%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

International Trade without CES: Estimating Translog Gravity
Dennis Novy
No 929

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

THE UNIVERSITY OF

WARWICK




International Trade without CES: Estimating Translog Gravity
Dennis Novy*

November 2010

Abstract

This paper derives a micro-founded gravity equation in general equilibrium based on a translog
demand system that allows for endogenous markups and substitution patterns across goods. In
contrast to standard CES-based gravity equations, trade is more sensitive to trade costs if the
exporting country only provides a small share of the destination country’s imports. As a result,
trade costs have a heterogeneous impact across country pairs, with some trade flows predicted to
be zero. I test the translog gravity equation and find strong empirical support in its favor.

JEL classification: F11, F12, F15
Keywords: Translog, Gravity, Trade Costs, Distance, Trade Cost Elasticity

" University of Warwick, Department of Economics, Coventry CV4 7AL, United Kingdom and
CESifo, d.novy@warwick.ac.uk. I am very grateful for comments by Alberto Behar, Jeffrey
Bergstrand, Johannes Brocker, Natalie Chen, Robert Feenstra, Ana Cecilia Fieler, Kyle Handley,
Gordon Hanson, Christopher Meissner, Peter Neary, Krishna Pendakur, Joel Rodrigue, Alan
Taylor, Christian Volpe Martincus, David Weinstein and Adrian Wood. I am also grateful for
comments by seminar participants at the London School of Economics, Kiel, Loughborough,
Oxford, Valencia, Warwick, the 2010 CESifo Global Economy conference, the 2010
Econometric Society World Congress, the 2010 NBER Summer Institute and the 2010 Rocky
Mountain Empirical Trade conference. I gratefully acknowledge research support from the
Economic and Social Research Council, Grant RES-000-22-3112.



1. Introduction

For decades, gravity equations have been used as a workhorse model of international
trade. They relate bilateral trade flows to country-specific characteristics of the exporters and
importers such as economic size, and to bilateral characteristics such as trade frictions between
the trading partners. A large body of empirical literature is devoted to understanding the impact
of trade frictions on international trade. The impact of distance and geography, currency unions,
free trade agreements and WTO membership have all been studied in great detail with the help of
gravity equations.

Theoretical foundations for gravity equations are manifold. In fact, various prominent
trade models of recent years predict gravity equations in equilibrium. These models include the
Ricardian framework by Eaton and Kortum (2002), the multilateral resistance framework by
Anderson and van Wincoop (2003), as well as the model with heterogeneous firms by Chaney
(2008). Likewise, Deardorff (1998) argues that a gravity equation also arises from a Heckscher-
Ohlin framework where trade is driven by relative resource endowments.'

Although the above trade models make different assumptions as to the motivation behind
international trade, they all use constant elasticity of substitution (CES) preferences to describe
the demand side of the economy. Not least due to their tractability, CES preferences have proven
an enormously useful tool and have had an immense impact on the international trade literature.
One common feature of CES preferences is that they translate into a constant elasticity of trade
with respect to trade costs. This means that all else being equal, a reduction in trade costs — for
instance a uniform tariff cut — has the same proportionate effect on bilateral trade regardless of
whether tariffs were initially high or low or whether a country pair traded little or a lot. This is
true when the supply side is modeled as a Ricardian framework (Eaton and Kortum, 2002), as a
framework with heterogeneous firms (Chaney, 2008) or simply as an endowment economy
(Anderson and van Wincoop, 2003).

Yet, recent research has highlighted long-standing concerns over the CES demand
specification and the implied constant markups. Attention has been drawn to the idea that a
reduction in trade costs, for example through a free trade agreement or falling transportation

costs, may lead to an increase in competition and therefore lower markups. Melitz and Ottaviano

! Also see Bergstrand (1985). Feenstra, Markusen and Rose (2001) as well as Evenett and Keller (2002) also show
that various competing trade models lead to gravity equations.
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(2008) demonstrate this effect theoretically. Feenstra and Weinstein (2010) provide theory as
well as evidence for the US. Badinger (2007) as well as Chen, Imbs and Scott (2009) provide
evidence for European countries. This line of research emphasizes more flexible demand systems
and variable markups that respond to changes in the competitive environment.

In this paper, I adopt such a demand system and argue that it is fundamental to
understanding the trade cost elasticity. In particular, in section 2 I depart from the constant
elasticity gravity model and derive a gravity equation from homothetic translog preferences in a
general equilibrium framework. Translog preferences were introduced by Christensen, Jorgenson
and Lau (1975) in a closed-economy study of consumer demand.” In contrast to CES, translog
preferences are more flexible in that they yield endogenous markups and price elasticities,
allowing for richer substitution patterns across varieties. When more goods are available for
consumers to choose from, markups are lower and price elasticities are higher. This flexibility
breaks the constant link between trade flows and trade costs.” Instead, the effect of trade frictions
on trade flows varies, depending on how intensely two countries trade with each other. Trade
frictions therefore have a heterogeneous trade-impeding impact across country pairs. Despite this
increase in complexity, the resulting translog gravity equation is parsimonious and easy to
implement with data.

In section 3, I attempt to empirically distinguish translog gravity from the traditional
constant elasticity specification. Based on trade flows amongst OECD countries, I find strong
evidence against the constant elasticity specification. The results demonstrate that ‘one-size-fits-
all’ trade cost elasticities as implied by CES preferences are not supported by the data. Instead,
consistent with translog gravity, I find that the trade cost elasticity increases in absolute size, the
less concentrated trade is between two countries. That is, all else being equal, bilateral trade is

more sensitive to trade costs if the exporting country provides a smaller share of the destination

* Recent applications of the translog framework include Feenstra and Weinstein (2010) who are concerned with
estimating the welfare gains from increased variety through globalization, Feenstra and Kee (2008) who estimate the
effect of expanding export variety on productivity, as well as Bergin and Feenstra (2009) who estimate exchange
rate pass-through. More generally, the translog functional form has been used widely in other fields, for example in
the productivity literature. See Christensen, Jorgenson and Lau (1971) for an early reference.

3 Although Melitz and Ottaviano (2008) work with quadratic preferences at the individual product level, their
preferences have CES-like characteristics at the aggregate level in the sense that their gravity equation also features
a constant trade cost elasticity. It has a zero income elasticity although population can be a demand shifter. Also see
Behrens, Mion, Murata and Stidekum (2009) for a model with non-homothetic preferences and variable markups but
a constant trade cost elasticity. The constant trade cost elasticity is also a feature of the ‘generalized gravity
equation’ based on the nested Cobb-Douglas/CES/Stone-Geary utility function in Bergstrand (1989). See Markusen
(1986) for an additional specification with non-homothetic preferences.
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country’s imports. An implication is that a given trade cost change, for instance a reduction of
trade barriers through a free trade agreement, has a heterogeneous impact across country pairs.
The translog gravity framework can therefore shed new light on the effect of institutional
arrangements such as free trade agreements or WTO membership on international trade. For
example, it can help explain why trade liberalizations often lead to relatively larger trade creation
amongst country pairs that previously traded relatively little.*

Although not explored in this paper, another potentially useful feature of the translog
demand system is that it is in principle consistent with zero demand. It is well-known that zeros
are widespread in large samples of aggregate bilateral trade, and even more so in samples at the
disaggregated level. If bilateral trade costs are sufficiently high, the corresponding import share
in translog gravity is zero. This feature is a straightforward implication of the fact that the price
elasticity of demand is increasing in price and thus increasing in variable trade costs. In contrast,
a CES-based demand system is not consistent with zero trade flows unless fixed costs of
exporting are assumed on the supply side (see Helpman, Melitz and Rubinstein, 2008).

The paper builds on the gravity framework by Anderson and van Wincoop (2003), but
instead of CES it relies on the homothetic translog demand system employed by Feenstra (2003).
Another related paper in the literature is by Gohin and Féménia (2009) who develop a demand
equation based on Deaton and Muellbauer’s (1980) almost ideal demand system and estimate it
with data on intra-European Union trade in cheese products. They also find evidence against the
restrictive assumptions underlying the CES-based gravity approach and stress the role of variable
price elasticities. But in contrast to my paper, they adopt a partial equilibrium approach and
abstract from trade costs. Volpe Martincus and Estevadeordal (2009) use a translog revenue
function to study specialization patterns in Latin American manufacturing industries in response
to trade liberalization policies, but they do not consider gravity equations. Lo (1990) models
shopping travel behavior in a partial equilibrium spatial translog model with varying elasticities

of substitution across destination pairs. But her approach does not lead to a gravity equation.

* Komorovska, Kuiper and van Tongeren (2007) refer to the ‘small shares stay small’ problem as the inability of
CES-based demand systems to generate substantial trade creation in response to significant trade liberalization if
initial trade flows were small. In contrast, translog demand predicts large trade responses if initial flows were small.
Kehoe and Ruhl (2009) find evidence consistent with this prediction in an analysis of trade growth at the four-digit
industry level in the wake of the North American Free Trade Agreement and other major trade liberalizations.
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2. Translog Preferences and Trade Costs

This section outlines the general equilibrium translog model and derives the theoretical
gravity equation based on an endowment economy framework. Following Diewert (1976) and
Feenstra (2003), I assume a translog expenditure function. As Bergin and Feenstra (2000) note,
the translog demand structure employed here is more concave than the CES. It can be
rationalized as a second-order approximation to an arbitrary expenditure system (see Diewert,
1976).

I assume there are J countries in the world with j=1,...,J and J >2. Each country is
endowed with at least one differentiated good but may have arbitrarily many, and the number of
goods may vary across countries.” Let [N;.;+1,N;] denote the range of goods of country j, with
Nj.;< Nj and Ny=0. N,=N denotes the total number of goods in the world. The translog
expenditure function is given by

N 1 N N

() In(E))=In(U )+, +;am In(p,,) +§;; Vi In(p, ) In(py),
where U is the utility level of country j with m and k indexing goods and yx,, =y« The price of
good m when delivered in country j is denoted by p,,,. I assume trade frictions such that
DPmi=tmipm, Where p,, denotes the net price for good m and #,,>1 V m,j is the variable trade cost
factor. I furthermore assume symmetry across goods from the same origin country i in the sense
that p,,=p; if m € [N;.;+1,N;], and that trade costs to country j are the same for all the goods from
origin country i, i.e., t,;=t;; if m € [Ni;+1,N;]. But I allow trade costs #; to be asymmetric for a
given country pair such that #;7t; is possible.

As in Feenstra (2003), to ensure an expenditure function with homogeneity of degree one
I impose the conditions:

N N
(2) X, =1, and >y, =0.
o pa
In addition, I require that all goods enter ‘symmetrically’ in the y, coefficients. Following

Feenstra (2003), I therefore impose the additional restrictions:

3) 7, = —%(N—I)Vm and y, = %Vk £m with y>0.

> CES can be rationalized as an aggregator for a set of underlying goods so that the assumption of one differentiated
good per country as in Anderson and van Wincoop (2003) is reasonable. However, that assumption would not be
harmless with translog demand. The number of goods is therefore allowed to vary across countries.
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It can be easily verified that these additional restrictions satisfy the homogeneity condition in
2).°

The expenditure share s,,; of country j for good m can be obtained by differentiating the
expenditure function (1) with respect to In(p,,):

N

) 5, =a,+ ; Vi In(P,).
Let x;; denote the value of trade from country i to country j, and y; is the income of country j
equal to expenditure E;. The import share x;/y; is then the sum of expenditure shares s,,; over the

range of goods that originate from country i:

X.. N; N; N
G) L= D sy= 2, (aerZ)/km ln(pkj)}
Vi m=N_+1 m=N,_+1 k=1

To close the model, I impose market clearing:

J
©6) y = ZXUVi.
j=l1

2.1. The Translog Gravity Equation

To obtain the gravity equation, I substitute the import shares from equation (5) into the
market-clearing condition (6) to solve for the general equilibrium. Using pij=tpx, I then solve
for the net prices p; and substitute them back into the import share (5). This solution procedure is
similar to the one adopted by Anderson and van Wincoop (2003) for their CES-based model. The
Technical Appendix provides a detailed derivation.

As the final result, I obtain a translog ‘gravity’ equation for import shares as

xl] yi d ys tiS
(7) —=——m;In(t,)+m, ln(T_,‘)+7nizyW In T T

j s=1

where y" denotes world income, defined as y" = Z:zl y;,and n, =N, — N, denotes the

number of goods of country i. The variable In(7}) is a weighted average of (logarithmic) trade

costs over the trading partners of country j akin to inward multilateral resistance in Anderson and

van Wincoop (2003). As the Technical Appendix shows, it is given by

® The assumption of y>0 ensures that the price elasticity of demand exceeds unity. The estimation results below
confirm this assumption. The elasticity is also increasing in price (see Feenstra, 2003).
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®) In(T,) = % kZN; In(z,,) = Zj;% In(z,).

Note that the last term on the right-hand side of equation (7) only varies across the exporting

countries i but not across the importing countries j. However, the third term on the right-hand
side of equation (7), yn, In (T]) , varies across both.

To be clear, I refer to expression (7) as a ‘gravity’ equation although its appearance
differs from traditional gravity equations in two respects. First, the left-hand side variable is the
import share x;;/y; and not the bilateral trade flow x;;. Second, the right-hand variables are not
multiplicatively linked. However, expression (7) and traditional gravity equations have in
common that they relate the extent of bilateral trade to both bilateral variables such as trade costs
as well as to country-specific variables such as the exporter’s and importer’s incomes and

multilateral resistance.

2.2. A Comparison to Gravity Equations with a Constant Trade Cost Elasticity

The important feature of the translog gravity equation is that the import share on the left-
hand side of equation (7) is specified in levels and not in logarithmic form, while logarithmic
trade costs appear on the right-hand side. This stands in contrast to ‘traditional’ gravity
equations. For example, Anderson and van Wincoop (2003) derive the following gravity

equation:

1-o

9) x _yiyj( Ly J
i W ’

y Hin

where II; and P; are outward and inward multilateral resistance variables, respectively, and o is

the elasticity of substitution from the CES utility function on which their model is based.” To be
more easily comparable to the translog gravity equation (7), I divide the standard gravity

equation (9) by y; and take logarithms to arrive at

10) ln(ﬁJ = h{y_vle —(o=DIn(z;)+ (o -DIn(IL,) + (o =) In(P)).
y

j
Although the dependent variable of gravity equations in the literature is typically In(x;;) as

opposed to the logarithmic import share In(x;/y;), I will nevertheless refer to the CES-based

7 Note that in the absence of trade costs (t;=1V1i,j), the CES and translog gravity equations coincide as xi/yj=y,/yw.
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gravity equation (10) as the ‘standard’ or ‘traditional’ specification as opposed to the translog
specification in equation (7).

The log-linear form of equation (10) is the key difference to the translog gravity equation
(7). The log-linear form is also a feature of the Ricardian model by Eaton and Kortum (2002) as
well as the heterogeneous firms model by Chaney (2008).% It implies a trade cost elasticity # that
is constant, where 7 is defined as’
a1y n= lz(lzzt’ ?j)"
Thus, the traditional gravity equation (10) implies nE=-(0-1).1°

However, translog gravity breaks this constant link between trade flows and trade costs.

The translog (TL) trade cost elasticity follows from equation (7) as
(12) 77,:,T'L == /(Xl:]. /yj )

It thus varies across observations. Specifically, ceteris paribus the absolute value of the elasticity,

TL

‘77,.] , decreases as the import share grows larger. Intuitively, given the size y; of the importing

country and the number of exported goods n;, a large trade flow x;; means that the exporting
country enjoys a relatively powerful market position. Demand for the exporter’s goods is
buoyant, and consumers do not react strongly to price changes induced by changes in trade costs.
On the contrary, a small trade flow x;; means that demand for an exporting country’s goods is
weak, and consumers are sensitive to price changes. As a result, small exporters are hit harder by

rising trade costs and find it more difficult to defend their market share.

3. Estimation
In this section, I first estimate a translog gravity regression as derived in equation (7), and

separately I also estimate a traditional gravity regression as in equation (10). I then proceed to

¥ These models employ a CES preference structure. The trade cost coefficient in Eaton and Kortum (2002) is
governed by the technology parameter 6, which is the shape parameter from the underlying Fréchet distribution. The
trade cost elasticities in Chaney (2008) and Melitz and Ottaviano (2008) are governed by the parameter that
determines the degree of firm heterogeneity, drawn from a Pareto distribution. Other differences include, for
instance, the presence of bilateral fixed trade costs in the Chaney gravity equation.

? The elasticity # as defined here focuses on the direct effect of t; on x;/y;. It abstracts from the indirect effect of #;
on x;/y; through the multilateral resistance terms. These are general equilibrium effects that operate in both the CES
and the translog frameworks. See section 3.5 for a discussion.

19 The gravity equation by Eaton and Kortum (2002) implies #%=-0. Likewise, the gravity equations by Chaney
(2008) and Melitz and Ottaviano (2008) also imply a constant trade cost elasticity, given by the Pareto shape
parameter.



econometrically discriminate the two models by testing the hypothesis whether the trade cost
elasticity is constant (as predicted by the traditional gravity model) or variable (as predicted by

the translog gravity model).

3.1. Data

I use exports amongst 28 OECD countries for the year 2000, sourced from the IMF
Direction of Trade Statistics and denominated in US dollars. These include all OECD countries
except for the Czech Republic and Turkey. The maximum number of bilateral observations is
28*27=756, but seven are missing so that the sample includes 749 observations in total.!!
Income data for the year 2000 are taken from the IMF International Financial Statistics.

I follow the gravity literature by modeling the trade cost factor #; as a log-linear function
of observable trade cost proxies (see Anderson and van Wincoop, 2003 and 2004). For the
baseline specification, I use bilateral great-circle distance dist;; between capital cities as the sole
trade cost proxy, taken from www.indo.com/distance. For other specifications I add an adjacency
dummy adj; that takes on the value one if countries i and j share a land border. The trade cost
function can thus be written as

(13) In(t,) = pIn(dist,) + S adj,

where p denotes the distance elasticity of trade costs and ¢ is the adjacency coefficient. Since
distance and adjacency do not vary over time, the focus is on cross-sectional variation in trade
costs.

To estimate the translog gravity equation (7), I also require data on n;, the number of
goods that originate from country i. Naturally, such data are not easy to measure and the theory
does not provide guidance as to how it should be measured. However, Hummels and Klenow
(2005) construct a measure of the extensive margin across countries based on shipments in more
than 5,000 six-digit product categories from 126 exporting countries to 59 importing countries
for the year 1995. The extensive margin is measured by weighting categories of goods by their
overall importance in exports, consistent with the methodology developed by Feenstra (1994).

Their Table A1 reports the extensive margin of country i relative to the rest of the world. I use

"' The countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland,
Portugal, the Slovak Republic, Spain, Sweden, Switzerland, the United Kingdom and the United States. As some
data for the Czech Republic and Turkey were missing, these countries were dropped from the sample.
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this fraction as a proxy for ;. Hummels and Klenow (2005) document that the extensive margin
tends to be larger for big countries. For example, the extensive margin measure is 0.91 for the
United States, 0.79 for Germany and 0.72 for Japan but only 0.05 for Iceland.

As an alternative, I construct an additional measure of the extensive margin. Instead of
the weighting scheme used by Hummels and Klenow (2005), I devise an unweighted count of
six-digit product categories. The correlation between the two measures stands at 77 percent. As a
robustness check, I use this alternative measure in the regressions that correspond to those

described below, and the results are qualitatively very similar."

3.2. Estimating Translog Gravity
The first and last terms on the right-hand side of equation (7) can be captured by an
exporter fixed effect S; since they do not vary over the importing country j:
J
v, y t.
S, =—+m, ) —-In| = |
" Z » (Ts j
I substitute this exporter fixed effect into equation (7) to obtain
Xij
(14) —=—-m,In(t;)+m, In(T;)+ S, +¢;,
j
where I also add a mean-zero error term ¢;;. Then I substitute the trade cost function (13) into the

multilateral resistance term (8). This yields
In(T,) = pIn(T}"™") + ST},

where the terms on the right-hand side are defined as

J J
(15) ln(T;”‘")EZ%ln(distsj) and T Ez%adjsj.
s=1

s=1
Using the trade cost function (13) once again for In(#;), the translog estimating equation follows
as

xi' . dist . adj
(16) —’ = —ypn; In(dist;) + ypn, In(T™") — yon,adj, + yon, T/ + S, + ;.

J

21 use UN Comtrade bilateral export data at the six-digit level for the year 2000 (HS 1996 classification). I exclude
very small bilateral trade flows (those with values below 10,000 US dollars) since those tend to disappear frequently
from one year to the next. Following Hummels and Klenow (2005), I normalize the extensive margin measure by
constructing it relative to the total number of six-digit product categories that exist across all countries (5130
categories). This alternative measure is 0.99 for the US, 0.95 for Germany, 0.89 for Japan and 0.10 for Iceland.
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I construct the explanatory variables n, In(dist;) and n,adj; by multiplying the underlying trade

cost variables by the extensive margin proxy n; taken from Hummels and Klenow (2005). The

ln(Tj‘””) and T j"d-’ terms are constructed for each country j according to equation (15) and then

multiplied by the extensive margin proxy #;.

Table 1 presents the regression results. Column 1 estimates equation (16) with bilateral
distance as the only trade cost proxy. As expected, import shares tend to be significantly lower
for more distant country pairs. Column 2 adds the adjacency dummy. As typically found in
gravity estimations, this variable is positive and significant. The coefficients of the individual
regressors and the corresponding multilateral resistance regressors are similar in magnitude as
predicted by estimating equation (16). For example, the distance coefficient in column 1 is
estimated at -0.0296, whereas the corresponding trade cost index term is 0.0207. These two
values are reasonably close in absolute magnitude, although a formal test of their equality is
rejected (p-value=0.00). However, for the two adjacency regressors in column 2 a test of their
equality in absolute magnitude cannot be rejected (p-value=0.81).

As an additional check, I adopt a related estimating equation where the dependent
variable is the import share x;/y; divided by the extensive margin measure n; for the exporting
country. The resulting variable can be interpreted as the average import share per good of the

exporting country. From equation (16) I obtain

xij / yj . . I &
V) . =—yp ln(dzstij)—j/&zd]ij +8,+8;+v,,

i

where v denotes the error term. The exporter fixed effect S ; =8, /n, now absorbs the extensive
margin measure 7;, and the multilateral resistance terms associated with distance and adjacency
can be captured by an importer fixed effect S ; given by

S S =roIn(T) +yST.
The regression results are reported in columns 3 and 4. As before, distance enters with the

expected negative coefficient and adjacency with a positive coefficient. As a final check, in

columns 5 and 6 I make the simplifying assumption that each country is endowed with only one

11



good (n;=1 V i)."* Naturally, the magnitudes of the coefficients shift but they retain their signs
and significance. Overall, given the sizeable degree of explanatory power of the regressions with
an R-squared of 50 percent or more, I conclude that the translog gravity equation passes its first
test of being reasonable.

Apart from translog gravity, I also estimate the standard gravity specification. I substitute
the trade cost function (13) into equation (10) to arrive at the estimating equation for ‘traditional’

gravity:

X.. ~ ~
(18) In| —* =—(oc—-Dpn(dist;)+—«(c—-Doadj; +S,+S; +&;,
J

where I add an error term éj.m S.and S ; are exporter and importer fixed effects defined as

ismﬂ%i+w—an@
y

S, =(c-Dn(P)).

The logarithmic form of the dependent variable is the key difference to the translog specification
in equation (16).

Regression results for equation (18) are presented in columns 1 and 2 of Table 2. As
typical, bilateral distance is negatively related to import shares with a coefficient in the vicinity
of -1, whereas adjacency is associated with higher shares. For completeness, in columns 3 and 4
I change the dependent variable to the log import share per good of the exporting country,
In((x;/y;)/n;)). The measure for n; is entirely absorbed by the exporter fixed effects so that the
coefficients of interests and their standard errors remain the same. Consistent with the gravity
literature, the log-linear regressions in Table 2 have a high explanatory power with R-squareds

close to 90 percent.15

13 Alternatively, I could also set n;=n where n is any arbitrary positive integer. Since the regression is linear, the
estimated coefficients would simply be scaled by the factor 1/n.

" An estimating equation based on the Eaton and Kortum (2002) model would merely replace o-1 by 6. Here, the
crucial feature is that the trade cost elasticity is constant. This feature would also arise for the other gravity models
mentioned above.

' Although the R-squareds associated with the regressions in Table 1 are around 55 percent and thus lower, they are
not directly comparable to those in Table 2 because the dependent variables are not the same.
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3.3. Testing Traditional vs. Translog Gravity

The next objective is to test translog gravity against the traditional gravity specification.
The test centers on the question of whether the trade cost elasticity is constant. As equation (12)
shows, translog gravity implies that the absolute value of the trade cost elasticity decreases in the

import share per good, i.e.,

|

5 x,; 1y,
ni

In contrast, standard gravity equations imply a constant trade cost elasticity. I form two

<0.

hypotheses, A and B, to test whether the elasticity is indeed constant. Hypothesis A is based on
the standard gravity estimation as in equation (18), while hypothesis B is based on the translog
gravity estimation as in equation (17).

The premise of hypothesis A is that the standard gravity model is correct and that trade
cost elasticities should not vary systematically. To implement this test, I allow the trade cost
coefficients in the traditional specification (18) to vary across import shares per good. Since
estimating a separate distance coefficient for each observation would leave no degrees of
freedom, I allow the distance coefficient to vary over intervals of import shares per good. That is,
I set the distance coefficient for observation ij equal to 4 if this observation falls in the Ath
interval with h=1,...,H. H denotes the interval with the largest import shares per good, and the
number of intervals is sufficiently small to leave enough degrees of freedom in the estimation. I
also add interval fixed effects. For simplicity, I drop the adjacency dummy from the notation so
that the estimating equation becomes
ﬁ

Yj

(19) lnL J:—zh In(dist;)+ S, +S§, +5, +o,,

where §, denotes the interval fixed effect and w;; is an error term. Hypothesis A states — as

predicted by the traditional gravity model — that the 4, distance coefficients should not vary
across import share intervals, i.e., ;= A>=...=4g. The alternative is — as predicted by the translog
gravity model — that the 4, distance coefficients should vary systematically across intervals as
implied by equation (12). Specifically, the absolute elasticity should decrease across the

intervals, i.e., 1;> 1o>..> Ag.
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How exactly should the intervals be chosen? If the intervals were chosen based on
observed values for import shares, this selection would be based on the dependent variable and
would lead to an endogeneity bias in the coefficients of interest, 4,. More specifically, I carried
out Monte Carlo simulations demonstrating that this selection procedure would lead to an
upward bias in the distance coefficients (i.e., 4, coefficients closer to zero) since both the
dependent variable and the interval classification would be positively correlated with the error
term.'®

The endogeneity bias can be avoided if intervals are chosen based on predicted import
shares. In particular, I first estimate equation (18) and obtain trade cost coefficients that are
common across all observations. Based on those regression results I then predict import shares
and divide the sample into H intervals of predicted import shares. By construction, this interval
classification is uncorrelated with the residuals of regression (18). Monte Carlo simulations
confirm that with this two-stage procedure, estimating equation (19) no longer imparts a bias on
the 4, coefficients.

Table 3 presents regression results for equation (19) under the assumption of H=5, i.e.,
with five import share intervals. Consistent with equation (12), the intervals in columns 1-4 are
chosen based on predicted import shares per good, (x;i/y;)/n;. Like in Table 2, columns 3 and 4
only differ from the previous two in that they use the import share per good as the dependent
variable. But due to the log-linearity the measure for »; is absorbed by the exporter fixed effects
such that the coefficients of interest and their standard errors are not affected, only the R-
squared. Nevertheless, I report the results for completeness. As a robustness check, the intervals
in columns 5 and 6 are chosen based on predicted import shares only, x;i/y;.

Columns 1, 3 and 5 report results with distance as the only trade cost regressor. A clear
pattern arises: the 4, distance coefficients decline in absolute value for intervals with larger
import shares, as predicted by the translog model. For example, in column 1 the distance

elasticity for the smallest import shares is -1.496 whereas it shrinks in magnitude to -1.079 for

1°1 simulated import shares under the assumption that the Anderson and van Wincoop (2003) gravity equation (10)
is the true model, using distance as the trade cost proxy based on the trade cost function (13) and assuming various
arbitrary parameter values for the distance elasticity p and the elasticity of substitution ¢. The variance of the log-
normal error term was chosen to match the R-squared of around 90 percent as in Table 2. I then divided the sample
into intervals based on the simulated import shares and ran regression (19) with OLS, replicating this procedure
1000 times. The resulting bias can be severe, in some cases halving the magnitudes of coefficients compared to their
true values.
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the largest import shares. Hypothesis A, which states that the distance coefficients are equal to
each other, can be clearly rejected (p-value=0.01 in columns 1 and 3, p-value=0.00 in column 5).

Columns 2, 4 and 6 add adjacency. Since no adjacent country pair in the sample falls into
the interval capturing the smallest predicted import shares, the corresponding regressor drops
out. The addition of the adjacency dummies does not alter the pattern of distance coefficients.
Those still decline monotonically in magnitude across all specifications and their equality can be
rejected (p-value=0.00 in columns 2, 4 and 6). There is no such monotonic pattern for the
adjacency coefficients, but their point estimates for intervals 2 and 3 are substantially larger than
those for intervals 4 and 5. Overall, their equality can be clearly rejected in columns 2 and 4 (p-
value=0.00) although not in column 6 (p-value=0.34). But the specifications in columns 2 and 4
are preferable since those are based on intervals of predicted import shares per good, as
warranted by equation (12).

I also experimented with different numbers of intervals, in particular H=3 and H=10 (not
reported here). The results are not qualitatively affected and the same coefficient patterns arise as
in Table 3. This suggests that the systematic inequality of trade cost elasticities across import
share intervals is a robust feature of the data. In summary, therefore, the results provide evidence
against the constant elasticity gravity specification and in favor of the translog gravity model.

Hypothesis B is based on the translog gravity estimating equation (17). Its premise is that
the translog specification is correct and that trade cost coefficients in that estimation should not
vary systematically across import shares. I adopt the same strategy as above in that I allow the
trade cost coefficients to vary across intervals A=1,...,H of import shares per good, also adding
interval fixed effects. For simplicity, I again drop the adjacency variable from the notation so

that the estimating equation becomes

x;1y; . A & A
(20) — =—x, In(dist;))+S,+S,+ S, +v,,
n

i

where x;, denotes the trade cost coefficients, S, denotes the interval fixed effect and v;; is an

error term. Hypothesis B states — as predicted by the translog gravity model — that the «;, distance

coefficients should not vary across intervals of import shares per good, i.e., k;= x>=...=ky. The

"7 A clear monotonic pattern for the adjacency coefficients does emerge in columns 2 and 4 of Table 3 if the
alternative, unweighted measure is used for the extensive margin 7; (see section 3.1).
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alternative is — as implied by the standard gravity model — that the magnitude of the x;, distance
coefficients should increase in the import share per good.18

As with hypothesis A, one needs to be careful in constructing the intervals. If they were
chosen based on observed values of import shares per good, one would incur an upward
endogeneity bias in the coefficients of interest, x;,. But this bias can be avoided if one first
estimates equation (17) to obtain common trade cost coefficients, predicts the corresponding
import shares and then divides the sample into H intervals of predicted import shares per good. I
verified the validity of this estimation strategy with Monte Carlo simulations."

Table 4a presents regression results for equation (20) under the assumption of H=5, i.e.,
with five import share intervals. In column 1 where distance is the only trade cost regressor, the
distance coefficients appear to generally rise in magnitude across import shares and the
hypothesis that they are equal can be rejected (p-value=0.00). However, this rejection is driven
by the coefficient for the first interval (equal to -0.0449), which deviates most from the other
coefficients. Indeed, the hypothesis that the coefficients for intervals 2-5 are equal cannot be
rejected (p-value=0.44). Neither can the hypothesis of equality between all distance coefficients
be rejected when I rerun regression (20) with more intervals.”

In column 2, I add adjacency. Since all adjacent country pairs in the sample fall into the
fifth interval, the adjacency variables for the other intervals drop out. With adjacency included, I
no longer obtain a monotonic pattern of distance coefficients. In fact, the point estimates for
intervals 4 and 5 are smaller in magnitude than for interval 3, and they are not statistically
different from each other (p-value=0.69). This evidence is inconsistent with the pattern of

distance coefficients that one would expect under the constant elasticity gravity model.

' To see this, divide the constant elasticity gravity equation (9) by y; and take the derivative with respect to In(z).
The result is d(x;/y;)/d In(t;)=-(o-1)x;/y;, implying that the absolute value of this derivative is increasing in x;/y;. In
the translog gravity equation (7), this derivative is given by d(x;/y;)/d In(z;)=-yn;. If constant elasticity gravity were
the true specification, then yn; should also be increasing in x;/y;, or equivalently y should be increasing in (x;/y;)/n;.
Thus, in equation (20) the x;, distance coefficients should be increasing in (x;/y;)/n;.

"1 simulated import shares under the assumption that the translog gravity equation (7) is the true model, using
distance as the trade cost proxy based on the trade cost function (13) and assuming various arbitrary values for the
distance elasticity p and the translog parameter y. The variance of the error term was chosen to match the R-squared
of around 55 percent as in Table 1. I divided the sample into intervals based on either the simulated import shares or
predicted import shares from a first-stage regression of equation (17). I then ran regression (20) with both types of
intervals, replicating this procedure 1000 times. Forming intervals based on the simulated import shares leads to a
severe upward bias in the x;, coefficients.

% For example, with H=10 the test of coefficient equality cannot be rejected (p-value=0.24).
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In Table 4b I present corresponding results based on equation (16) with x;/y; as the
dependent variable. Multilateral resistance terms now appear as regressors. As in Table 4a, in
columns 1 and 2 intervals are chosen based on predicted import shares per good. As a robustness
check, the intervals in columns 3 and 4 are chosen based on predicted import shares only.
Distance is the only trade cost regressor in columns 1 and 3. Adjacency is added in columns 2
and 4.

As noted above, if gravity with a constant elasticity were the true underlying model, one
should observe a monotonic increase in the absolute distance coefficients across the intervals.
However, such a pattern is generally not supported by the estimations. For example, in column 1
the distance coefficient for the first interval (equal to -0.0535) is larger in absolute size than
those for intervals 2 and 3 but smaller than those for intervals 4 and 5. In column 2 the smallest
distance coefficient is associated with the second interval (equal to -0.0351); in column 3 the
smallest coefficient is for the fourth interval (equal to -0.0332); in column 4 the smallest
coefficient is for the second interval (equal to -0.0327). Nevertheless, formal tests of coefficient
equality across intervals (i.e., hypothesis B) can still be rejected because the coefficients are
tightly estimated.

Overall, the results in Tables 3, 4a and 4b appear inconsistent with coefficient patterns
one should expect under the constant elasticity gravity model. They instead support the
predictions of the translog gravity model. However, as a matter of careful interpretation, the
empirical results should first and foremost be seen as evidence against CES rather than in favor
of translog. Although consistent with the translog gravity model, of course the results logically
do not preclude the possibility of an alternative third model that performs even better than
translog. Nevertheless, the translog specification indicates the direction in which the demand side
of trade models could sensibly be modified to yield gravity equations with varying trade cost

elasticities.

3.4. Discussion

The crucial result from the preceding gravity estimations is that a constant ‘one-size-fits-
all’ trade cost elasticity is inconsistent with the data. Instead, the trade cost elasticities vary with
the import share, as predicted by translog gravity. What are the implied values for these

elasticities? This question can be answered by considering the elasticity expression in equation
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(12). The elasticities #;; depend on the translog parameter y, the import share x;/y; and the number
of goods of the exporting country n;.

The values for x;/y; and n; are given by the data, and the translog parameter y can be
retrieved from the estimated distance coefficient in a translog regression. As the translog
estimating equation (16) shows, the coefficient on the variable n; In(dist;;) corresponds to the
product of the translog parameter y and the distance elasticity of trade costs p. As an illustration,
I take 0.0296 from column 1 of Table 1 as an absolute value for this coefficient, i.e., yp=0.0296.
To be comparable to the gravity literature, I choose a value of p that is consistent with typical
estimates. Specifically, in standard gravity equations based on equation (18), the distance
coefficient corresponds to the parameter combination -(o-1)p. It is typically estimated to be
around -1 (see Disdier and Head, 2008), and in column 1 of Table 2 I obtain a reasonably close
estimate of -1.239 for my sample of OECD countries. Under the assumption of an elasticity of
substitution equal to 6=8, which falls approximately in the middle of the range [5,10] as
surveyed by Anderson and van Wincoop (2004), the distance coefficient estimate implies
p=1.239/(8-1)=0.177.*' The value of the translog parameter then follows as y=0.0296/p=0.167.*
To be clear about my approach, I only choose a value of p for illustrative purposes. The analysis
below does not qualitatively depend on this particular value.

The trade cost elasticities can now be calculated across different import shares. I first
calculate the trade cost elasticity evaluated at the average import share in the sample. This
average share is x;/y=0.01. The average of the extensive margin measure is 7,=0.50.The trade
cost elasticity therefore follows as #;; =-yn; /(xi]/yj):—O.167"‘0.50/0.01=—8.4.23 Thus, if trade costs
go down by one percent, ceteris paribus the average import share is expected to increase by 8.4
percent. This value is close to the CES-based trade cost elasticity, #“*°=-(o-1), which equals 7

under the assumption of 6=8. For alternative values of o it is also true that the translog trade cost

*! See Anderson and van Wincoop (2004, Figure 1) for further evidence that p=0.177 is a reasonable value.

2 Based on an estimation of supply and demand systems at the 4-digit industry level, Feenstra and Weinstein (2010)
yield a median translog coefficient of y=0.19. My value of y=0.167 is reasonably close and would match Feenstra
and Weinstein’s (2010) estimate exactly in the case of p=0.156.

 The extensive margin measure taken from Hummels and Klenow (2005) more closely corresponds to the fraction
n;/N since they report the extensive margin of country i relative to the rest of the world. However, this does not
affect the implied trade cost elasticities. The reason is that the elasticities as expressed in equation (12) depend on
the product yn;. If n; is multiplied by a constant (//N), the linear estimation in regression (16) leads to a point
estimate of y that is scaled up by the inverse of the constant (N) so that their product is not affected (Ny*n; /N = yn;).
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elasticity evaluated at the average import share is close to the underlying CES-based trade cost
elasticity.”

However, in contrast to the CES specification, the trade cost elasticities based on the
translog gravity estimation vary across import shares. A given trade cost reduction therefore has
a heterogeneous impact on import shares. As an example, I illustrate this heterogeneity with
import shares that involve New Zealand as the importing country. I choose New Zealand because
its import shares vary across a relatively broad range so that the heterogeneity of trade cost
elasticities can be demonstrated succinctly. Of course, the analysis would be qualitatively similar
for other importing countries. The Australian share of New Zealand’s imports is the biggest (7.2
percent), followed by the US share (3.8 percent), the Japanese share (2.4 percent) and the UK
share (0.9 percent).

The corresponding trade cost elasticities, computed in the same way as before, are -1.3
for Australia, -4.0 for the US, -5.0 for Japan and -14.4 for the UK. Figure 1 plots these trade cost
elasticities in absolute value against the import shares, adding various additional countries that
export to New Zealand.” Dotted lines represent 95 percent confidence intervals computed with
the delta method based on the regression in column 1 of Table 1. The figure shows that trade
flows are more sensitive to trade costs if import shares are small. The impact of a given trade
cost change is therefore heterogeneous across country pairs. This key feature stands in contrast to
the trade cost elasticity in the standard CES-based gravity model where it is simply a constant

(0-1=7 in this case).

3.5. General Equilibrium Effects

The trade cost elasticity # as defined in equation (11) focuses on the direct impact of a
change in trade costs #; on the import share x;/y;. However, it does not take into account the
indirect impact of a trade cost change through general equilibrium effects, as forcefully
demonstrated by Anderson and van Wincoop (2003). To illustrate the role of general
equilibrium, I decompose how import shares are affected by the direct and indirect effects and

how this decomposition varies across import share intervals. But as I clarify further below,

* For instance, under the assumption of o=5, it follows p=0.31 and y=0.095 so that the trade cost elasticity evaluated
at the average import share is -4.8. Under the assumption of ¢=10, it follows p=0.138 and y=0.214 so that the trade
cost elasticity is -10.7.

* In order of declining import shares, the other countries are Germany, Italy, Korea and France.
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general equilibrium effects are not able to explain the pattern of declining distance coefficients as
found in Table 3.

I demonstrate the role of general equilibrium effects based on the constant elasticity
gravity model in equation (10). As a simplification I assume trade cost symmetry such that
outward and inward multilateral resistance terms are equal (II; = P; V i). As a counterfactual
experiment, I will assume a reduction in trade costs ¢; for a specific country pair. To understand

the effect on the import share, I take the first difference of equation (10) to arrive at

(21) Aln il =(1—0')A1n(tij)+Aln(y—Vi,J+A(0—1)m(RPj).
y

i
The left-hand side of equation (21) indicates the percentage change of the import share. It can be
decomposed into three components. The first term on the right-hand side is the direct effect of
the change in bilateral trade costs scaled by (1-¢). The second and third terms are the general
equilibrium effects, i.e., the change in the exporting country’s income share and most
importantly the change in multilateral resistance terms scaled by (o-1).

I am interested in how the decomposition in equation (21) varies across import shares. To
that end, I first compute an initial equilibrium of trade flows based on the income data for the
year 2000 and bilateral distance data for the 28 countries in the sample. Then, for each of the
28*27=756 bilateral observations I compute a counterfactual equilibrium under the assumption
that all else being equal, bilateral trade costs for that observation have decreased by one percent,
1.e., Aln(#;)=-0.01, assuming an elasticity of substitution of ¢=8. I use the trade cost function (13)
with distance as the only trade cost variable, assuming a distance elasticity of p =1/7.%°

Table 5 presents the decomposition results that correspond to equation (21). The rows
report the average changes for each import share interval. Given the parameter assumption of
0=_8, the direct effect of a one percent drop in bilateral trade costs is an increase in the import
share of seven percent across all intervals (see column 2). While changes in the income shares in
column 3 do not vary systematically across import shares, the multilateral resistance effects in

column 4 are largest in absolute size for the interval capturing the largest import shares. In total,

%% The counterfactual equilibria are computed in the same way as in Anderson and van Wincoop (2003, Appendix
B). The required domestic distance data are taken from the CEPII, see
http://www.cepii.fr/anglaisgraph/bdd/distances.htm. This distance elasticity is close to the value chosen in section
3.4 for illustrative purposes. The results are qualitatively not sensitive to alternative values. I also experimented with
alternative parameter assumptions for the substitution elasticity (o=5 and ¢=10) and different trade cost declines (5
percent and 10 percent). The overall results are qualitatively very similar.
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the general equilibrium effects dampen the direct effect for larger import shares (see the total
effect in column 1). Intuitively, large countries like Japan and the US are less dependent on
international trade such that changes in bilateral trade costs have little effect on multilateral
resistance. As large countries are typically associated with small import shares, the indirect
general equilibrium effects are often negligible for small import shares. However, for small
countries like Iceland and Luxembourg a given change in bilateral trade costs shifts multilateral
resistance relatively strongly. As those countries are typically associated with larger import
shares, general equilibrium effects tend to be stronger in that case so that the total effect is
dampened. The trade cost elasticities in columns 5a and 5b summarize these effects. Columns 6a
and 6b report the implied distance elasticities. From equation (18) the direct distance elasticity is
simply given by -(a-1)p, which equals -1 in this case.

It is important to stress that the distance elasticities in Tables 2 and 3 only represent the
direct elasticities. General equilibrium effects work in addition to the direct effect and are
absorbed by exporter and importer fixed effects. To verify this claim, I conduct Monte Carlo
simulations as in section 3.3 for the constant elasticity model. The simulations are now based on
the counterfactual scenario that all bilateral trade costs decline by one percent, leaving domestic
distances unchanged. Thus, the simulated import shares are shifted by both direct and indirect
effects. I then re-estimate gravity regression (19), dividing the sample into five import share
intervals and allowing the distance elasticities to vary across these intervals. The results show
that the distance coefficients are consistently estimated as the parameter combination -(o-1)p
across all five intervals. They do not reflect general equilibrium effects. Thus, general
equilibrium effects cannot account for the systematic pattern of distance elasticities reported in

Table 3.

3.6. Alternative Trade Cost Functions

The log-linear trade cost function (13) is the standard specification in the gravity
literature. However, I also examine other specifications to ensure that the coefficient patterns in
the regression tables do not hinge on this particular functional form.

In the CES-based gravity regressions of Table 3, larger import shares are characterized by
smaller distance coefficients in absolute size. As larger import shares are typically found at

shorter distances, a conceivable explanation could be that shorter distances are associated with a
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smaller distance elasticity of trade costs, whereas the trade cost function (13) imposes a constant
distance elasticity of trade costs due to its log-linear form. As an alternative, I consider a trade

cost function that implies a smaller distance elasticity of trade costs at shorter distances:
(22) In(z,) = plin(dist, ),
where p is a parameter to be estimated. Logarithmic trade costs are thus convex in logarithmic
distance. I also consider the opposite case of a concave trade cost function. In particular, I adopt
a specification in which the level of trade costs depends on logarithmic distance, or equivalently:
(23) In(t,) = p Infin(dist, ),
where p is a parameter. This concave specification captures the idea that trade costs might rise

disproportionately quickly at short distances and less quickly at long distances (see Hillberry and
Hummels, 2008).

I rerun the CES-based gravity equations (18) and (19) that correspond to the first columns
in Tables 2 and 3, respectively, using the two alternative trade cost functions (22) and (23)
instead of (13). Naturally, the change in the trade cost function affects the magnitudes of the
distance coefficients. But for both trade cost functions it is still the case that the distance
coefficients tend to decline in absolute value across import shares.”’ This finding is consistent
with the predictions of the translog gravity model and provides further evidence against the
notion that trade cost elasticities are equal across import shares.

I also rerun the translog gravity equations (17) and (20) that correspond to column 3 of
Table 1 and columns 1 and 2 of Table 4a using the trade cost functions (22) and (23). Although
the magnitudes of the distance coefficients shift in response to the alternative trade cost
functions, the coefficient patterns across import share intervals are qualitatively the same as in

the previous translog gravity regressions.”® Overall, I therefore conclude that the results

*7 In the regression corresponding to the first column of Table 2, the distance coefficients are -0.0819 for trade cost
function (22) and -8.8513 for trade cost function (23). In the regression corresponding to the first column of Table 3,
the distance coefficients for h=1,...,5 are -0.0892, -0.0917, -0.0893, -0.0802 and -0.0772 for trade cost function (22)
and -12.7899, -10.9773, -10.3685, -9.0189 and -6.7481 for trade cost function (23). The R-squareds are in the same
range as in Tables 2 and 3.

** In the regression corresponding to column 3 of Table 1, the distance coefficients are -0.0016 for trade cost
function (22) and -0.1876 for trade cost function (23). In the regression corresponding to column 1 of Table 4a, the
distance coefficients for 4=1,...,5 are -0.0029, -0.0033, -0.0033, -0.0036 and -0.0040 for trade cost function (22). As
in column 2 of Table 4a, the last three distance coefficients no longer increase monotonically in size if adjacency is
included as a regressor, in which case the distance coefficients become -0.0022, -0.0024, -0.0026, -0.0026 and
-0.0026. For trade cost function (23), the distance coefficients corresponding to column 1 of Table 4a are -0.3313,
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presented in Tables 1-4 are robust to the alternative trade cost functions adopted in equations

(22) and (23).

4. Conclusion

Leading trade models from the current literature imply a gravity equation that is
characterized by a constant elasticity of trade flows with respect to trade costs. This common
feature across models is related to the widespread use of CES demand systems. This paper
adopts an alternative demand system — translog preferences — and derives the corresponding
gravity equation. Due to more flexible substitution patterns across goods, translog gravity breaks
the constant trade cost elasticity that is the hallmark of traditional gravity equations. Instead, the
elasticity becomes endogenous and depends on the intensity of trade flows between two
countries.

In particular, all else being equal, the less two countries trade with each other and the
smaller their bilateral import shares, the more sensitive they are to trade costs. I test the translog
gravity specification and find evidence that strongly supports this prediction. That is, trade cost
elasticities are heterogeneous across import shares, and the traditional specification with a
constant trade cost elasticity can be clearly rejected.

The empirical results presented in this paper are based on aggregate trade flows. A
natural extension would be an application to more disaggregated data. In that regard, I have
obtained some preliminary results based on import shares between OECD countries at the level
of 3-digit industries. When I allow gravity distance coefficients for individual industries to vary
across import shares in CES-based gravity equations, their absolute values are characterized by
the same declining pattern as in Table 3 for industries as diverse as food products, plastic
products and electric machinery. This additional evidence suggests that varying trade cost
elasticities are a distinguishing feature of international trade data also at the industry level.
Exploring industry-level data in more detail along those lines remains as an important topic for

future research.

-0.3781, -0.3761, -0.3852 and -0.3730; and corresponding to column 2 of Table 4a they are -0.2543, -0.2839,
-0.3094, -0.2998 and -0.2434. The R-squareds are similar to those in Tables 1 and 4a.
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Technical Appendix
This appendix outlines the derivation of the translog gravity equation (7). Substituting the

expenditures shares implied by (4) into the market-clearing condition (6) yields

N; J N; N
RIS FADIRHE I o (B w TR

j=1 j=l  m=N_+ j=1  m=N_+ k=1

Use pyj=typx and define world income as yW = Z;l y; to obtain

yj Z [am +27km ln(tkj)j_'_ yW Z (Zykm ln(pk )j’
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which can be rearranged as
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where the first summation index on the right-hand side is changed from j to s.
Then substitute the last equation back into the import share (5):
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To ease notation define the geometric mean of trade costs in country j as

so that




Recall that t,,;=t;; if m € [N;.;+1,N;] so that the previous equation can be rewritten as
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where n, = N; — N, denotes the number of goods of country i. Note that In(7),) can be rewritten

as a weighted average of trade costs over the trading partners of country j:
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In(TH)=— > In(t,.)= > —=In(z.).
(T) NZ (t,) ZN t,)

27



Table 1: Translog gravity

Multiple goods per country

One good per country (n;=1)

Dependent variable XiY; XiilY; (xi/y;)/ni (/) ni i/ xi/Y;
(1) (2) (3) (4) (5) (6)
n;In(dist;) -0.0296***  -0.0190***
(0.0041) (0.0029)
n; In(T%) 0.0207***  0.0105***
(0.0049) (0.0034)
n;adjj 0.0510***
(0.0117)
n T -0.0471%*
(0.0192)
In(dist;) -0.0250***  -0.0159*** | -0.0149*** -0.0094***
(0.0033) (0.0021) (0.0022) (0.0016)
adj; 0.0450*** 0.0273%**
(0.0090) (0.0053)
R-squared 0.52 0.59 0.50 0.57 0.50 0.56
Observations 749 749 749 749 749 749

Notes: Data for the year 2000. Robust standard errors clustered around country pairs (378 clusters) reported in
parentheses, OLS estimation. Columns 1 and 2: exporter fixed effects not reported. Columns 3-6: exporter and
importer fixed effects not reported. ** significant at 5% level. *** significant at 1% level.
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Table 2: Constant elasticity gravity

Dependent Variable In(XU/yJ) In(XU/yJ) In((Xij/yj)/ni) In((Xij/yJ')/ni)
(1) (2) 3) (4)
In(dist;) -1.2390*** -1.1697*** -1.2390*** -1.1697***
(0.0625) (0.0713) (0.0625) (0.0713)
(0.1720) (0.1720)
R-squared 0.89 0.89 0.85 0.85
Observations 749 749 749 749

Notes: Data for the year 2000. Robust standard errors clustered around country pairs (378 clusters)
reported in parentheses, OLS estimation. The coefficients in columns 1 and 2 are the same as in
columns 3 and 4. Exporter and importer fixed effects not reported. ** significant at 5% level. ***

significant at 1% level.
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Table 3: Testing constant elasticity gravity against translog gravity (Hypothesis A)

Intervals based on (x;/y;)/n;

Intervals based on (x;/y;)

Dependent variable |n(xij/yj) In(xij/yj) |n((xij/yj)/ni) |n((xij/yj)/ni) |n(xij/yj) |n(Xij/yj)
(1) (2) (3) (4) (5) (6)
In(dist;), h=1 -1.4960%**  -1.4490*** | -1.4960*** -1.4490%** | -1.6523*** _1.597Q***
(0.1377) (0.1313) (0.1377) (0.1313) (0.1080) (0.1044)
In(dist;), h=2 -1.4636%**  -1.3405*** | -1.4636*** -1.3405%** | -1.3936*** -1.3190***
(0.1223) (0.1117) (0.1223) (0.1117) (0.1180) (0.1140)
In(dist;), h=3 -1.3668%**  -1.2502*** | -1.3668*** -1.2502%** | -1.3369%** -1.213]***
(0.1092) (0.1043) (0.1092) (0.1043) (0.1123) (0.1017)
In(dist;), h=4 -1.2235%**  -1.0662*** | -1.2235%** -1.0662*** | -1.3311*** -1,155]***
(0.1024) (0.0968) (0.1024) (0.0968) (0.0947) (0.0946)
In(dist;), h=5 -1.0790***  -0.8297*** | -1.0790*** -0.8297*** | -1.0662*** -0.8251***
(0.1000) (0.1045) (0.1000) (0.1045) (0.0910) (0.0972)
adj;, h=2 1.9499%** 1.9499%*** 1.1283*
(0.2279) (0.2279) (0.6657)
adj;, h=3 2.3218*** 2.3218*** 1.6318***
(0.2150) (0.2150) (0.5925)
adj;, h=4 0.7333*** 0.7333*** 0.5197***
(0.2345) (0.2345) (0.1910)
adj;, h=5 0.6221*** 0.6221*** 0.6359***
(0.1500) (0.1500) (0.1556)
R-squared 0.90 0.90 0.86 0.87 0.89 0.90
Observations 749 749 749 749 749 749

Notes: Data for the year 2000. The index h denotes intervals in order of ascending predicted import shares. The intervals
in columns 1-4 are based on predicted import shares divided by n;. The intervals in columns 5 and 6 are based on
predicted import shares only. The adj; regressor for interval h=1 drops out since no adjacent country pair falls into this
interval. Robust standard errors clustered around country pairs (378 clusters) reported in parentheses, OLS estimation.
Exporter and importer fixed effects and interval fixed effects not reported. The coefficients in columns 1 and 2 are the

same as in columns 3 and 4. * significant at 10% level. ** significant at 5% level. *** significant at 1% level.
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Table 4a: Testing translog gravity against constant
elasticity gravity (Hypothesis B)

Intervals based on (x;/y;)/n;

Dependent variable (xi/y;)/ni (x/y;)/ i
(1) (2)
In(dist;), h=1 -0.0449*** -0.0347***
(0.0068) (0.0039)
In(dist;), h=2 -0.0518%*** -0.0383***
(0.0077) (0.0042)
In(dist;), h=3 -0.0516*** -0.0412***
(0.0078) (0.0046)
In(dist;), h=4 -0.0543*** -0.0411***
(0.0079) (0.0045)
In(dist;), h=5 -0.0567*** -0.0380***
(0.0084) (0.0057)
adjy;, h=5 0.0608***
(0.0103)
R-squared 0.64 0.71
Observations 749 749

Notes: Data for the year 2000. The index h denotes intervals in
order of ascending predicted import shares. The intervals are
based on predicted import shares divided by n;. The adj;
regressors for intervals h=1-4 drop out in column 2 since no
adjacent country pair falls into these intervals. Robust
standard errors clustered around country pairs (378 clusters)
reported in parentheses, OLS estimation. Exporter and
importer fixed effects and interval fixed effects not reported.
*#* significant at 1% level.
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Table 4b: Testing translog gravity against constant elasticity gravity (Hypothesis B)

Intervals based on (x/y;)/n; Intervals based on (x;/y;)
Dependent variable XilY; XilY; XilY; XilY;
(1) (2) (3) (4)
n;In(dist;), h=1 -0.0535%** -0.0406*** -0.0403*** -0.0369***
(0.0090) (0.0064) (0.0085) (0.0061)
n;In(dist;), h=2 -0.0446*** -0.0351*** -0.0338*** -0.0327%**
(0.0081) (0.0052) (0.0075) (0.0054)
n;In(dist;), h=3 -0.0507*** -0.0376*** -0.0334*** -0.0337***
(0.0085) (0.0054) (0.0069) (0.0053)
n;In(dist;), h=4 -0.0585*** -0.0406*** -0.0332%** -0.0343%**
(0.0095) (0.0062) (0.0061) (0.0055)
n;In(dist;), h=5 -0.0627*** -0.0476*** -0.0601*** -0.0439%**
(0.0087) (0.0077) (0.0079) (0.0084)
n In(T,™Y), h=1 0.0430%** 0.0286*** 0.0291*** 0.0258***
(0.0076) (0.0049) (0.0065) (0.0047)
n; In(T,™Y), h=2 0.0300%*** 0.0189*** 0.0201*** 0.0183***
(0.0067) (0.0037) (0.0057) (0.0039)
n In(T,™Y), h=3 0.0343%** 0.0199*** 0.0195*** 0.0189***
(0.0072) (0.0043) (0.0058) (0.0040)
n; In(T,™), h=4 0.0391*** 0.0207*** 0.0184*** 0.0163%***
(0.0085) (0.0055) (0.0055) (0.0044)
n; In(T%), h=5 0.0417*** 0.0256*** 0.0413%** 0.0242%*x*
(0.0084) (0.0067) (0.0083) (0.0079)
n;adj;, h=5 0.0536*** 0.0529%***
(0.0161) (0.0161)
n T, h=5 -0.1309** -0.0933*
(0.0647) (0.0501)
R-squared 0.64 0.69 0.64 0.68
Observations 749 749 749 749

Notes: Data for the year 2000. The index h denotes intervals in order of ascending predicted import
shares. The intervals in columns 1 and 2 are based on predicted import shares divided by n;. The
intervals in columns 3 and 4 are based on predicted import shares only. The n; adj; regressors for
intervals h=1-4 drop out in column 2 since no adjacent country pairs fall into these intervals (intervals
h=1, 2 and 4 in column 4). The n; dej regressors for intervals h=1-4 in columns 2 and 4 are included but
not reported here. Robust standard errors clustered around country pairs (378 clusters) reported in
parentheses, OLS estimation. Exporter fixed effects and interval fixed effects not reported. * significant
at 10% level. ** significant at 5% level. *** significant at 1% level.
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Table 5: General equilibrium effects in response to a counterfactual decline in trade costs

Total effect

Direct effect

Indirect GE effect

Trade cost elasticity

Distance elasticity

Import share interval Aln(xyly) = (1-0)Aln(ty) + A In(y/y") + (o-1)A In(PiP;) Total Direct Total Direct
(1) (2) (3) (4) (5a) (5b) (6a) (6b)
h=1 0.0702 = 0.07 + -0.0007 + 0.0009 -7.02 -7 -1.00 -1
h=2 0.0699 = 0.07 + -0.0007 + 0.0007 -6.99 -7 -1.00 -1
h=3 0.0696 = 0.07 + -0.0008 + 0.0003 -6.96 -7 -0.99 -1
h=4 0.0690 = 0.07 + -0.0006 + -0.0003 -6.90 -7 -0.99 -1
h=5 0.0637 = 0.07 + -0.0007 + -0.0056 -6.37 -7 -0.91 -1

Notes: This table reports logarithmic differences of variables between the initial equilibrium and the counterfactual equilibrium. The initial equilibrium is based
on country income shares yi/yW for the year 2000 and bilateral distance data for the 28 countries in the sample (28*27=756 bilateral observations). For each
bilateral observation a counterfactual equilibrium is computed under the assumption that bilateral trade costs t;; for this observation have decreased by one
percent all else being equal, yielding 756 counterfactual scenarios. The table reports the logarithmic differences between the initial and the counterfactual
equilibria averaged across five import share intervals denoted by h. Import share intervals are in ascending order and based on the initial equilibrium. Assumed
parameter values: 0=8 and p=1/7. Column 1: change in the import share; column 2: change in bilateral trade costs scaled by the substitution elasticity; column
3: change in the exporting country's income share; column 4: change in multilateral resistance scaled by the substitution elasticity; columns 5a and 5b: implied
trade cost elasticities based on total effect and direct effect (=1-0); columns 6a and 6b: implied distance elasticities based on total effect and direct effect (=(1-

0)*p).
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Figure 1: Trade cost elasticities

The dotted lines represent 95 percent confidence intervals.
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