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•' An Efficient and Theoretically Consistent 

Procedure for Generating Correlated, 

Non-Normal Random Variables 

in Simulation Models 

Abstract 

In recent years, simulation has become an important methodology for 

applied decision analysis under uncertainty. A typical simulation effort 

requires generating a set of possibly correlated and non-normal random 

variables, using information regarding their underlying joint probability 

density function contained in a presumably random sample. A few techniques 

have been suggested to accomplish this task, but most have not met ·the 

requirement of being correct and efficient from the statistical point of 

view. This study proposes a multivariate hyperbolic sine probability density 

function as a basis to develop an efficient and theoretically consistent 

approach for generating correlated, non-normal random variables. 

Keywords: Simulation, non-normal, density function, random sample, efficient, 

multivariate, hyperbolic sine. 
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•' An Efficient and Theoretically Consistent 

Procedure for Generating Correlated, 

Non-Normal Random Variables 

in Simulation Models 

Introduction 

In recent years, simulation has become an important methodology for 

applied decision analysis under uncertainty. Anderson provides a review of 

early simulation methods and applications in agricultural economics. He 

identifies the failure to take into account correlation among random 

variables as a major shortcoming of stochastic simulation models. A typical 

simulation effort requires generating a set of possibly correlated and non

normal random variables, using information regarding their underlying joint 

probability density function contained in a presumably random sample. 

Furthermore, realizations of these random variables are usually observed 

through time, so that the trend component of the sample has to be taken into 

account before attempting to make any inferences regarding the variances, 

covariances and higher order moments of such random variables. Until 

recently, few techniques had been suggested to accomplish this task (i.e. 

Clements, et al. ; Richardson and Condra; King) , but none have . met the 

requirement of being correct and efficient from the statistical point of view 

(Fackler and King). In addit_ion, research aimed at developing such 

techniques had not focused on the basic problem, which as Johnson recently 

pointed out is the restrictiveness of available multivariate probability 

density functions. Taylor (1990), proposes two procedures for empirically 

fitting multivariate nonnormal probability density functions. As he points 

out, both procedures are small sample alternatives to assuming a particular 



.. 

theoretical distribution for empirical analysis. This study proposes the 

multivariate hyperbolic sine probability density function as a basis to 

develop a simple, efficient and theoretically 

simulation analysis. 

consistent approach to 

The multivariate hyperbolic sine density function 

The inverse hyperbolic sine transformation has received increased 

attention within the field of econometric modeling. Ramirez (1990), formally 

defines a "hyperbolic sine" random variable y1 as follows: 

(1) 

where g1 is a normal random variable with mean µ1 and variance of. 

The marginal density function associated with the i th hyperbol~c sine 

(HS) random variable can be easily·derived using the transformation technique 

(see Mood et al.): 

Furthermore, a multivariate hyperbolic sine density function can 

also be derived by applying the transformation technique to a multivariate 

normal density function: 

(3) 

p 
fy-(2,r)-P/2 p: I -l/2exp ( - . 5 (w-µ) ·~-l(w-µ)} ,r(l+(91 (Y1 -c1))2)-112 

i-1 

where y is a P by 1 vector of hyperbolic sine random variables; w is a P by 

1 vector with i th element w1 - 01-1 sinh-1 (91(Y1-c1)) - ln(91(y1-c1)+ 

(1+(81(y1-c1)) 2) 1' 2)/91; µ is a P by 1 vector with i th element µ 1; and~ is a P 

by P symmetric positive semi-definite"·matrix of parameters. 

A hyperbolic sine random variable exhibits several important 

characteristics. First, normality is a special case of a HS random variable. 



As 91 goes to zero, the i th random variable is accounted for as a normal 

random variable in the multivariate density function equation (3). In the 

limit, as all 91 's go to zero, equation (3) is a multivariate normal density 

function. 

Second, a HS random variable can exhibit any positive or negative 

expected value and any variance independently of the skewness and kurtosis 

coefficients. This feature is not shared by the most commonly used random 

variables (i.e. normal, lognormal, exponential, beta, gamma, chi-square, F) . 

The HS random variable can also exhibit any positive or negative degree of 

skewness. If the skewness coefficient is zero, the kurtosis coefficient can 

take on any positive value (fat tails). If the skewness coefficient is not 

zero, there is a wide range of allowable combinations of skewness ·and 

kurtosis. 

Third, knowledge of the multivariate HS density function allows 

joint estimation of the parameters entering the individual marginal density 

functions as well as the covariances among the random variables under 

consideration. Since the functional forms of the multivariate density 

functions associated with the non-normal1 random variables commonly used in 

simulation analysis are not known, full information maximum likelihood 

estimation has not been possible in the past. 

The only restriction on the degree of correlation allowed by the HS 

multivariate density function, results from the requirement, that ~ be 

positive semi-definite. This characteristic is not a limitation of this 

specific multivariate density function; it merely reflects the theoretical 

1Except for the case of the lognormal multivariate density which is very 
restrictive in terms of the combination of moments and the degree of negative 
correlation allowed. 
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limit to the degree of positive or negative correlation between random 

variables with non-symmetric and possibly different marginal density 

functions. The multivariate HS density function allows for correlation 

coefficients ranging from -1 to 1 if such values are consistent with the 

nature of the stochastic processes underlying the random variables of 

interest. 

Fourth, the null hypothesis of no skewness for the i th random 

variable can be specified as µ 1 - O; and the null hypothesis of normality (no 

skewness and no kurtosis) can be specified as 81 - 0 (Ramirez, 1990). None 

of the other density functions commonly used in simulation analysis allow 

direct testing for normality and skewness. 

Finally, a hyperbolic sine random variable can be easily transformed 

into a normal random variable and vice versa. A normal random variable can 

be transformed into a HS random variable as follows: 

(4) y i - ""e'"'x~p'--__ -_,e:::..:Xce.P"'"--
281 

where Z1 is a normal random variable with mean µ 1 and variance of. A HS 

random variable can be transformed into a normal random variable'as follows: 

This property is of paramount importance within the framework of simulation 

' 
analysis because it allows correlated HS random variables to be generated by 

applying a simple transformation to correlated normal random variables. 

Another important advantage of this technique is that, if time 

series data is to be used, a trend and an intercept can be estimated jointly 

' 
with the rest of the parameters ente~ing the individual marginal density 
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functions as well as the covariances among the random variables under 

consideration by setting 

(6) i-1, ... ,P; 

where tis a trend vector. 

This is an appropriate specification since it can be shown that 

(Ramirez, 1990): 

(7) E [ Y1 ] - K1 + t bu 

-where K1 is a constant that depends on b01 , 81 , o'f, and µ 1 • The parameters 81 , 

uf, and µ1 control the variance and higher order moments of y1 (Ramirez, 

1990), that are assumed to remain constant over time, while b01 and t bu 

control the mean of y1 which is assumed to change over time according to the 

process K1 + t b11 • 

Therefore, a genuine full information effort can be attempted using 

the technique proposed in this study. The costumary approach of first 

"removing the trend", and tben attempting to make some inferences regarding 

the stochastic properties of the random variables under consideration based 

on ordinary least squares residuals, is not very attractive, theoretically. 

It is widely known that the stati~tical properties of the ordinary least 

squares residuals are quite different from those of the theoretical errors 

(deviations from the trend), even under the assumption of normality (Judge 

et. al.). If these residuals are hypothesized to be nonnormal, simple 

detrending using ordinary least squares is even more problematic. 

Using the multivariate HS density function for simulation 

Assume that there is a sample of T observations on P random 

variables available to the researcher. There is no a priori information 

regarding the properties of the stochastic process underlying this set of 
_; 
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random variables, so that they could be non-normally distributed and 

correlated with each other. Furthermore, the mean value of those random 

variables changes over time according to a process such as K1 + t b11 ; 

i - l, ... ,P . The researcher wants to simulate an S by P matrix of 

realizations of the random variables under consideration, using the informa

tion contained in the T by P sample matrix in an efficient and theoretically 

consistent fashion. The following procedure is suggested: 

Step 1. Maximization of the individual likelihood function for each 

of the random variables under consideration. The likelihood function for the 

i th HS random variable is proportional to 

2 T 2 T 2 -2 
(8) -T/2ln(a1)-.Sln( ,r (1+(81CY1t-c1»»-.s l: (W1t-1'1) 0'1 

t-1 t-1 

In some cases, the nature of the stochastic process underlying the 

i th random variable can be completely specified without the presence of µ1. 

This would imply, as previously mentioned, that the probability density 

function associated with the i th random variable exhibits no skewness 

(although if 81 r O it has "fat tails"). A null hypothesis of no skewness (µ1 
' ' 

- 0) , therefore, can be tested using either a likelihood ratio or an 

asymptotic t-test. 

At this point, a test of the null hypothesis of normality for each 

of the random variables under consideration is also recommended. A 

likelihood ratio test can be conducted by comparing twice the difference 

between the maximum value of ( 8) and~'the maximum value of the log- likelihood 

function for y1 - c1 under normality with a chi-square random variable with 

two degrees of freedom (Burbidge, 1986). Alternatively, performing t-tests 

for the null hypotheses 81 - 0 and µ1 - 0, using the estimates of the 
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asymptotic standard errors provided by most optimization packages can also be 

interpreted as an asymptotic test for normality. If the null hypothesis of 
I 

normality is not rejected, the i th random variable can be treated as a normal 

random variable throughout the rest of the simulation process. This allows 

use of all available sample information to jointly estimate all of the 

covariances and other parameters of interest. 

Step 2. After limited information estimates are available for all 

· the parameters entering the marginal density functions, there are two 

alternative theoretically consistent ways to continue. 

Step 2a. Using the limited information parameter estimates of 81, and 

c1 (i.e b01 + t b11) apply the following transformation to the data on each of 

the non-normal random variables under consideration 

(9) 

where Z1 will be a T by 1 vector consistent with a normal sampling process 

with mean µ1 and variance of. Notice that the raw data on the normal random 

variables will also have to be detrended before it can be used for computing 

estimates of the population covariances. 

Once the sample has been "transformed to normality" the customary 

consistent (maximum likelihood) estimator for the covariance parameter when 

sampling from normal random variables can be applied: 

(10) 
T 

l:1J l: ((Z1t·µ1)(ZJt-µJ)) / T 
t-1 

i ,' j. 

An estimate of the covariance matrix l: can now be constructed using 

the uf' s as the diagonal elements and the corresponding l:1J as the off. 

diagonal elements. Notice that l: is not the covariance matrix associated 

with the original set of random variables but the covariance matrix 
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associated with the underlying set of normal random variables Zi ( i - 1, 2, 

... , P). The matrix~. however, contains the parameters that control the 

variances and covariances associated with the original set of possibly non

normal random variables. 

Step 2b. Using the limited information estimates from step 1 as 

starting values, attempt to maximize the full log-likelihood function which 

is proportional to 

T K 
(11) -T/2Ln(abs(l~l))-.5Ln( 7f 7f (1+(9i(Yit-ci)) 2 ) 

where wit 

t-li-1 
T 

-.5 ~ ((wt-µ)'~-l(wt-µ)) 
t-1 

i - 1, 2, K for the K HS random 

variables and wit - Yit-ci, Pi - O; i - K+l, ... P for the P-K normal random 

variables. ~ is a P by P symmetric positive semi-definite matrix containing 

the parameters that control the variances and covariances of the random 

variables under consideration. 

Step 3. Given the estimates of the Si's, the c1 's and~ from either 

step 2a or 2b, simulating the random variables of interest is a straight

forward process. First, generate an S by P matrix of standard no'rmal random 

variables. Second, transform the matrix of standard normal random variables 

to a matrix of correlated normal random variables with a mean vectorµ• ·[µ 1 , 

and variance vector a 2 - [ af, . . • a~] ' using the Cholesky 

decomposition of the estimate of~ and the estimates of the µ1 's. Finally, 

transform the columns of the resulting matrix that correspond to the random 

variables that rejected the null hypothesis of normality using the 

appropriate 91 's and ci's and equation (4). 
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Furthermore, maximum likelihood estimates of the expected values, 

variances, third and fourth central moments, as well as the covariance 

coefficients associated with the original random variables can be easily 

computed given the maximum likelihood estimates of the parameters entering 

the joint hyperbolic sine probability density function (Ramirez, 1990). 

Application: Simulating U.S. average crop yields of corn, soybeans and wheat 

U.S. average crop yields for corn, soybeans and wheat are good 

candidates for illustrating the proposed technique. The yields are expected 

to be correlated, have an increasing expected value over time, and there is 

no reason to believe that the underlying stochastic processes conform to 

normality. 

Define y1 , y2 , and y3 to be U.S. average yields for corn, soybeans 

and wheat respectively, from the year 1950 to 1989. Using equation (8), and 

the maximum likelihood algorithm available within the matrix algebra 

programming language GAUSS 2.0, limited information parameter estimates for 

91 , µ 1 , ot, b01 , and b11 (i - 1, 2, 3) were obtained (see table 1). 

The maximum likelihood parameter estimate for 9 1 equals 0.2259, and 

the estimate of its asymptotic standard error is only 0.1020. This suggests 

that the probability density function associated with the first random 

variable exhibits a significant departure from normality. The maximum 

likelihood parameter estimate for µ 1 equals -4.1177, and the estimate of its 

asymptotic standard error is only 2.1297. This suggests that the probability 

density function associated with the first random variable also exhibits a 

significant degree of skewness to the left side. In order to further explore 

those issues, restricted models (first setting µ 1 - 0, and then setting 9 1 -

µ1 - 0) are estimated and sequential likelihood ratio tests, as proposed in 
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the previous section, are conducted (see table 2). Within this framework, 

the null hypothesis of no skewness is first rejected. Furthermore, the joint 

null hypothesis of no skewness and normality is also rejected. The 

probability density function associated with the first random variable is 

shown to depart from normality, with a very reasonable degree of statistical 

certainty. It is also shown that such density function exhibits a 

considerable degree of left skewness. 

On the other hand, notice that the maximum likelihood parameter 

estimates for 82 and µ 2 are both equal to zero. That is, equation (8) 

asymptotically approaches its maximum as 82 and µ2 go to zero (i.e equation 

(8) goes to a normal density function with mean b02 + t b12 and variance ui). 

The stochastic process underlying y2 is obviously normal. 

In addition, notice that even though the maximum likelihood 

parameter estimate for 83 equals 0. 4027, the estimate of its associated 

asymptotic standard error is relatively high. The estimate of the parameter 

µ 3 , controlling the degree of skewness associated with the third random 

variable, exhibits this same characteristic. Restricted models (first 

setting µ 3 - 0, and then setting 83 - µ 3 - 0) are therefore estimated. 

Sequential likelihood ratio tests, as proposed in the previous section, first 

fail to reject the null hypothesis of no skewness, an then that of ~ormality 

(see table 2). The probability density function associated with the third 

random variable can not be shown to depart from normality, with a reasonable 

degree of statistical certainty. 

The second step involves estimation of the parameters controlling 

the covariances between the three random variables under consideration. If ~: 

the procedure described in 2a is used, the resulting estimators are 

asymptotically less efficient than the full information maximum likelihood 
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estimators that can be obtained using the procedure outlined in 2b. For 

illustrative purposes, estimates resulting from application of both procedu

res are presented in table 3 and 4. 

Given either the limited or full information maximum likelihood 

estimates of all the parameters necessary to describe the underlying 

stochastic processes; average yields for corn, soybeans and wheat can be 

easily simulated following step 3. Furthermore, maximum likelihood estimates 

.of the expected values, variances, third and fourth central moments, as well 

as the covariance coefficients associated with the original random variables 

can be easily computed given the maximum likelihood estimates of the 

parameters entering the joint hyperbolic sine probability density function 

(Ramirez, 1990). 
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. ,, Table 1. Limited information maximum likelihood parameter estimates . 

Parameter 

Variable 8 " v2 bo b1 amax• 

Y1 0.225gb -4 .1177 15.4694 35.2728 2.3015 -100.2678 

(0.1020) (2.1297) (7.4609) (2.9333) (0.0723) 

Y2 0,0000 0.0000 3.5982 19.8477 0.2962 -46. 7491 

(0.4825) (17.9206) (0.7948) (17.9108) (0.0250) 

Y3 0,4027 0.2998 3.2542 15.8734 0.5591 -53.9469 

(0.3201) (0.8087) (1.6126) (0.8894) (0.0347) 

Aamax is the value of the likelihood function at the optimum. 
bl'be eatimatea of the aaymptotic atandard errors are given in parenthesis. 
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•' Table 2. Statistics for the sequential likelihood ratio tests. 

Variable 

-100.2678 

-53.9469 

cr1max 

-103.8444 

-54.0237 

7.1532* 

0.1536 

-109.2631 

-54.4381 

x2c2> 

17.9906** 

0.9824 

*Rejects the null hypothesis of no skewness at the 5% level of statistical confidence. 
**Rejects the null hypothesis of normality (no skewness cid no kurtosis) at the 5% level of 
statistical confidence. 
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,· Table 3. Full information maximum likelihood parameter estimates. 

· Par-t•r 

Variabla 6 ,,. v2 bo b1 

Y1 0.1072 -5.4398 30.5154 36.9473 2.2258 

(0.0526) (4.6112) (13.8374) (5.5351) (0.0885) 

Y2 3.6384 19.4909 0.3132 

(0.8128) (0.5850) (0.0239) 

Y3 5.2444 16.6885 0.5381 

(1.1609) (0.7299) (0.0303) 
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. . 

Table 4. Covariance matrices from limited information maximum likelihood (2a) 
and full information maximum likelihood (2b). 

15.4694 4.8570 2.5047 30.5154 7.6726 3.5659 

Y2 3.5983 .7819 3.6384 0.8006 

5.2358 5.2444 

18 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019

