game and obtain any alternative in B by unilateral
deviation from m while i can obtain any alternative in C(P 2

i , b) by unilateral
deviation from m. Since we have assumed that m is a Nash equilibrium in state
P , it must be the case that x ∈ M(Pi, C(P 2

i , b))∩M(Pj , B). Then by part (iii)
of Condition β1, we have x ∈ f(P ).

Suppose P = P 2, i.e j is the partially honest individual. By the same
argument as in the previous paragraph, we have x ∈ M(Pi, C(Pi, b)), i.e. xPib.
But x ∈ C(Pi, b) implies bPix. Since Pi is a strict order, we have b = x. Since
b ∈ f(P ), we have π(m) ∈ f(P ) as required.

Case 4: The remaining possibility is that m is such that the integer game
decides the outcome. We use the same argument as in Case 4, in Theorem 2,
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i.e if m is a Nash equilibrium, then π(m) ∈ M(Pi, B) ∩M(Pj , B) and applying
(ii) of Condition β1 to conclude that π(m) ∈ f(P ).

5.3 Implications

In this section, we briefly discuss the implications of our results in the two-player
case. It is clear that Condition β1 implies Condition β2. We first show that
even the weaker Condition β2 imposes non-trivial restrictions on the class of
implementable sccs.

Proposition 1 : For all P ∈ Pn, let M(Pi, A) ∪M(Pj , A) ⊆ f(P ). Then, f
is not implementable under Assumption A2.

Proof. : Consider the profiles P ∈ P2 given below.

(i) aPidPib for all d /∈ {a, b}.
(i) bPjdPja for all d /∈ {a, b}.

Then, L(Pi, b) ∩ L(Pj , a) = ∅, and so Condition β2 is not satisfied.

According to Proposition 1, no scc which is a superset of the correspon-
dence which consists of the union of the best-ranked alternatives of the two
players, is implementable even when both individuals are partially honest. An
immediate consequence of this result is that the Pareto correspondence is not
implementable.

The next proposition is another impossibility result, showing that no anony-
mous and neutral scc can be implemented even when both individuals are par-
tially honest provided the number of alternatives is even. Anonymity and Neu-
trality are symmetry requirements for sccs with respect to individuals and alter-
natives respectively. They are pervasive in the literature but we include formal
definitions for completeness. An extensive discussion of these properties can by
found in Moulin [15].

Definition 9 Let σ : N → N be a permutation. The scc f is anonymous if for
every profile P ∈ Pn, we have f(P ) = f(Pσ(1), Pσ(2), ..., Pσ(n)).

Definition 10 Let µ : A → A be a permutation. Let P ∈ Pn. Let Pµ ∈ Pn be
defined as follows. For all a, b ∈ A and i ∈ N , [aPib ⇔ µ(a)Pµ

i µ(b)]. The scc f
is neutral if for every profile P ∈ Pn, we have [a ∈ f(P )] ⇔ [µ(a) ∈ f(Pµ)].

Proposition 2 Let the number of alternatives in A be even. Then, no anony-
mous and neutral scc is implementable under Assumption A2.

Proof. Let f be an anonymous, neutral and implementable scc. Without loss
of generality, let A = {a1, ..., am} where m is even. Consider a preference profile
P ∈ P2 such that a1Pia2 . . . Piam−1Piam and amPjam−1 . . . Pja2Pja1. Suppose
ar ∈ f(P ) for some integer r lying between 1 and m. We claim that am−r+1 ∈
f(P ). We first note that ar is distinct from am−r+1. Otherwise m = 2r − 1
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contradicting our assumption that m is even. Let P ′ denote the profile where
individual i’s preferences are Pj and individual j’s preferences are Pi. Since f
is anonymous, ar ∈ f(P ′). Now consider the permutation µ : A → A where
µ(ak) = am−k+1, k = 1, ..., m. Since f is neutral, am−r+1 ∈ f(P ′µ). However
P ′µ = P , so that am−r+1 ∈ f(P ). Observe that L(Pi, ar) = {ar, ar+1, ..., am}
while L(Pj , am−r+1) = {a1, ..., am−r+1}. Since m is even, it is easy to verify
that L(Pi, ar) ∩ L(Pj , am−r+1) = ∅ contradicting part (i) of Condition β2.

In the many-person case, we have shown that the absence of veto power is
sufficient for implementation. In the two-person case, No Veto Power essentially
means that both individuals can get their best alternatives into the choice set.
Notice that Proposition 1 suggests that a social choice correspondence may need
to endow individuals with “some” Veto power in order to be implementable.
For simplicity, we explore this possibility below for the case of a finite set of
alternatives. Suppose now that A has cardinality m ≥ 3.

Choose non-negative integers vi and vj such that vi + vj ≤ m. We will say
that individual i has veto power vi if for all P ∈ Pn, individual i can “veto”
or eliminate the worst vi elements in A according to Pi. Say that a scc f gives
individual i positive veto power if vi > 0. 8

Proposition 3 Let f be any non-dictatorial scc which satisfies Neutrality. If
f is implementable under Assumption A2, then f gives each individual positive
veto power.

Proof. Choose any f which is neutral. Suppose that vi = 0. Then, there is
some P ∈ Pn such that aPix for all a ∈ A \ {x}, but x ∈ f(P ).

There are two possibilities. Either there exists some y such that yPjx or
xPja for all a ∈ A \ {x}.

Suppose there is y such that yPjx. Let σ be a permutation such that σ(x) =
y, σ(y) = x and σ(z) = z for all other z in A. Since f satisfies Neutrality,
y ∈ f(Pµ). But, L(Pi, x)∩L(Pµ

j , y) = ∅ and so Condition β2 cannot be satisfied.
Suppose xPja for all a ∈ A \ {x}. Since f is non-dictatorial, there is P ′ ∈ P

such that yP ′ja for all a 6= y, but z ∈ f(P ′) where z 6= y. If x /∈ L(P ′j , z), then
again L(Pi, x) ∩ L(P ′j , z) is empty and β2 is violated. So, assume that zP ′jx.

Now, consider the permutation µ such that µ(y) = x, µ(x) = y and µ(a) = a
for all other a. Since x ∈ f(P ), neutrality implies that y ∈ f(Pµ). Also, note
that L(Pµ

i , y) = {y}. So, L(Pµ
i , y) ∩ L(P ′j , z) is empty and Condition β2 is

violated.
This shows that vi > 0 for both i if any non-dictatorial and neutral f is to

be implemented.
The assumption of Neutrality cannot be dispensed with in the last proposi-

tion. In the next example, we construct a non-neutral social choice correspon-
dence which satisfies the stronger condition β1, but which does not endow any
individual with veto power.

8See Moulin [15] for an illuminating discussion of Voting by Veto rules. The concept of
veto power can be extended to the case when A is infinite. See Abdou and Keiding [2].
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Example 1 Consider the following scc f on domain of all strict orderings. Let
Q(P ) = {a ∈ A| there does not exist b such that bPia ∀i ∈ N}. Choose some
x∗ ∈ A. For any P ∈ Pn,

f(P ) =
{ {x∗} if x∗ ∈ Q(P )
{y ∈ A|yPix

∗ ∀i ∈ N} ∩Q(P ) otherwise

So, f is the correspondence which chooses a distinguished alternative x∗ when-
ever this is Pareto optimal. Otherwise, it selects those alternatives from the
Pareto correspondence which Pareto dominate x∗. Notice that this is not a
very “nice” social choice correspondence since it is biased in favour of x∗. How-
ever, it does satisfy Condition β1.

To see this, first note that for all P ∈ Pn, and x ∈ f(P ), x∗ ∈ L(Pi, x).
Hence, x∗ ∈ L(Pi, x) ∩ L(P ′j , z) where z ∈ f(P ′). So, the intersection condition
is satisfied for C(Pi, x) = L(Pi, x).

Next, suppose z ∈ M(P 2
i , L(Pi, x))∩M(P 2

j , A). If z = x∗, then clearly x∗ in
f(P 2). Otherwise, since x∗ ∈ L(Pi, x) and z ∈ M(P 2

i , L(Pi, x)), we must have
zP 2

i x∗. Also, if z ∈ M(P 2
i , L(Pi, x)), then z ∈ Q(P 2). It is also easy to check

that zP 2
j x∗. It follows that z ∈ f(P 2). Part (ii) of Condition β1 holds trivially.

Therefore f satisfies Condition β1.
Notice that in this example, everyone can veto all outcomes other than x∗.

However, no one has positive veto power. At the same time, the condition of No
Veto Power is not satisfied since neither individual can guarantee that her best
outcome is in f(P ). In other words, the absence of positive veto power does not
mean that No Veto Power is satisfied. The absence of positive veto power and
No Veto Power coincide only in the presence of neutrality.

We now demonstrate the existence of a class of well-behaved social choice
correspondences which can be implemented even when there is just one partially
honest individual. The possibility result stands in contrast to the negative
result of Hurwicz and Schmeidler [7] who showed that there does not exist
any two-person, Pareto efficient, non-dictatorial, implementable social choice
correspondence.

Choose integers vi and vj such that vi + vj = m− 1.9 Let Vi(P ) denote the
set of vi-worst elements according Pi. Then, letting v denote the vector (v1, v2),
define

fv(P ) = Q(P ) \ (V1(P ) ∪ V2(P ))

The scc fv corresponds to what Moulin[15] calls the veto core correspondence
given the veto vector v and profile P .

Proposition 4 The scc fv is implementable under Assumption A1.

Proof. For all P ∈ P2 and a ∈ fv(P ), let C(Pi, a) = L(Pi, a). Observe that
|L(Pi, a)| ≥ vi +1 since individual i is vetoing mi alternatives. Also, set B = A.
We will show that fv satisfies Condition β1 under these specifications.

9If m is odd, then we can choose vi = vj = (m− 1)/2. The scc f to be constructed would
then satisfy Anonymity and Neutrality.
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Pick an arbitrary pair P, P 1 ∈ P2 and let a ∈ fv(P ) and b ∈ fv(P 1). Since
|L(Pi, a)| ≥ vi + 1 and |L(P 1

j , b)| ≥ vj + 1, vi + vj = m − 1 and |A| = m, the
intersection of the two sets must be non-empty. Hence part (i) of Condition β1

is satisfied. Part (ii) of β1 follows from the fact that fv is Pareto efficient.
We check for part (iii) of Condition β1. Let P 2 be any arbitrary profile in

P2, and suppose c = M(P 2
i , L(Pi, a)) ∩ M(P 2

j , A). Then, c ∈ Q(P 2). Since
|L(Pi, a)| = vi + 1, and c is P 2

i -maximal in L(Pi, a), c /∈ Vi(P 2). Similarly,
c /∈ V2(P 2), since c is P 2

j -maximal in A. Hence, c ∈ fv(P 2). So, fv satisfies
Condition β1.

Applying Theorem 3, we conclude that fv is implementable under Assump-
tion A1.

Condition β1 is of course stronger than Condition β2. We conclude this
section by constructing an example of a single-valued selection of fv which
satisfies Condition β2 but not β1.

Consider the following “voting by veto” social choice function f̄v . Given
the vector v = (v1, v2) with v1 + v2 = m−1 and any profile P , individual 1 first
vetoes alternatives in V1(P ). Next, individual 2 vetoes the worst vj elements in
A− V1(P ) according to Pj . We denote this set as V̄2(P ) and define

f̄v(P ) = A− V1(P )− V̄2(P )

.
Notice that at any profile P , if V1(P ) ∩ V2(P ) = ∅, then fv(P ) = f̄v(P ).

Otherwise, f̄v selects some element of fv.

Proposition 5 The social choice function f̄v is implementable under Assump-
tion A2 but not under A1.

Proof. Clearly, f̄v satisfies Condition β2. We show that it violates part (iii) of
Condition β1.

Let A = {a1, ..., am} and let P 1 be the profile where amP 1
1 am−1...P

1
1 a2P

1
1 a1

and a1P
1
2 a2...P

1
2 am−1P

1
2 am. Clearly av1+1 = f̄v(P 1). Also, a1 /∈ L(P 1

2 , av1+1).
Now let P be the profile where av1+1P1a1P1a and a1P2av1+1P2a for all a /∈
{a1, av1+1}. Note that av1+1 = M(P2, L(P 1

2 , av1+1)). Hence, av1+1 =
M(P2, C(P 1

2 , av1+1)) for any C(P 1
2 , av1+1) ⊂ L(P 1

2 , av1+1). Also av1+1 = M(P1, A).
Hence part (iii) of β1 requires av1+1 = f̄v(P ). However f̄v(P ) = a1. Applying
Theorem 3, we conclude that f̄v is not implementable under Assumption A1.

6 A Model with Incomplete Information

In this section we depart from the informational assumptions made in the previ-
ous sections. In particular, we no longer assume that there exists some partially
honest individual with probability one. Instead we assume that there exists
a particular agent, say j who is partially honest with probability ε > 0 and

17



self-interested with probability 1 − ε. All other players are self-interested. A
mechanism g as specified in Section 2 is a pair (M, π) where M is a product
message set and π : M → A. As before we shall assume without loss of general-
ity that Mi = D × Si where Si denotes other components of agent i’s message
space.

Let R ∈ D be a state of the world and let g be a mechanism. A game
of incomplete information is induced as follows. Individual j has two types,
truthful and self-interested denoted by t and s respectively. All individuals other
than j have a single type s. The action set for individual i is Mi. For individual j
of type t, preferences over outcomes are induced by the order ºR as in Definition
4. For all individuals of type s, preferences over lotteries with outcomes in A
must be considered. Let i be an arbitrary individual of type s. Let v be a utility
function which represents Ri, i.e v is a mapping v : A → < which satisfies the
requirement that for all x, y ∈ A, [xPy ⇔ v(x) > v(y)] and [xIy ⇔ v(x) = v(y)].
Let p = {px}, x ∈ A be a lottery over elements of A, i.e. p(x) ≥ 0 and∑

x∈A px = 1. We say that lottery p is at least as good as lottery p′ according
to cardinalization v, denoted by pRv

i p′, if
∑

x∈A v(x)px ≥
∑

x∈A v(x)p′x.
Fix a mechanism g, R ∈ D and let vi be a cardinalization Ri for all i ∈ N .

We now have a game of incomplete information. A strategy for individual j is a
pair of messages mt

j ,m
s
j ∈ Mj . A strategy for an individual i 6= j is a message

mi ∈ Mi. A strategy profile ((m̄t
j , m̄

s
j), m̄−j) is a Bayes-Nash equilibrium (BNE)

if

1. g(m̄t
j , m̄−j) ºR

j g(mj , m̄−j) for all mj ∈ Mj .

2. g(m̄s
j , m̄−j)Rjg(mj , m̄−j) for all mj ∈ Mj .

3. vi(g(m̄t
j , m̄i, m̄−i,j))ε+vi(g(m̄s

j , m̄i, m̄−i,j))(1−ε) ≥ vi(g(m̄t
j ,mi, m̄−i,j))ε+

vi(g(m̄s
j ,mi, m̄−i,j))(1− ε) for all mi ∈ Mi and all i 6= j.

In other words, no individual whether truthful or self-interested has a unilat-
eral incentive to deviate. It is of course, evident that whether or not a strategy
profile is an equilibrium will depend on the cardinalizations chosen. We will
however consider a restricted class of mechanisms, called ordinal mechanisms
(see [1] for a further discussion of this notion) where the set of equilibria do
not depend on the cardinalizations chosen. Thus, Part 3 of the condition above
holds for all cardinalizations vi of Ri.

Let g be an ordinal mechanism. Note that by assumption, the pair (g, R)
defines a game of incomplete information for any R ∈ D. We say that g imple-
ments a scc f if, for all R ∈ D, the following conditions hold:

1. For all a ∈ f(R), there exists a BNE of the game (g, R) denoted by
((m̄t

j , m̄
s
j), m̄−j) such that π(m̄t

j , m̄−j) = π(m̄s
j , m̄−j) = a.

2. Let ((m̄t
j , m̄

s
j), m̄−j) be an arbitrary BNE of (g,R). Then π(m̄t

j , m̄−j),
π(m̄s

j , m̄−j) ∈ f(R).
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A mechanism implements f if for every state R and every a ∈ f(R), there
exists a Bayes-Nash equilibria whose outcome is a irrespective of the realization
of individual j’s type. In addition, all Bayes-Nash equilibria in the game (g, R)
are f -optimal for all realizations of j’s type.

We are able to show the following permissive result.

Theorem 4 Assume n ≥ 3. Then, every scc satisfying No Veto Power is
implementable.

Proof. We use the same mechanism used in the proof of Theorem 1 and show
that it implements f where f is an arbitrary scc satisfying No Veto Power.

Let the “true” state of the world be R and let a ∈ f(R). Consider the
strategy profile ((m̄t

j , m̄
s
j), m̄−j) where m̄t

j = m̄s
j = m̄i = (R, a, ki) for all i 6= j.

Observe that no individual of any type can deviate and change the outcome.
Hence the strategy profile is a BNE and the outcomes under (m̄t

j , m̄−j) and
(m̄s

j , m̄−j) are both a.
Now let ((m̄t

j , m̄
s
j), m̄−j) be an arbitrary BNE of (g, R). We will show that

the outcomes generated by the message profiles (m̄t
j , m̄−j) and (m̄s

j , m̄−j) belong
to f(R). We consider several mutually exhaustive cases.

Case 1. At most n− 1 messages in the n-tuples (m̄t
j , m̄−j) and (m̄s

j , m̄−j) are
of the form (R′, a,−) for some a ∈ f(R′). Then, either all n − 1 individuals,
j 6= i or n− 2 individuals from the set N −{j} and either individual j of type t
or type s can deviate, precipitate and win the integer game. Thus the outcomes
generated by the n-tuples (m̄t

j , m̄−j) and (m̄s
j , m̄−j) must be R-maximal for

at least n − 1 agents. By No Veto Power, the outcomes under (m̄t
j , m̄−j) and

(m̄s
j , m̄−j) must belong to f(R).

Case 2. m̄t
j = m̄i = (R′, a,−) where a ∈ f(R′) for all i 6= j. According to

the mechanism, the outcome is a when individual j is of type t. We will show
that a ∈ f(R). If R′ = R, there is nothing to prove. Assume therefore that
R 6= R′. Then individual j of type t can deviate to a message mt

j(R) ∈ Tj(R)
still obtain the outcome a but be strictly better off. Hence an equilibrium of
the type specified cannot exist.

Case 3. m̄s
j = m̄i = (R′, a,−) where a ∈ f(R′) for all i 6= j. As in Case

2, the only case which needs to be dealt with is the one where R′ 6= R. Note
that under the specification of the mechanism, the outcome must be a when
individual j is of type t. Since this individual can always deviate to mt

j ∈ Tj(R)
without changing the outcome from a, it must be the case that m̄t

j = (R, b,−)
where b ∈ f(R). Now consider a deviation by individual i 6= j to (R̂, c, ki) where
(i) (R̂, d) 6= (R′, a), (ii) ki is strictly greater than the integer components of the
messages m̄t

j , m̄
s
j and m̄l for all l 6= i, j, and c is Ri-maximal. If individual j is

of type t, the integer game is triggered and won by i to get say outcome c which
by specification is an Ri-maximal alternative. If j is of type s, the outcome is a.
Hence the outcome is a lottery where c is obtained with probability ε and a with
with probability 1− ε. Observe that under the strategy-tuple ((m̄t

j , m̄
s
j), m̄−j),

the outcome is a irrespective of j’s type, i.e the outcome is a with probability
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1. Since ((m̄t
j , m̄

s
j), m̄−j) is a BNE, it must be true that the deviation is not

profitable, i.e a is Ri-maximal.10 Since i was chosen arbitrarily from the set
N − {j}, No Veto Power implies that a ∈ f(R).

A fundamental aspect of Theorem 4 is that its validity does not depend on
the value of ε. In other words, if it is known that there exists an individual
j who has a “tiny” probability of being partially honest, the possibilities for
implementation are dramatically increased in the case where there are at least
three individuals. A similar analysis can also be extended to the case of two
individuals. We do not however pursue these matters further in this paper.

7 Conclusion

This paper has investigated the consequence of assuming that players in the
Nash implementation problem are “minimally” honest. Our conclusion is that
this dramatically increases the scope for implementation. In the case where are
at least three individuals, all social choice correspondences satisfying the weak
No Veto Power condition can be implemented. In the two-person case, the
results are more subtle but are nevertheless similar in spirit. We also show that
the many-person result extends to the case where there exists a single individual
with an arbitrarily small probability of being partially honest.

We believe that the notion that players are not driven purely by strategic
concerns based on their preferences over outcomes, is a natural one. This has
an important bearing on mechanism design theory. However, the exact nature
of the departure from standard preferences can be modelled in multiple ways.
It is a fruitful area for future research.
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