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Testing for spatial heterogeneity in functional MRI
using the multivariate general linear model

Robert Leech and Dennis Leech

Abstract—Much current research in functional magnetic res-
onance imaging (fMRI) employs multivariate machine learning
approaches (e.g., support vector machines) to detect distributed
spatial patterns from the temporal fluctuations of the neural
signal. The aim of many studies is not classification, how-
ever, but investigation of multivariate spatial patterns, which
pattern classifiers detect only indirectly. Here we propose a
direct statistical measure for the existence of distributed spatial
patterns (or spatial heterogeneity) applicable to fMRI datasets.
We extend the univariate general linear model (GLM), typically
used in fMRI analysis, to a multivariate case. We demonstrate
that contrasting maximum likelihood estimations of different
restrictions on this multivariate model can be used to estimate the
extent of spatial heterogeneity in fMRI data. Under asymptotic
assumptions inference can be made with reference to the χ2

distribution. The test statistic is then assessed using simulated
timecourses derived from real fMRI data followed by analyzing
data from a real fMRI experiment. These analyses demonstrate
the utility of the proposed measure of heterogeneity as well as
considerations in its application. Measuring spatial heterogeneity
in fMRI has important theoretical implications in its own right
and may have potential uses for better characterising neurological
conditions such as stroke and Alzheimer’s disease.

Index Terms—Functional magnetic resonance imaging, multi-
voxel pattern analysis, general linear model, spatial heterogeneity

I. INTRODUCTION

THE traditional approach to quantifying changes in brain
activation with functional magnetic resonance imaging

(fMRI) is predominantly univariate: a separate general linear
model is fitted to time series data for each of the many tens of
thousands of spatially distinct measurement locations (voxels).
Given the relatively poor signal-to-noise of the measurable
signal, Gaussian spatial smoothing across neighboring voxels
is normally applied. However, this smoothing assumes that
the detectable neural signal is spatially homogeneous: that
is, approximately the same general linear model should
fit adjacent voxels. Some multivoxel analysis techniques
indicate that brain regions may be highly heterogeneous [1],
[2], [3] and demonstrate huge improvements in detecting
signal over the traditional univariate approach. Furthermore,
whether areas of the brain are highly heterogeneous is
important theoretically for understanding the roles of regions
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of cortex, with potential implications for better understanding
neurological conditions such as Alzheimer’s disease or stroke,
although little work has been done to date in this field.
However, the multivariate pattern classification techniques
used to date (e.g., support vector machines and linear
discriminant analysis) are indirect ways to measure the
heterogeneity of the fMRI signal across brain regions.

In this paper, we propose a framework and test statistic to
directly measure the extent to which there is a heterogeneous
pattern of activation across neighboring voxels. The proposal
takes as its starting point the information-based approach of
Kriegeskorte and colleagues [4]. Instead of using multivoxel
pattern classifiers to decode which state the brain is in as a
proxy for the amount of information available in a region,
Kriegeskorte and colleagues proposed using a variant on the
Mahalanobis Distance. The Mahalanobis distance statistic
was shown to be substantially more sensitive at detecting
signals than standard univariate t-statistics or Euclidean
distance measures. Variants of this statistic have been used
successfully in several fMRI experiments within the visual
domain [4], [5], [6], [7].

The Mahalanobis distance [8] is a multivoxel similarity
measurement that unlike Euclidean distance is scale invari-
ant and controls for covariance across data points. In fMRI
datasets, the Mahalanobis distance can quantify the similarity
between different experiment conditions, e.g., how dissimilar
are visual and auditory processing for a given set of voxels.
This statistic controls for error covariance across voxels;
spatially correlated error is expected in fMRI datasets given
spatial patterns of sources of noise affecting the BOLD signal,
such as vasculature, movement artifacts etc. To calculate the
Mahalanobis distance, [9] fitted a separate GLM analysis to the
unsmoothed functional data for each voxel. The Mahalanobis
distance was then calculated using the resulting vectors of beta
weights and their covariance matrix across voxel

∆ = (β̂2 − β̂1)′Σ−1(β̂2 − β̂1) (1)

where β̂1 and β̂2 are vectors of estimated regression
coefficients associated with two types of stimuli and Σ̂ is
the covariance matrix.

We start by demonstrating how the Mahalanobis distance
relates to the multivariate general linear model. We then set
up restrictions on the GLM to compare models under different
assumptions about the spatial distribution of the fMRI signal.
An assumption of spatial homogeneity is contrasted with
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an assumption of spatial hetereogeneity resulting in a log-
likilhood ratio statistic measuring the heterogeneity in a patch
of cortex. This statistic measures the amount of distributed
information across a number of voxels. It is then tested with
synthetic and real fMRI data to demonstrate its utility and to
explore limitations in its application.

II. THEORY

A. The statistical model

We start with the GLM as applied to fMRI datasets [10].
We assume the response by each voxel can be modelled by a
linear regression model written as follows.

yit =
k∑

h=1

βhixht + uit (2)

where y is the signal of the voxel, i is the voxel subscript,
i = 1, ..., n, and t is the time subscript, t = 1, ..., T . βhi

represents the response of voxel i to the stimulus measured
by regressor h and k is the number of regressors.

This can be written using matrix algebra as,

yi = Xβi + ui (3)

where yi is the T element observation vector for voxel i,
X the Txk input matrix, ui the T element error vector,
and βi the k element coefficient vector. There is a different
regression model for each voxel but all models have a
common regressor matrix.

The error for each voxel equation is assumed to have
zero mean, be serially independent and homoscedastic, but
correlated across equations. That is, E(ui) = 0 for all i and
E(uiu

′
j) = σijIT for all i and j.

This system of equations can be written more compactly as:

y = Zβ + u, E(u) = 0, E(uu′) = Ω, (4)

where

y =


y1

y2

...
yn

 , u =


u1

u2

...
un

 , β =


β1

β2

...
βn

 ,

Z =


X 0 . . . 0
0 X . . . 0
...

...
. . .

...
0 0 . . . X

 = In ⊗X,

Ω =


σ11IT σ12IT . . . σ1nIT

σ12IT σ22IT . . . σ2nIT

...
...

. . .
...

σ1nIT σ2nIT . . . σnnIT

 = Σ⊗ IT ,

and,

Σ =


σ11 σ12 · · · σ1n

σ12 σ22 · · · σ2n

...
...

. . .
...

σ1n σ2n · · · σnn

 .

It is well known (for example [11], [12]) that, when there
is a common set of regressors, the correlation of the errors in
different equations is irrelevant as far as coefficient estimation
is concerned. The efficient estimator, equivalent to generalized
least squares, is ordinary least squares applied to each equation
separately. That is, the efficient estimator of the complete
system is written:

β̂i = (X′X)−1X′yi,

for all i = 1, 2, ..., n, and therefore,

β̂ = (Z′Z)−1Z′y. (5)

The covariance matrix of β̂ can be shown to be

V (β̂) = (Z′Z)−1Z′ΩZ(Z′Z)−1. (6)

Noting that,

Z′Z = [In ⊗X′][In ⊗X] = In ⊗X′X,

and hence that.

(Z′Z)−1 = In ⊗ (X′X)−1,

and that,

Z′ΩZ = [In ⊗X′][Σ⊗ IT ][In ⊗X] = Σ⊗ (X′X),

we can rewrite (6) as

V (β̂) = [In ⊗ (X′X)−1][Σ⊗ (X′X)][In ⊗ (X′X)−1]

= Σ⊗ (X′X)−1. (7)

This gives a simple expression for the covariance between any
pair of estimated coefficients. LettingW = (X′X)−1, we can
write

Cov(β̂gi, β̂hj) = σijwgh (8)

for all pairs of voxels i, j = 1, ..., n, and all pairs of regression
coefficients g, h = 1, ..., k.

All this assumes that the covariance matrix of equation er-
rors, Σ, is known. In practice it must be estimated consistently
from the residuals, using,

σ̂ij = (yi −Xβ̂i)′(yj −Xβ̂j)/T, (9)

(or, σ̂ij = (yi −Xβ̂i)′(yj −Xβ̂j)/(T − k)) and Σ replaced
with Σ̂ throughout in the manner of FGLS.
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B. Inference

Our focus is on testing a set of linear restrictions on
coefficients across the separate voxel equations. We assume
there are g restrictions written in the form Rβ = 0 where
R is a g × nk matrix of given constants of rank g. (We do
not need to consider inhomogeneous restrictions here because
units of measurement are arbitrary in the context.)

This framework allows us to devise tests for heterogeneity
versus homogeneity (that is, constancy) of the effects of
different stimuli across voxels, as well as to test if stimulae
are significantly different from zero.

If the equation errors uit are Gaussian then the efficient
estimator of β given in equation (II-A) is normally distributed
and the well known inferential procedures for generalized
linear regression models are available based on the covariance
matrix in equation (6), (7) or (8), see for example [13]. These
hold asymptotically if Σ is estimated consistently.

We characterise the inferential problem as testing a null
hypothesis of the general type

H0 : Rβ = 0. (10)

which can be approached in various ways, for example by a
Wald test.

Letting Rβ = δ the null hypothesis of interest becomes
H0 : δ = 0. Now define δ̂ = Rβ̂. Then δ̂ is asymptotically
normally distributed with expectation E(δ̂) = 0 and covari-
ance matrix V (δ̂) = RV (β̂)R′. We call the test statistic ∆,
given by

∆ = δ̂′[RV (β̂)R′]−1δ̂ (11)

which has an asymptotic χ2 distribution with g degrees of
freedom if H0 is true.

Alternatively we employ the likelihood principle and like-
lihood ratio test (LR) based on the loglikelihood function

lnL = −Tn
2
ln(2π)− 1

2
ln|Ω| − 1

2
Q (12)

where Q is the appropriate generalized sum of squared resid-
uals,

Q = u′Ω−1u. (13)

We can specify a LR test of a null hypothesis in the form of
(10) as twice the difference between the maximized value of
(12) under the null and alternate hypotheses, LR = −2(lnL0−
lnL1). The test statistic is then

LR = Q0 −Q1, (14)

where Q0 is the minimum of (13) under H0 and Q1 the
unconstrained minimum (or, the minimum under the alternate
H1). This assumes Σ to be known or the same estimate of it
used under both the null and alternate. Standard theory gives
the statistic (14) an asymptotic χ2 distribution with g degrees
of freedom. (See [12].)

C. Testing heterogeneity across voxels

We now describe tests of spatial characteristics of
the multivariate signal across voxels. In particular, we
are interested in investigating heterogeneity of response
coefficients. We describe a procedure for comparing the
unrestricted model, allowing heterogeneity between voxels,
with a restricted model, which we say has homogeneity
between voxels.

We characterize the null hypothesis of homogeneity in
terms of a linear function of the coefficients. For the ith voxel
the function of interest is written r′βi for suitable constants
r′ = (r1, r2, · · · , rk). The null hypothesis states that r′βi

is constant for all i. That is, r′βi = r′βj for all i 6= j.
Therefore, we can write the restrictions to be tested in the
form: H0 : Rβ = 0

with

R =


r′ −r′ 0′ · · · 0′

r′ 0′ −r′ · · · 0′
...

...
...

. . .
...

r′ 0′ 0′ · · · −r′

 .

An important case is where interest centers on the
difference between two effects. If the two effects are assumed
to be the first two coefficients, then r′βi = β1i − β2i and
r′ = (1,−1, 0, · · · 0).

Let the common difference be θ. Then the restricted model
can be written

H0 : β1i − β2i = θ, constant for all i.

The number of coefficients under the unrestricted model,
H1, is nk (the βs). Under the restrictions in H0 there are
nk − n + 1 coefficients (the nk β’s less the n β2’s plus θ).
Therefore the number of parameter restrictions under H0 is
n− 1.

The LR test requires estimating the model, and evaluating
the log likelihood, separately under H1 and H0. We proceed
as if Σ is known; it is estimated from the residuals of the
unrestricted model. The unrestricted model is efficiently
estimated as a set of ordinary least squares regressions.
The restricted model can be estimated using a simple
reparameterization as follows.

Write β1i = β2i + (β1i − β2i). Under H0, this becomes
β1i = β2i + θ.

Substituting into (2) and collecting terms in β2i gives the
restricted set of equations,

yit = θx1t + β2i(x1t + x2t) +
k∑

h=3

βhixht + uit (15)
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The system of equations (15) is a set of seemingly unrelated
regressions with a common set of regressors (a multivariate
regression) with cross-equation restrictions. It can be written,
in matrix notation, as

y = θx̃+ Z̃γ + u, (16)

where we define

γ =


γ1

γ2

...
γn

 ,γi =


β2i

β3i

...
βki

 , i = 1, ..., n,

and,

Z̃ =


X̃ 0 . . . 0
0 X̃ . . . 0
...

...
. . .

...
0 0 . . . X̃

 = In ⊗ X̃,

X̃ is the T (k− 1) matrix, X̃ = [x1 +x2,x3, . . . ,xk], where
xi is the ith column of the design matrix X ,

and x̃ =


x1

x1

...
x1

 = ιn ⊗ x1,where = ιn =


1
1
...
1

 .

We can rewrite the system

y − θx̃ = Z̃γ + u, (17)

which can also be written,

yi − θx1 = X̃γi + ui, i = 1, . . . n,

a system with common regressor set for given θ, and therefore
the γis are estimated efficiently by OLS applied separately to
each equation.

This is equivalent to estimating (17) by ordinary least
squares giving,

γ̂ = (Z̃ ′Z̃)−1Z̃ ′(y − θx̃). (18)

which is the maximum likelihood estimator of γ conditional
on θ.

The likelihood function (12) is maximized when the gener-
alized least squares criterion (13) is minimized. Write,

Q(θ,γ) = u′Ω−1u = (y − θx̃− Z̃γ)′Ω−1(y − θx̃− Z̃γ).

Substituting (18) for γ in this, we concentrate the generalized
sum of squared residuals function (13) with respect to γ and
obtain a function of θ only, say Q∗(θ):

Q∗(θ) = [y−θx̃−Z̃(Z̃ ′Z̃)−1Z̃ ′y−θZ̃(Z̃ ′Z̃)−1Z̃ ′x̃]′Ω−1[. . .].

If we write M = I − Z̃(Z̃′Z̃)−1Z̃′, we can define
yr = My, and x̃r = Mx̃ as residuals from least squares
regressions on Z̃.

Hence,

Q∗(θ) = [yr − θx̃r]′Ω−1[yr − θx̃r], (19)

which is minimized by the maximum likelihood estimator.

The estimator of θ, which minimizes (19), and is also the
ML estimator, is easily shown to be found by a bivariate
generalized least squares regression of yr on x̃r, giving:

θ̂ =
x̃r′

Ω−1yr

x̃r′Ω−1x̃r
. (20)

The LR criterion (14) is then simply evaluated.

III. SIMULATIONS

To test the proposed log-likelihood-ratio measure of
heterogenity, we applied it to simulated data generated from
an fMRI dataset. Using synthetic data allowed us to: (1)
systematically vary the spatial characteristics of the signal; (2)
test the validity of the asymptotic χ2 distribution of the test
statistic under different conditions (i.e., with different numbers
of voxels and timepoints); and (3) investigate violations of
the assumptions of the GLM, i.e., autocorrelation of error.

FMRI data was taken from a 32-year-old neurologically
healthy male participant who provided informed consent
according to local ethics procedures. Two-hundred and
seventy-six echoplanar images of resting data (i.e., the
participant lay in the scanner doing nothing) were acquired
(i.e., 276 timepoints at each voxel). MRI data were obtained
on a Philips Intera 3.0 Tesla scanner, using dual gradients,
a phased array head coil, and sensitivity encoding with an
undersampling factor of 2. Functional MR images were
obtained using a T2-weighted, gradient-echo, echoplanar
imaging (EPI) sequence with whole-brain coverage (TR=2s,
echo time = 30ms; flip angle, 90 ). Thirty-two axial slices
with a slice thickness of 3.25mm and an interslice gap of
0.75mm were acquired in ascending order (resolution, 2.19
x 2.19 x 4.00mm; field of view, 280 x 224 x 128 mm).
Quadratic shim gradients were used to correct for magnetic
field inhomogeneities within the anatomy of interest.

Standard pre-processing of the functional data was
conducted using FEAT (FMRI Expert Analysis Tool) Version
5.98. The data was motion-corrected [14] to correct for
participant head movement and high-pass temporally filtered
to remove linear trends and some physiological noise.
No spatial smoothing was applied. The covariance matrix
across neighboring voxels (centered on a single voxel
randomly chosen from within superior temporal cortex)
was calculated. This covariance matrix was used to generate
random noise sampled from a multivariate normal distribution.

A. Simulating spatial heterogeneity

In the first set of simulations, we demonstrate that the test
statistic has power with respect to multivariate heterogeneity.
A design matrix was constructed with three columns (k=3),
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Fig. 1. Varying heterogeneity across the seven timeseries. At the extreme
values of the x-axis all timeseries (voxels) have the same β coefficients: the
homogeneous cases. In the center of the x-axis, half the voxels have β1 > β2

and half the reverse. The y-axis is the log-likelihood ratio comparing the
unrestricted and restricted models. Mean and standard error of the estimated
rejection probability across 500 simulations are shown.

consisting of two dichotomous variables x1t and x2t and a
constant x3t. At each timepoint either x1t = 1 (and x2t = 0),
x2t = 1 (and x1t = 0) or, for a third of timepoints, both
x1t = 0 and x2t = 0. In the first case, seven timeseries
(corresponding to a central voxel and adjacent voxels) were
generated by drawing 276 timepoints from a multivariate
normal distribution with zero mean vector and a given
real covariance matrix. The design matrix multiplied by
assumed β values was added to the random noise. In the
homogeneous case, all seven timeseries had the same signal
(i.e., the betas associated with experimental condition one
were either positive in all voxels or negative in all voxels).
In the heterogenous case, half of the timeseries had positive
β values for condition one and half had negative β values.
Note the overall signal was the same in all situations (i.e.,
the absolute difference between condition 1 and condition 2
was constant).

Figure 1 shows the results of 500 simulations with different
covariance matrices and randomly generated timeseries. The
x-axis represents the number of timeseries with homogeneous
signals. As the number of timeseries with β1 positive and
β2 negative increases the heterogeneity across the timeseries
increases. This is reflected in the increase in the estimated
rejection probability. As such, the test statistic reflects the
degree of heterogeneity in the β coefficients across the
timeseries.

B. Asymptotic χ2 assumption

The χ2 properties of the test statistic only hold
asymptotically, and previous work on seemingly unrelated
regression suggests that as the covariance matrix increases
in size, this assumption becomes untenable except with very
large numbers of timepoints [15]. With smaller numbers of
timepoints, overrejection of the null hypothesis becomes an
issue.
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Fig. 2. The proportion of models that incorrectly reject the null hypothesis
assuming the difference in log likelihoods is χ2 distributed for different
numbers of timepoints. The red line is the case with 33 timeseries and the
black line with 7 timeseries. Values are the mean and standard error of 500
simulations.

We investigated the validity of the χ2 assumption in two
situations: 1) one with 7 timeseries (equivalent to a sphere of
1 voxel radius around a central voxel); and 2) one with 33
timeseries (equivalent to a sphere of 2 voxel radius). In both
situations, multivariate random noise was generated with a
real covariance structure. Since we are interested in assessing
the overrejection rate of estimated χ2 values, no signal was
inserted into the background noise (β = 0). The number
of timepoints was varied from 50 to 1500, and a hundred
simulations and models were fitted with each number of
timepoints.

Figure 2 shows the proportion of models that are judged
to be significant at a p < 0.05 significance level. Given
the absence of signal, this value should be approximately
0.05. We see that for the seven timeseries case, there is not
substantial overrejection of the null hypothesis, even with
only 50 timepoints. However, for the larger 33 timeseries
scenario, incorrect overrejection of the null hypothesis occurs
frequently; with only 50 timepoints, rejection of the null
occurs half the time. Only after approximately 500 timepoints
does the rejection rate approximate that expected given
the null hypothesis. This finding highlights the problem of
accurately estimating large covariance matrices without large
numbers of datapoints. In these situations, the log-likelihood
ratio does not adequately approximate the χ2 distribution.

C. Autocorrelation of the residuals

One common problem in applying the GLM to fMRI
timeseries is the presence of autocorrelation in the residuals.
In general, this can lead to underestimation of the error
variance and inefficient model estimation. We conducted
simulations to investigate the effects of error autocorrelation
on the proposed log-likelihood ratio statistic. Fifteen-order
autocorrelation estimates were calculated using standard
analysis software fsl [16]. Multivariate normally-distributed
random data was then filtered using these autocorrelation
estimates to simulate realistic autocorrelation in an fMRI
dataset. Two situations were considered: one with a rapidly
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Fig. 3. The effects of autocorrelated residuals on the log-likelihood
ratio statistics. The three lines correspond to either the situation with no
autocorrelation of the residuals, or else realistic error autocorrelation, but
with two different design matrices corresponding to standard experimental
paradigms. Values are the mean estimated rejection probability and standard
error of 500 simulations.

varying design matrix (with timepoints assigned to either
condition one or condition two intermixed at random;
equivalent to an event-related fMRI experimental design).
The second was equivalent to a blocked fMRI design, with
a continuous sequence of timepoints (one third of the total)
corresponding to one condition, followed by another third
corresponding to the other condition.

Figure 3 shows the performance of the blocked and
the event-related experimental design in the presence of
autocorrelation of the residuals. Inflation of type-II errors
occurred for the blocked design; whereas, the event-related
design was similar (slightly more conservative) than a model
with no autocorrelation. This result highlights that correction
of autocorrelated noise is an important step for the proposed
statistic (as for many fMRI analyses), especially for blocked
experimental designs. Standard techniques for prewhitening
[16] non-white noise can be used in conjunction with the
statistics proposed here.

IV. AN FMRI EXPERIMENT

Building on the simulation results, the measure of
heterogeneity was applied to real fMRI data from a speech
production and motor movement paradigm. Using real data
allowed us to demonstrate that the approach is appropriate
to detect distributed patterns in standard fMRI paradigms.
In addition, using real data allowed us to briefly consider
a number of practical issues about the application of the
technique including: the types of distributed patterns that can
be detected by the approach, the effect of different tissue
types on the test statistic, multiple comparison correction and
the consequences of spatial smoothing.

FMRI data was taken from the same 32-year-old healthy
male participant as used to derive the simulation random
datasets above. The participant either described black and
white pictures presented visually using volitional, overt
speech or moved their tongue. In the fMRI scanning session,

the subject produced overt propositional speech. Rest was
included as a baseline condition.

One-hundred and forty four echoplanar images of data
were acquired using the same scanning protocol as detailed
above. The only difference was that a sparse fMRI design
was used to minimize movement- and respiratory-related
artifacts associated with speech studies (TR = 10 secs:
acquisition time = 2 secs, giving 8 seconds for the subjects to
speak during silence). Stimuli were presented visually using
E-Prime software (Psychology Software Tools) run on an
IFIS-SA system (In Vivo Corporation).

The data was preprocessed as detailed in the simulation
section above. In addition, voxel timeseries were prewhitened
and the autoregression model parameters used to filter the
design matrix voxelwise [16]. The prewhitened data was
used in subsequent analyses. The analysis was restricted to
the precentral gyrus and supplementary motor area, cortical
regions that are involved in oro-motor control of the tongue
and articulators. These regions were defined anatomically
using the Harvard-Oxford probabilistic atlas and transformed
into the subject’s native space.

For each voxel, separate general linear models were
calculated for all voxels in the neighborhood, including
speech production, tongue movements and a constant in
the model. Each variable was convolved with a canonical
double gamma function to account for hemodynamic delay.
The test for spatial heterogeneity was then applied using
either 1 or 2 voxel spheres. For the 1-voxel sphere case,
the log-likilhood ratio statistic was evaluated with regard to
the χ2 distribution. As with most voxelwise fMRI analysis,
there are problems with multiple comparison leading to an
increase in overejection of the null-hypothesis. Here, false
discovery rate [17] was used to adjust the p-value to control
for multiple comparisons. Other correction methods could
also be used (e.g., bonferroni correction or some form of
cluster correction [18] depending on the type of analysis
and question being asked), however, approaches based on
random field theory [19] may be inappropriate due to the
absence of Gaussian spatial smoothing as a preprocessing step.

Figure 4 shows the results of this analysis revealing a
widespread pattern of heterogeneity, predominantly in medial
and right-lateralized motor regions. Results from a single
subject are sufficient to demonstrate significant heterogeneity
after correcting for multiple comparisons. These results are
substantially different from the more typical subtraction
analysis following spatial averaging across adjacent voxels
presented in Figure 5 for comparison purposes (restricted to
the same ROI as the multivariate analysis). The subtraction
analysis reveals fewer significant voxels and the results do not
survive multiple comparison correction, and so are presented
here at a liberal threshold. Unlike the heterogeneity analysis,
the subtraction analysis is not right-lateralized.

Although the results from Figure 4 suggest there are regions
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Fig. 4. Voxelwise analysis of heterogeneity in motor cortical regions overlaid
on the MNI152 average brain. Voxels colored in red are significantly more
heterogeneous than expected by chance p < 0.05, corrected for multiple
comparisons using false discovery rate, FDR. For illustrative reasons, and
because the results are only from a single subject, a more liberal threshold
of p < 0.01 is also included (in blue). The outline of the extensive region of
interest is displayed in black.

Fig. 5. A standard activation analysis (i.e., t-tests) following spatial averaging.
The results are reported at the liberal p<0.05 level uncorrected for multiple
comparisons, to highlight the different pattern from the heterogeneity analysis
in Figure 4.

of primary somatosensory, motor and premotor cortex that
possess significant heterogeneity in their task-evoked profile
of activation, this could reflect multiple different underlying
spatial distributions. Figure 6 presents four idealized patterns
of fMRI data that give rise to homogeneous or heterogeneous
activation profiles. The homogeneous case can arise either
because: (a) the β vectors are all zero across the neighborhood
of voxels (i.e., there is no signal); or (b) all voxels have
equal β vectors. In contrast, significant heterogeneity can
arise because: (c) the β vectors are different but non-zero;
or (d) each voxel has a β vector (apart from the intercept
and coefficients of variables not of direct interest) either
equal to a given vector or zero; or a combination of (c)
and (d). The distributed activation profiles such as (c) are
presumably what many pattern classification approaches to
fMRI analysis have utilized. Whereas the pattern described in
(d) is likely to occur at the boundaries of cortical regions or
where neighborhoods of voxels span white matter (with no
signal) and grey matter.

The type of heterogeneity of interest to the experimenter -
whether (c) or (d) - will depend on the experimental question
being asked, and it is important to be able to distinguish
between the different cases. For example, heterogeneity
arising from absence of signal in white matter is unlikely
to be theoretically interesting. It is possible to restrict the
analyses to only voxels on the cortical surface or constrained
to within grey matter in order to avoid this possibility.
Similarly, when comparing heterogeneity across subjects or

patient groups that might differ in, for example, cortical
atrophy differences in grey matter extent could be covaried
out voxelwise. (This approach is well established with other
fMRI analysis techniques e.g., [20].)

A second approach to identify situations such as (d) would
be to pretest, for each voxel, the null hypothesis that its β
vector (apart from the intercept and coefficients on nuisance
variables) is zero by a suitable F test applied to the least
squares regressions. Subsequently, only those voxels where
the null is rejected are included in the multivariate analysis
and used for estimating covariances. This pretest ensures that
heterogeneity is calculated only across voxels that are all
significantly activated in some way by the stimuli; as such
it reduces the effect of neighboring voxels containing, for
example, white matter, cerebrospinal fluid or grey matter
from adjacent regions not affected by the stimuli, all of which
could inflate measured heterogeneity. One drawback of this
approach is that it runs the risk of falsely excluding voxels
due to type II errors.

A third approach to distinguishing between patterns (c)
and (d) involves using the log-likelihood estimates of the
different idealized homogeneous patterns (a) and (b) in
conjunction with the log-likelihoods of the heterogeneity
cases. Contrasting the log-likihood of (b) with (a) provides a
measure of the amount of signal across the voxels assuming
the data are homogeneous (the average signal). In situation
(d), i.e., heterogeneity arising from a subset of voxels having
βs equal to zero and others β nonzero, as the nonzero β
values increase then so will the measure of heterogeneity.
However, in tandem with the measure of heterogeneity
increasing, the average signal (i.e., the contrast of (a) and
(b)) also rises. That is, in situation (d) the measures of
heterogeneous and average signal will display a linear
relationship, as the β values increase. This contrasts with the
heterogeneous situation presented in (c), where the measure
of heterogeneity varies independently of the measurement of
average signal.

Distinguishing between situations (c) and (d) is likely to be
done when comparing across subjects or conditions that might
differ in their heterogeneity (e.g., different patient groups or
during or under different task difficulty). In such a situation,
both measures of heterogeneity and average signal would
be calculated for each individual and then both measures
entered simultaneously in a general linear model. Evidence
for spatial heterogeneity described in (c) would be provided if
there was a significant effect of heterogeneity controlling for
the average signal. Alternatively, the likeilhood ratio statistic
corresponding to the average signal could be used to scale
the heterogeneous statistic.

As an illustration, we demonstrate this approach, in
a single subject, by comparing heterogeneity in the left
and right hemispheres. The data were registered into MNI
152 standard 2mm space, and the left hemisphere was
flipped so that voxels in both hemispheres could be directly



8

(a)

(c)

(b)

(d)

Fig. 6. An illustration of four different ideal spatial patterns: (a) The data is
homogeneous because there is no signal. (b) The data is homogeneous because
all voxels have the same signal. (c) The data is heterogeneous because voxels
have different amounts of signal. (d) The data is heterogeneous because a
subset of voxels have no signal.

compared. The likelihood ratio statistics for heterogeneity
and for homogeneity were calculated for each voxel. The
heterogeneity was scaled by the homogeneity statistic and
the difference between left and right calculated. Under the
null-hypothesis that heterogeneity is equivalent across the left
and right hemispheres, the differences across the hemispheres
should be zero centered. As such, parametric or nonparametric
statistics can be used to show that there is significantly greater
heterogeneity on the right than the left (p < 0.001, using a
non-parametric sign test) and this heterogeneity is not the
consequence of a subset of voxels having zero-signal or
greater signal in a subset of voxels having greater signal
on the right. It is worth emphasizing that there are multiple
ways to compare across hemispheres; the approach here is
in no means considered to be definite, but rather provides a
simple way to illustrate how to disambiguate different spatial
patterns underlying heterogeneity with the data from a single
subject.

One typical step in fMRI analysis to improve signal
detection is to spatially smooth the data, thereby changing
information at higher spatial frequencies. Figure 7 illustrates
the effects of spatial smoothing the data using 8mm full-
width half max (FWHM) nonlinear spatial filtering [21].
Smoothing the data leads to a general reduction in the
extent of spatial heterogeneity, as expected, given the loss
of high-frequency spatial information. Note also, that this
reduction in heterogeneity is unlikely to be due to averaging
of data across different tissue types, because the nonlinear
filter only smoothes across voxels of similar tissue (e.g., grey
or white matter). This general reduction in heterogeneity
is not, however, consistent over the whole brain, with
some voxels displaying increases in their heterogeneity.
This apparent local increase in heterogeneity, although at
first counterintuitive, is theoretically possible, given that
spatial smoothing typically improves signal to noise in fMRI
analyses. As such, individual voxel activation patterns may be

Fig. 7. An illustration of the effects of typical spatial smoothing of 8mm
FWHM on the measure of heterogeneity. The figure reports the difference in
log-likelihood ratio statistics calculated for smoothed and unsmoothed data.

more reliably detected following smoothing. At boundaries
between cortical regions or boundaries with white matter or
cerebrospinal fluid, the local neigborhood consists of voxels
that activate for a task as well as voxels that do not activate
for the same task. As such some spatial smoothing as a pre-
processing step may improve the signal-to-noise of the active
voxels and reduce noise in non-active voxels. Subsequent
spatial heterogeneity measures may therefore more reliably
detect this boundary between active and non-active voxels
leading to a greater measure of spatial heterogeneity.

V. DISCUSSION

In this paper, we have presented a measure of multivariate
heterogeneity across multiple timeseries, that is designed to be
able to assess the amount of multivoxel information available
in functional MRI datasets. We extended the univariate GLM
to a multivariate case, an example of seemingly unrelated
regression, equivalent to a Mahalanobis distance measure
previously used with fMRI. An unrestricted version of the
multivariate GLM provides the maximum likelihood model
across timeseries (allowing β values to be different for each
timeseries). A restricted model assessed the homogeneous
case that all timeseries had the same β coefficients (i.e.,
the maximum likelihood β coefficients that are constrained
to be the same in all voxels). Comparing the restricted and
unrestricted cases measures the amount of heterogeneity
across timeseries and is asymptotically χ2 distributed.

Simulations using synthetic data derived from an fMRI
resting state experiment illustrated the approach, investigated
its relationship to the theoretical asymptotic χ2 distribution
under a range of circumstances and considered the effects
of auto-correlation on sensitivity and over-rejection rates.
Subsequent analysis of speech production and oromotor
movement fMRI data illustrated the use of the heterogeneity
statistic using a spherical searchlight in an fMRI experiment.
This analysis explored the effect of spatial smoothing using
a typical Gaussian smoothing kernel resulting in broad but
not uniform reduction in measured heterogeneity. The fMRI
experiment was also used to consider ways of disambiguating
different types of heterogeneous spatial pattern: such as
distinguishing patterns that might occur at boundaries of
cortical regions as distinct from the type of spatially complex,
distributed heterogeneity that multivoxel pattern classifiers
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might be using to substantially improve signal detection.
This measure is intended to be applied in a searchlight
approach, whereby patches of cortex (e.g,. spheres of voxels)
are considered in turn, and the spatial heterogeneity of
the neural pattern mapped out. The statistic could also be
used to consider heterogeneity across multiple peak voxels
within a single cluster of activation, to assess whether it
is truly a single cluster. Future theoretical and empirical
work is necessary to develop more sophisticated methods for
discriminating between different types of heterogeneity and
to uncover where these exist in the brain.

Many recent and high-profile fMRI studies [1], [22], [23],
[24], [25], [26], [3] have taken advantage of multivariate
pattern analysis techniques, however, until now, no specific
statistical measure has been formulated to assess whether
such approaches are picking up distributed spatial patterns
across voxels. The measure of heterogeneity proposed here
starts to fulfil this role, providing a statistically well-grounded
quantification of multivoxel spatial heterogeneity.

There are limits to how much this measure of spatial
heterogeneity can tell us about the spatial organization of
the fMRI signal though. There is an ongoing debate as to
whether multivariate pattern analysis can detect fine-scale
(i.e., sub-voxel) signals [27], [28], [29]. Multivariate pattern
classification suggests that classifiers can take advantage
of information from orientation columns in visual cortex
that is represented at a spatial resolution less than 1mm
and so smaller than that of voxels [2]. However, spatial
smoothing of the data can in some circumstances increase
the success of pattern classifiers [27], leading some to
argue that the classifiers may not be taking advantage of
high-resolution spatial patterns. The measure of spatial
heterogeneity explored here does demonstrate where there
is spatial variation of the fMRI signal across voxels; a
necessary condition for fine-scale pattern analysis. However,
the presence of spatial heterogeneity does not on its own
demonstrate the presence of fine-scale spatial patterns is
present or not; i.e., spatial heterogeneity is not sufficient for
inference about fine-scale spatial patterns. Instead, fine-scale
information must be demonstrated more directly e.g., by
relating the spatially heterogeneous pattern to successful
stimulus decoding. Our exploration of spatial heterogeneity
following spatial smoothing is relevant to the ongoing debate
though, by demonstrating how the spatial heterogeneity
changes following spatial smoothing, particularly by showing
that heterogeneity can both increase and decrease.

The spatial distribution of patterns of neural activation has
important theoretical implications in its own right. Spatially-
distributed patterns of neural activation suggest complex
underlying neural processing of a given task. Highly spatially
homogeneous patterns of activation suggest underlying
processing dedicated to a specific task or modality; this
feeds into long-standing debates in cognitive neuroscience
about regional neural specialization for a given task. The
proposed heterogeneity statistic may also be relevant for better

understanding various neurological conditions. Altered spatial
heterogeneity has been previously reported as a hallmark of
neural pathology in a range of conditions. Several studies
have used simple correlation-based functional connectivity
measures of spatial heterogeneity in fMRI ’resting state’
studies (i.e., without explicit tasks) of various psychiatric
and neurological disorders. For example, one study showed
altered spatial heterogeneity in Alzheimer’s disease [30] and
another showed increased heterogeneity with attention-deficit
hyperactivity disorder within the default network [31].
Although not using direct measures of heterogeneity, Saur
and colleagues have shown in patients following stroke that
studying multivariate patterns of activation is useful in the
diagnosis and monitoring of recovery from disease [32].
From a theoretical perspective, spatial heterogeneity may
provide a measure of redundancy in a given cortical region,
which may in turn predict resilience from neurological
insult. It is hypothesized that with increasing pathology (e.g.,
atrophy in Alzheimers disease) there will be changes not just
in the overall activation level but also in the local spatial
heterogeneity of the activation.

The proposed approach is computationally efficient and
potentially powerful; however, there are limitations to
the asymptotic use of the log-likelihood ratio measure of
heterogeneity for inference. In particular, the increase in
the over-rejection rate when estimating larger covariance
matrices. For the 33 voxel case, the number of timepoints
necessary for the log-likelihood ratio statistic to approximate
the χ2 distribution is unrealistically large for many fMRI
designs (that typically have fewer than 500 timepoints).
This problem is known in the literature on multivariate
regression with finite sample size and has been addressed
using parametric bootstrapping to assess significance [15]. An
alternative approach as discussed is to use the log-likelihood
ratio measure of heterogeneity as a surrogate descriptive
statistic to make comparisons across multiple participants,
rather than to make formal inference. For example, data from
two groups (patients and controls) could be transformed into a
standard space, and the log-likelihood ratio at a given location
could be calculated for each participant and compared across
groups using parametric or non-parametric statistics. This
approach is feasible for many fMRI designs and has been
used previously for statistics whose distribution is not known
[20].
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