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ABSTRACT 

A method to measure yield risk associated with new technologies 

based on the concept of stochastic production and the method of 

moments. is demonstrated. The method is applied to measure mean and 

variance of some new technologies introduced in Cameroon in 1986-89 

under the SAFGRAD Project. Data used for the study include a long 

time series for weather and a short cross-sectional/time series for 

yield-weather-technology relationships. 

Key Yords 

Yield risk, stochastic production, technology assessment, method of 

moments. 



Measurement of The Risk Effects of New Technologies 

For On-Farm Trials in Dryland Agriculture 

Introduction 

New technologies are aimed at reducing the risk in dryland 

agriculture. However, new varieties and production methods are 

developed and tested at experiment stations under controlled 

conditions. It is well-known that the effects of such technologies 

under farm conditions can be quite different than when crops are grown 

under controlled conditions. New varieties developed by plant 

breeders may increase mean yields and reduce variability of yields due 

to weather but may also increase yield variability at the farm level 

compared to traditional technologies if new varieties do not respond 

well to farm level conditions. Thus, it is important to be able to 

assess new technologies at the farm level. 

Typically, experiment station yields have been adjusted to 

predict farm conditions by multiplying station yields by a factor less 

than one (Perrin et al., 1976; Adesina, 1988). While this method may 

adjust adequately for mean effects, it cannot be used to predict 

variance effects since farm yield variation may be due to factors not 

present in experiment station trials. 

The advantage of on-farm trials, compared to experiment station 

trials, is that new technologies can be tested under a variety of 

conditions including soil, weather, farmer management skills, and 

labor and land availability. To analyze observations from farm 

trials, standard statistical tests such as analysis of variance used 

for controlled station experiments may not be appropriate for less 

controlled farm trials. 
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The purpose of this paper is to demonstrate analytic methods 

which can be applied to analyze the risk effects of new technologies 

from on-farm trials for such variable conditions. In particular, we 

are concerned with the effects of new technologies on income risk. 

Some mathematical programming models used for farm planning under 

risky conditions (Hazell and Norton, 1986) defined income risk in 

terms of mean and variance and used historical income data to define 

objective functions, capturing the joint distribution of yield and 

price (Niang, 1980; Elamin, 1987). Farmer income was assumed to be 

normally distributed in early work on measuring income·risk (Hazell, 

1971), implying equal probability weights for sampled incomes. 

Recent applications of risk programming in dryland agriculture 

have focussed on weather risk (Ensink, 1989; Adesina, 1988) for which 

weather is generally not normally distributed since years of 

alternative weather types (dry, normal, wet, etc.) may not be equally 

likely. Because there are long weather cycles (Thompson, 1988), a 

time series of about twenty to thirty years would be needed to capture 

the effects of weather risk adequately. Such a long time series for 

income data would rarely be available even for traditional 

technologies. Therefore, a different approach from direct use of 

historical yield or income data is needed to capture risk in dryland 

agricultu!e. This paper proposes such an approach. 

The method presented here uses regression techniques and 

statistical modelling to provide the basis for measuring yield and 

income risk for alternative technologies. Two sources of yield and 

income variance are identified and measured separately: weather 

variance and cross-sectional variance. The latter includes sources of 

variation other than weather resulting from differences among farmers 
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and farms. This type of decomposition of variance was also suggested 

by Carter (1989) who studied cross-sectional and intertemporal 

variance for millet, sorghum, and maize for traditional technologies 

and found cross-sectional variance to be large relative to 

intertemporal variance. 

The production modelling approach provides an alternative to the 

use of historical income data. A long time series for weather (used 

to describe weather risk) is combined with a short time series for 

farm yields observations (used to model yield-technology-weather 

relationships). The combination produces a model of yield risk for 

newly available technologies from farm-level observations. 

A brief description is given below of the SAFGRAD project which 

collected data used for this study. Measurement of mean, variance, 

and covariance effects of new technologies is demonstrated here based 

on data from this project. 

SAFGRAD Project and Characteristics of the Description of Study Area 

Data used in this study are from the Semi-Arid Food Grain 

Research and Development Farming Systems Program (SAFGRAD). This 

program was carried out by the government of Cameroon and the 

Scientific and Technical Research Commission of the Organization of 

African Unity and was funded by the International Fund for 

Agricultural Development. The objectives of the program included 

development of agricultural production technologies adapted to the 

conditions and needs of small farmers in the semi-arid zones of 

Northern Cameroon. A more complete description of this project can be 

found in Ngambeki, et al, 1989. 
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Data on yield collected for this project were obtained for the 

years 1986, 1987, and 1988. Included were farms in two climatic 

regions: an area with average annual. rainfall of 800-1000 mm (Region 1 

in this paper) during the growing season (April through October) and 

an area with average annual rainfall of 600-800 mm (Region 2 in this 

paper). Also included are farms of two predominant soil types: clayey 

soils and sandy soils. 

Farms participating in this study included those using 

traditional technologies, those using extension techniques and 

varieties, and those using SAFGRAD techniques and varieties. Crops 

included are maize, cotton, groundnut, red sorghum, white sorghum, 

transplant sorghum (muskwari), and cowpea. In this paper, results for 

maize and groundnut are presented to demonstrate the methodology. 

The technologies tested for maize include improved practices 

combined with use of either low or high levels of fertilizer (the high 

level was 90 kg/ha of nitrogen and the low level was 35 kgN/ha 

combined with either crop residues or manure); simple ridges or ridges 

tied at 2m; and alternative varieties. Improved practices include 

lower planting density (62,000 plants/ha.), thinning plants to 1-2 

plant/hill, weeding twice, seed treatment, and fertilization applied 

in two doses at planting and weeding. Three varieties of maize were 

tested: ;Mexican 17E (a traditional long-cycle variety in widespread 

current use), TZPB-K81 (a long-cycle variety recommended by the 

Extension Service in North Cameroon), and CMS8501 (a short-cycle 

variety developed by SAFGRAD). (Appendix A shows the combinations 

tested in field experiments.) 
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For groundnut, the traditional variety and practices were 

compared to improved practices with two new varieties, the SAFGRAD 

variety Kl-441-77 and the extension variety 28-206. 

Another management tool is planting date. Because of labor 

scarcity during normal planting periods, labor constraints can be 

eased by staggering planting activities. However, there can be yield 

penalties associated with early or late planting. When early planting 

is followed by poor rainfall, yield can be reduced, but with later 

good weather, plants may "catchup". By delaying planting, there may 

also be a reduction in yield if early weather is good. 

Weather Probabilities 

Alternative weather conditions were classified in terms of 

rainfall for critical periods of the growing season. Early season 

rainfall was represented by cumulative rainfall for the period from 

April to June 10 and mid-season weather was represented by cumulative 

rainfall through July 20. Rainfall patterns for the two periods were 

then grouped as shown below, to designate "drier", "intermediate", and 

"wetter" rainfall conditions. 

Probabilities of "drier", "intermediate", and "wetter" 

conditions, were based on 24 years of historical rainfall data by 

agroclimatic region. To obtain probabilities, rainfall observations 

for three representative sites were used for each region for 

1965-1988, for a total of 72 rainfall observations per region. (See 

Appendix B for observed frequencies of rainfall events by region.) 

Note that the probability distribution for rainfall conditions is 

not normal in either region. The distribution for Region 2 is heavily 

skewed toward low rainfall, whereas for Region 1, it is skewed toward 

intermediate to wetter rainfall conditions. 
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Growing Period Rainfall (mm) 

Early (before June 10) Later (before July 20) 

low ~ 150 low ~ 250 

medium 151 - 230 medium 251 - 350 

high ~ 231 high ~ 351 

Classsification of Rainfall Conditions 

as Related to Early/Later Rainfall 

Drier: low/low; low/medium; medium/low 

Intermediate: medium/medium; low/high; high/low 

Wetter: high/high; medium/high; high/medium 

Probabilities of Rainfall Conditions by Weather Region. 

Region 1: 

Region 2: 

.3055 

.6528 

Intermediate 

.3472 

.3194 

Wetter 

.3472 

.0278 

Yield Modelling 

Field experiments could not test each possible combination of 

planting date, soil, fertilizer level, variety, and ridges. 

Therefore, regression models were used to infer yield for combinations 

not directly tested. 

The production function approach models yield (y) as related to 

technology inputs (x), soil (s), and weather (w). Because of weather 

and other sources of randomness, yield is a random variable. Here we 

represent the random nature of yield by the relationship 

(1) y = f(x,s,w) + e 

where f(•) is the mean production function for given weather, soil, 

and technology and e is a random variable representing deviation from 

this mean by individual farmers. e cari be identified with 
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cross-sectional sources of variation; therefore a normal distribution 

with zero mean is an appropriate specification. The relationship 

between€ and w may be a conditional one; that is, the probability of 

observing any given deviation from the mean yield may depend on 

weather and inputs. For example the use of fertilizer and tied ridges 

may reduce yield variation among farmers with different types of soil. 

Separate yield regressions were estimated for each type of 

weather condition because the effect of a given technology may depend 

on the weather in a nonlinear way. For example, tied ridges may 

increase yield for intermediate rainfall conditions but could decrease 

yield for wetter conditions, especially with clayey soils. Or, a new 

drought tolerant variety may increase yield more for lower rainfall 

conditions than for higher rainfall conditions. 

Farm yield observations for each type of weather condition are 

regressed in terms of technology choices, planting dates, and soil. 

The regression is of the form: 

(2) 

w 
where yik is the yield for crop i, farmer k, weather w. w y. , the 

10 

constant term, is the mean yield for the traditional technology in 

weather state w. Dii denotes a dummy variable indicating a 

nontraditional technology choice; a value of one means that the 

technology is applied whereas a value of zero means it is not applied: 

n8 indicates a dummy variable for soil type, a value of zero or one 

differentiates between soil types. The coefficient (a~2) of a factor 

(2) tells how the application of a new technology will affect yield 

7 



for the average farmer for weather state w. By assumption the error 

term for the regression (e~k) has a normal distribution with mean 

zero. 

Regression (1) should be corrected for heteroscedasticity by the 

method of moments (Antle, 1983). Cross-sectional variance is 

estimated as related to alternative technologies by regressing the 

squared residual in (1) on the same explanatory variables. The 

cross-sectional variance regression is of the form 

(3) SEW Vw ~pw D + 13w_ D + w 
ik - io + u il il is s ~ik 

w for the sum of squared error SEik Vw h io represents t e 

w cross-sectional variance for the traditional technology and ~ik is the 

regression error term having mean zero. {3~1 shows how a technology 

(£) affects cross-sectional variance for weather state w. Weights for 

generalized least squares (GLS) are obtained from (3) and used to 

obtain consistent parameter estimates for (2) having minimum variance. 

Table 1 shows GLS regressions for maize yield by weather 

condition. The constant term in the mean yield regression represents 

the yield for the average farmer with traditional technology for 

weather conditions at the indicated level. Note that this traditional 

yield increases as the weather improves, increasing from 1310 kg/ha to 

2161 kg/ha to 2673 kg/ha. 

The effects of new technologies, planting date, and soil on mean 

yield are indicated by the coefficients of the corresponding dummy 

variables. Use of improved agronomic practices and low fertilizer for 

maize increases yield for the driest rainfall pattern. In comparison, 
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the combination of high fertilizer and the CMS variety produces a 

smaller yield increase of 3588 for the driest weather. 

For intermediate weather, using high fertilizer significantly 

increases yield. The combination of TZPB, high fertilizer, and tied 

ridges produces an average yield of about 5372 kg/ha. With wetter 

weather, the maximum yield of 4086 kg/ha is obtained from the 

combination of high fertilizer and the CMS variety. 

Considering the significance of the coefficients for RIDGE, use 

of tied ridges can complement improved agronomic practices when 

rainfall conditions are in the intermediate range. Use of simple 

ridges (RID) does not significantly increase average yields in any 

period. Planting late (after June 20) reduces yields significantly 

for the intermediate rainfall condition. 

Technologies can also affect cross-sectional variance. 

Fertilizer, simple ridges, and late planting have significant effects 

on cross-sectional variance for drier weather. Simple ridges and late 

planting reduce variance. Except for soil, cross-sectional variance 

is not otherwise significantly affected for intermediate and wetter 

conditions by maize technologies. 

Similar results for groundnut are shown in Table 2. Planting 

early or late has a significantly negative effect for yield in wetter 

rainfall ~onditions. Both new varieties have a significant positive 

effect on yields for both intermediate and wetter rainfall conditions. 

Cross-sectional variance results show that both planting early and 

planting late reduce variance. Use of the new variety 28-206 also 

reduces cross-sectional variance. 

Measurement of Mean and Variance for Optimization Models 
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The purpose of optimization is to choose the number of units of 

land to be planted in each crop, given price and variable cost per 

yield unit for each crop. Using variance as a measure of riskiness, 

technologies are preferred which reduce variance, or which have mean 

effects offsetting variance effects. Crop combinations which exhibit 

negative correlations (or have a negative covariance) may be combined 

to produce preferred crop portfolios in terms of risk. 

As will be shown below, income variance can be expressed in terms 

of weather variance for each crop, cross-sectional variance for each 

crop, and covariances for each pair of crops grown. Yield regressions 

as those given above, can be used to measure yield risk in such 

optimization models. 

Each farmer (k) in a cross-sectional study provides sample yield 

observations for each crop (i) grown. We now show, with the 

assumption that E in (1) is conditional on weather, that yield 

variance can be decomposed into two terms: weather variance for the 

average farmer and cross-sectional variance. w Let yik denote yield 

observed for crop i for farmer k and weather state w. Let ~w denote 

the probability of weather state wand Nw denote the number of farms 

with observations in weather state w. (In the derivation below, we 

assume each farm sampled grows each crop, but the number of farms 

sampled each year may differ.) 

-w The sample mean (yi) over farmers for a given weather state, with 

soil and technology held constant, is obtained by weighing each 

observation equally because of assumed normality of thee 

distribution: 
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(4) 

~ represents the yield for the average farmer in weather state w. 

The expected value of yield is obtained from the joint distribution of 

yield over both farmers and weather states. Because of the assumed 

conditional relationship of eon w, the joint probability of a farm 

yield observation and a given weather state is the product of the 

b b ·1· · (1/Nw) _w_ F. k. h f d pro a i ities: .. irst ta ing t e mean over armers an 

then over weather probabilities, the overall mean (yi) is the yield 

for the average farmer in each weather state w weighted by the 

probability of each weather state: 

(5) w 
11' 

The sample variance of yield is obtained by squaring the 

difference between each farm observation and the overall mean yield, 

weighting by the joint probability, and then swnming over farmers and 

weather states. Sample variance for a given crop and technology can 

be decomposed into two terms, as follows: 
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(6) 

w 
11' • 

The first term in this decomposition is variance due to weather for 

the average farmer, and the second term is cross-sectional variance. 

The third term is zero by (4). 

Taking expectations in (2) over both farmers and weather, the 

expected yield as related to technology and soil can be determined: 

(7) w 
11' • 

Weather variance as related to use of technology by the average 

farmer (the first variance term in (6)) can also be measured by 

applying results of regression (2). As in the first term of (6), 

weather variance is obtained by subtracting the mean taken over all 

weather states (yi) from the mean for each weather state <?t), 

squaring each of these terms, and then weighting each by the weather 

probability. (This measure of variance is analogous to what would be 

obtained in an experiment station study of technologies in which only 

weather conditions would vary.) 
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The cross-sectional variance (CSVi) over all weather conditions 

is obtained as related to technology, planting date, and soil by 

taking the expected value of over both farmers (to get SE~) and 

weather in (3): 

(8) 

Based on the sampled yields, sample income for farmer k over all 

crops grown is: 

(9) 

where C. denotes variable cost per land unit planted for crop i, P. 
1 1 

denotes price for crop i, and Ai is land units planted. (Here, price 

is not random.) Sample income variance compared to the overall mean 

income 

(10) 

I is: 

Sample Income Variance - ~ ~ (Iw r) 2 L ~w 
wk k- Nw 

= ~ ~ 
wk 

~ p2 A2 [~ ~ 
i i i w k 

Considering the last equality in the decomposition of income variance, 

the expression in brackets in the first term is the sample yield 

variance for each crop. This term can be further decomposed to be the 
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sum of weather variance and cross-sectional variance for each crop as 

shown above. The expression in brackets in the second term is the 

covariance for pairs of crops i and j. Similar to variance, 

covariance can be expressed as a sum of two terms, covariance due to 

weather for the average farmer and cross-sectional covariances for 

pairs of crops. Covariance for two crops can be related to the 

technology factors which affect yields for maize (DMi) and groundnut 

(DGi) separately from the regressions (2) and (3). 

Estimated Mean, Variance. and Covariance Effects of New Technologies 

Means and variances associated with alternative technologies for 

each of the two weather regions, obtained by applying the regression 

equations with the corresponding weather probabilities and the above 

formulas, are shown in Table 3 for maize and Table 4 for groundnut: 

Table 5 shows covariance for selected technology combinations for 

maize and groundnut. 

Table 3 shows the expected values and variances of yield for four 

technology combinations for maize. These combinations are: 

traditional variety with traditional farming methods; traditional 

variety with improved methods and low fertilizer; traditional variety 

with improved methods, high fertilizer, and tied ridges; and the new 

variety (GMS8501) with improved methods, high fertilizer and tied 

ridges. (Results shown in Table 3 and 4 are in terms of a normal 

planting date and sandy soil.) Total variance in Table 3 is the sum 

of the two types, weather variance and cross-sectional variance. Note 

that the cross-sectional variance is a larger share of total variance 

for maize than the weather variance. 
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Weather variance is reduced by low fertilizer, in comparison to 

the traditional technology, but it is increased by high fertilizer in 

Region 1. The percent reduction in weather variance obtained by the 

use of low fertilizer is greater in Region 2 than in Region 1. All 

technologies increase cross-sectional variance but the effect due to 

using low fertilizer is relatively small. Total variance is reduced 

in both regions by low fertilizer use but is increased by other 

technologies. 

Higher total variance for new technologies is offset by higher 

mean yields. All new technologies shown in Table 3 increase mean 

yield but a greater percent increase occurs for Region 2 because of 

the predominance of dry weather conditions for which new technologies 

are designed. 

The coefficient of variation in yield (the standard deviation 

divided by mean) is the measure of riskiness. It is lower for all of 

the new technologies than for the traditional technology. Since all 

new technologies produce similar coefficients of variation, lower cost 

technologies (ie improved practices with low fertilizer) will be 

preferred. Region 2 becomes more like Region 1 in terms of yield risk 

when new technologies are introduced. 

Table 4 shows similar information for groundnut. Use of the new 

variety increases mean yield in both regions, with a larger percent 

effect obtained in Region 2 because of its greater chance of having 

dry conditions. In this case, use of the new variety reduces cross

sectional variance but increases weather variance in Region 1. The 

total variance is reduced by the new variety. The coefficient of 

variation of yield is greatly reduced by use of the new variety, again 
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with a larger effect in Region 2. Again, yield risk in Region 2 

becomes more similar to that in Region 1 with the new technology. 

In Table 5, covariance effects are shown for combinations of 

technologies for maize and groundnut. From a portfolio standpoint, 

negative covariance is preferred. (Covariance indicates correlation 

in yields; correlation is obtained from covariance by dividing by the 

product of standard deviations for each crop. For example the 

correlation coefficient between maize and groundnut yield for the 

traditional technologies in Region 1 is .86.) Covariance cannot be 

directly compared to variance of maize and groundnut without 

converting to common dollar units. However, since prices of maize and 

groundnut are similar (respectively $.30 and $.33 per kg), the 

magnitudes of income variance and covariance are roughly similar. 

In terms of total convariance, use of low fertilizer for maize 

and the new variety for groundnut produces the most negative 

covariance because maize yield is greatly increased by low fertilizer 

in drier weather whereas groundnut yield increases with wetter weather 

conditions. Cross-sectional covariance increases with new 

technologies. 

Conclusions 

In formulating objective functions for mathematical programming 

models to be used for farm planning in a risk context, historical 

income data may not represent weather risk correctly if a short time 

series is used. A long time series for income is rarely available for 

underdeveloped countries and, even if available, would not reflect new 

technologies. 
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The regression methodology based on the method of moments 

presented in this paper provides an alternative way to measure yield 

risk. Weather probabilities are obtained from historical weather 

data. Risk can be modelled for different weather regions by applying 

the appropriate probabilities. 

This paper separately identified weather and cross-sectional 

variance as components of total variance. IFor the SAFGRAD 

technologies analyzed here, similar to Carter's (1989) results for 

traditional technologies, it was shown that cross-sectional variance, 

can an important source of yield variation in comparison to weather 

variance. New technologies can affect cross-sectional variance as 

well as weather variance. Our results indicate that, compared to high 

input or traditional practices, low input improvements together with 

improved varieties may have the most beneficial effects on yield input 

risk. Furthermore, covariance is of a magnitude similar to variance 

and it may be greatly reduced by use of new technologies. 

Since experiment station tests of new technologies do not measure 

cross-sectional variance and covariance, it is important to test new 

technologies with farm-level trials in order to make appropriate 

recommendations about new technologies. Specific results about new 

technologies obtained here from farm-level data indicate that improved 

practices, low fertilizer use, and new varieties can help to reduce 

yield risk in drier climatic areas and also to reduce the disparity 

between wetter and drier climatic regions. 

Future work will incorporate the regression method for a full 

spectrum of crops in mathematical programming models to consider the 

implications of new technologies for crop mix and total income risk. 
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Table la. GLS Estimate of Yield Model by Weather Pattern, Maize (kg/ha) 

Drier Weather Inter. Weather Wetter Weather 

Coeff. t-value Coeff. t-value Coeff. t-value 

~ 1310.56 5.06 * 2161. 70 13.093* 2673.48 * 12.06 . 

DFH 1762.21 2.49* 1190.12 2.198* 1166.90 2.21* 
RID -149.38 -0.21 509.32 0.934 -198.82 -0.38 

RIDGE 319.56 0.43 973.77 1.481* -90.80 -0.15 

DL -30.00 -0.09 -753.62 -3.910* -268.76 -1.31* 

SD 40.48 0.15 287.65 1.120* -362.49 -1. 71* 

DTZPB 110.11 0.27 1048.32 2.747* -515.09 1.12 

DCMS 516.47 1.84* 479.66 1. 703* 246.18 0.79 

DFL 2399.40 2.88* 41. 72 0.061 402.03 0.64 
R2 .25 .52 .23 
NW 139 194 153 

Table lb. Cross-Sectional Variance, Maize 2 4 (kg/ha) X 10 

Drier Weather Inter. Weather Wetter Weather 

Coeff. t-value Coeff. t-value Coeff. t-value 
vw 

0 49.90 1.07 32.23 0.98 98.83 2.81* 

DFH 260.93 2.66* .58 0.00 55.98 0. 72 

RID -213.65 -2.21* 113.32 1.02 35.40 0.46 
RIDGE -39.83 -0.40 35.48 0.27 -34.37 -0.39 

DL -85.83 -1. 66 * 14.38 0.43 -35.37 -1.09 

SD · 28. 53 0.69 62.16 2.24* -44.88 -1.31* 
DTZPB 66.89 1.00 -37.04 -0.61 69.93 1.19 
DCMS 33.35 0.69 17.47 0.43 -21. 63 -0.49 

DFL 186.69 1. 35* -110.98 -0.80 -16.86 -0.17 
R2 .15 .11 .09 

N-OBS 139 194 153 

Definition of Regression Variables for Maize: 

~ - yield for the average farmer with the traditional technology. 

vw 
0 - variance of yield for the average farmer, traditional technology. 

DFH - a dummy variable value of one indicates high fertilizer use. 
RID - a dummy variable value of one indicates use of ridges. 
RIDGE - a dummy variable value of one indicates use of tied ridges. 
DL - a dummy variable value of one indicates maize planting after June 20. 
SD - a dummy variable value of one indicates sandy soil (as opposed to clayey 

soil). 
DTZPB - a dummy variable value of one indicates use of new variety TZPB. 
DCMS - a dummy variable value of one indicates use of new variety CMS8501. 
DFL - a dummy variable value of one indicates low fertilizer use. 

*significant at least at 90% level. 
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Table 2a. GLS Estimates of Yield Model by Weather Pattern, Groundnut 
(kg/ha) 

Drier Weather Inter. Weather Wetter Weather 

Coeff. t-value Coeff. t-value Coeff. t-value 
yJJ 

0 
1026.75 10.36* 2060.19 12.11* 2269.02 9.10* 

SD -168.00 -1.46* 332.95 1. 37* 1123.22 2.80* 

DE 70.46 0.60 -242.37 -0.68 -685.68 -2.43* 

DL -57.85 -0.40 -500.13 -2.02* -637.83 -1.65 * 

DKl • • 795.68 3.35 * 981.98 2.51* 

D28 • • 844.37 3.83* 789.73 2.28* 

R-SQUAR 0.04 0.30 0.59 
N-OBS 66 97 42 

Table 2b. Cross-Sectional Variance Effects, Groundnut (kg/ha) 2 X 104 

Drier Weather Inter. Weather Wetter Weather 

Coeff. t-value Coeff. t-value Coeff. t-value 
vw 29.65 5.78* 

0 
56.16 2.34* 70.12 3_95* 

SD -15.92 -2.50* 55.88 2.19* -36.75 -1.44 * 

DE -9.45 -1.14 -46.90 -1.37* -52.25 -2.47 * 

DL -10.06 -0.95 -60.40 -2.91* -3.84 -0.16 
DKl • • -23.79 -0.81 -32.25 -1. 23 

-1. 35 * * D28 • • -39.30 -53.94 -2.07 

R-SQUAR 0.13 0.19 0.18 
N-OBS 66 97 42 

Definition of Regression Variables for Groundnut: 

~ - yield for the average farmer with the traditional technology. 

vw 
0 - variance of yield for the average farmer, traditional technology. 

DE - a dummy variable value of one indicates groundnut planting before May 30. 
DL - a dummy variable value of one indicates groundnut planting after June 20. 
DKl - a dummy variable value of one indicates use of new variety GKl. 
D28 - a dummy variable value of one indicates use of new variety G28. 
SD - a dummy variable value of one indicates sandy soil (as opposed to clayey 

soil). 

*significant at least at 90% level 
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Table 3. Yield Mean and Variance by Weather Region, Maizea 

Mean Yield by Technology (kg/ha) 

Trad. 
Trad.+ Improved Prac. + low Fert. 
Trad.+ Improved Prac. + high Fert. + Ridge 
CMS+ Improved Prac. + high Fert. + Ridge 

Region 1 

2065.54 
2751.12 
4021.11 
4430.91 

4 Weather Variance of Yield by Technology (x 10) 

Trad. 
Trad.+ Improved Prac. + low Fert. 
Trad.+ Improved Prac. + high Fert. + Ridge 
CMS+ Improved Prac. + high Fert. + Ridge 

Region 1 

18.14 
6.39 

26.20 
38.04 

Cross-Sectional Variance by Technology (x 104 ) 
Region 1 

Trad. 
Trad.+ Improved Prac. + low Fert. 
Trad.+ Improved Prac. + high Fert. + Ridge 
CMS+ Improved Prac. + high Fert. + Ridge 

75.46 
75.80 

140.36 
149.10 

Total Variance of Yield by Technology (x 104) 
Region 1 

Trad. 
Trad.+ Improved Prac. + low Fert. 
Trad.+ Improved Prac. + high Fert. + Ridge 
CMS+ Improved Prac. + high Fert. + Ridge 

93.60 
82.19 

166.56 
187.14 

Coefficient of Variation of Yield by Technology 
Region 1 

Trad. 
Trad.+ Improved Prac. + low Fert. 
Trad.+ Improved Prac. + high Fert. + Ridge 
CMS+ Improved Prac. + high Fert. + Ridge 

a Normal planting date, sandy soil. 
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.47 

.32 

.32 

.31 

Region 2 

1728.54 
2903.42 
4224.55 
4721. 75 

Region 2 

26.84 
8.41 
8.33 
8.88 

Region 2 

82.85 
83.21 

190.85 
217.61 

Region 2 

109.69 
91.62 

199.18 
226.49 

Region 2 

.61 

.33 

.33 

.32 



Trad. 
G28b 

Trad. 
G28b 

Trad. 
G28b 

Trad. 
G28b 

Trad. 
G28b 

Table 4. Yield Mean and Variance by Weather Region, Groundnuta 

Mean Yield (kg/ha) 
Region 1 

2271.03 

3058.00 

Weather Variance in Yield ((kg/ha) 2 x 104) 

Region 2 

1419.27 

2084.76 

Region 1 Region 2 

105.09 

143.14 

61.62 

3.85 

Cross-Sectional Variance in Yield ((kg/ha) 4 x 104 ) 
Region 1 Region 2 

53.40 

8.60 

Total Variance in Yield ((kg/ha) 2 x 104 ) 

45.17 

3.85 

Region 1 Region 2 

158.49 

151. 74 

Coefficient of Variation in Yield 
Region 1 

.55 

.41 

106.79 

86.53 

Region 2 

.73 

.44 

anormal planting date, sandy soil. 

bassumes the yield in w = drier is 0.7 times yield in w = intermediate, 
because of missing data. 
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Table 5. Covariance ((kg/ha) 2 x 104) for Technology Combinations, 
Maize and Groundnut.a 

Trad. G with: 

Trad. M 
Trad. M + low Fert. 
Trad. M + high Fert. + Ridge 
CMS+ high Fert. + Ridge 

G28 with: 

Trad. M 
Trad.+ low Fert. 
Trad.+ high Fert. + Ridge 
CMS+ high Fert. + Ridge 

Weather Covariance 
Region 1 

41.21 
-68.78 

2.33 
-8.75 

46.19 
-77.06 

6.12 
-5.52 

Cross Sectional Covariance 

Trad. G with: 

Trad. M 
Trad. M + low Fert. 
Trad M + high Fert + Ridge 
CMS+ high Fert. + Ridge 

G28 with: 

Trad. M 
Trad. M + low Fert. 
Trad. M + high Fert. + Ridge 
CMS+ high Fert. + Ridge 

Trad. G with 

Trad. M 
Trad. M + low Fert. 
Trad. M + high Fert. + Ridge 
CMS+ high Fert. + Ridge 

. 
G 28 with: 

Trad. M 
Trad. M + low Fert. 
Trad. M + high Fert. + Ridge 
CMS+ high Fert + Ridge 

Total Covariance 

~ormal planting date, sandy soil. 
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Region 1 

63.41 
63.50 
86.48 
89.13 

25.45 
25.51 
34. 71 
40.08 

Region 1 

104.62 
-5.28 
88.81 
80.38 

71.64 
-13.56 
92.60 
83.61 

Region 2 

69.40 
-115.82 

3.29 
15.53 

76. 71 
-127.99 

7.16 
-12.86 

Region 2 

61.07 
61.19 
92.68 
98.96 

17.84 
17.87 
27.07 
28.91 

Region 2 

130.47 
-54.63 
95.97 
83.43 

94.55 
-66.80 
100.28 

86.10 
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Appendix Table A. Technology Combinations for Maize Experiments 

Name Variety High Low RIDGE TIED IMP. 

Fert. Fert. RIDGE PRAC. 

TRAD mixed 0 0 0 0 0 

M25 MEX .17 0 1 (manure) 1 0 1 

MR25 MEX .17 0 1 (crop residue) 1 0 1 

MlOO MEX .17 1 0 1 0 1 

MST* MEX .17 0 0 (very low) 1 0 1 

MFPR* MEX .17 0 0 1 (very simple) 0 0 

MFLOT MEX .17 1 0 0 0 1 

MRID mixed 1 0 1 0 1 

M2RM MEX .17 1 0 0 1 1 

M3RM MEX .17 1 0 0 1 1 

MAX17 MEX .17 1 0 1 0 1 

CMSSOl CMS8501 1 0 1 0 1 

TZPB TZPB 1 0 1 0 1 

** Data excluded from regression 

**Note that in regressions, improved practices are applied whenever fertilizer and 
for ridges are applied. That is, we are not able to separate the effects of 
improved practices from fertilizer use and/or ridges. 
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Appendix Table B. Weather Probabilities by Rainfall Pattern, Region, and 
Weather 

Weather Region 1 Weather Region 2 

Rainfall sect 1 sect 4 sect 5 prob. sect 2 sect 3 sect 9 prob. 

* freq. pattern freq. freq. prob. freq. freq. freq. prob. 

11 1 3 1 .0694 5 6 10 .2917 
lm 5 6 4 .2083 6 10 10 .3611 
lh 9 6 4 .2639 5 3 2 .1389 
mm 1 1 3 .0694 2 2 0 .0555 
ml 1 1 0 .0278 0 0 0 0 
mh 2 3 5 .1389 4 0 1 .0139 
hh 1 3 5 .1250 0 0 0 0 
hm 4 0 2 .0833 0 3 1 .0139 
hl 0 1 0 .0139 1 0 0 0 

*1 = low 
m = medium 
h = high 
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