
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


, 

r 

.. . . .. 

THE CALIBRATION OF EXPECTED SOYBEAN PRICE 
DISTRIBUTIONS: AN OPTION BASED APPROACH 

by 

Bruce J. ~errick, D. Lynn Forster and Scott H. Irwin· 

August 1990 No. 90-E-457 

UNIVERSITY OF CALIF'ORN!A­
OA\/1S 

NOV 2 9 1990 

Agricultural Economics Library 

'The authors are Assistant Professor of Ag-Finance, University of Illinois, Professor of 
Agricultural Economics, and Associate Professor of Agricultural Economics, The Ohio State 
University, respectively. 

Presented at the Annual Meeting of the American Agricultural Economics Association, 
August 4-8, 1990, University of British Columbia, Vancouver, B.C., Canada. 



,. 

THE CALIBRATION OF EXPECTED SOYBEAN PRICE DISTRIBUTIONS: 
AN OPTION BASED APPROACH 

ABSTRACT 

No-arbitrage option pricing models are used to recover complete probabilistic 

descriptions of expected soybean futures prices. The usefulness of the 

approach is examined via calibration tests. Results indicate that the 

estimated distributions are fairly reliable and that a three-parameter Burr 

distribution is useful in characterizing expected prices. 
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THE CALIBRATION OF EXPECTED SOYBEAN PRICE DISTRIBUTIONS: 
AN OPTION BASED APPROACH 

I 

Expectations of economic variables serve as primary inputs in business planning and 

decision making. One particularly important variable to agricultural producers, processors, and 

other market participants is the future price of a commodity. Because prices in the future are 

uncertain, decision makers would best be served by a characterization of the entire expected 

price distribution. Improvements in decision making methods and risk management techniques 

would be facilitated with a means of accurately describing ex ante price distributions rather than 

point forecasts. Whole probability distributions should be explored and estimated if risk averse 

users are to be well served (Anderson, Dillon and Hardaker). 

In deriving estimates of an ex ante price distribution, ex post data are often used. 

However, the use of ex post data may lead to an inaccurate assessment of distribution 

parameters if they are non-stationary over time. Unfortunately, direct elicitation of ex ante 

parameter expectations from market participants is difficult, if not impossible. 

This study investigates an approach to estimate a market-determined ex ante price 

distribution. The interaction of all participants in futures and options markets results in a 

collective expression of their beliefs about future prices. This seemingly innocuous observation 

provides an avenue toward the recovery of expected price distribution parameters without 

extensive surveys or direct elicitation. Rather than asking market participants about their 

expectations, these can be derived by observing market determined options prices. And, in 

deriving accurate assessments of probabilities of future prices, it is unlikely that one will find 

any better estimate than the market's (Gardner). 

Options' payoffs are contingent on the possible outcomes of the underlying security's 

pnce. In the case of commodity futures options, the underlying security is a futures contract for 

that commodity. The option price (premium) therefore implicitly contains the assessments by 

market participants of the distribution of the underlying futures contract prices at expiration. 

The technique used in this study is to "invert" the process of valuing options by using observed 

premia to recover the implied ex ante futures contract price distribution. This methodology 

requires ancillary assumptions regarding market efficiency and the process of valuation. A no-



arbitrage pricing technique is used that makes use of the simplifying assumptions of market 

efficiency and relies on relatively few restrictions regarding the process determining options 

prices. 

OPTION PRICING: THE BLACK-SCHOLES MODEL 

In the well known Black-Scholes (B-S) stock option pricing model and the Black futures 

option·pricing model, an option's price depends on the underlying asset's price, the strike price, 

time to expiration, an assumed constant risk-free rate of interest, and the instantaneous 

volatility, a, of the underlying asset's return stream. Of these variables, only the risk-free 

interest rate and the volatility are not easily observed. As a proxy for the risk-free rate, the 

yield on a treasury bill that expires near the option is often used. 
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One means of estimating volatility to search for the value of a that equates the price 

computed by the B-S model to the option price observed in the market. The resulting estimate 

of volatility is termed the implied volatility (IV). If the current futures price of the underlying 

contract is taken as the mean of the expected future distribution, an entire two parameter 

distribution of expected prices may be described. Many studies have related the implied 

volatility",to a broad range of economic variables and have studied the time series properties of 

these parameters ( e.g. Schmalensee and Trippi; Beckers; Chiras and Manaster; Park and Sears; 

Jordan et al.; Shastri and Tandon). Unfortunately, the B-S model relies on a set of restrictive 

assumptions about the underlying price process and the ability to continuously form risk-free 

hedges that may make it inappropriate to recover complete probabilistic assessments of a future 

price distribution. 

NO-ARBITRAGE OPTION PRICING MODEL 

A widely accepted basis for asset pricing is the no-arbitrage pricing theory first proposed 

by Ross. Absence of arbitrage is a necessary condition for market equilibrium, so the 

as~umption that assets trade at equilibrium assures that there is no arbitrage. Unlike the B-S 

model, the no-arbitrage pricing model makes no assumptions about the price dynamics of the 

underlying security. .,. .: 

Ross and others (Breeden and Litzenberger; Banz and Miller; Cox and Ross) show that 

no-arbitrage implies the existence of a "supporting pricing function" denoted as f(s). The pricing 
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function may be interpreted as a set of prices of pure contingent claims that pay $1 if and only 

if their particular state, s, occurs. A $1 risk free bond may be constructed by buying one pure 

contingent claim for each state. Hence, the price of a one dollar bond is equal to the sum of 

the state prices for all possible states. If the states are essentially continuous, f(s) corresponds 

to the state-price density rather than a discrete probability function, but the arguments are 

otherwise analogous in that the price of a bond that pays $1 at time T regardless of what state 

occurs has a current price equal to b(T) = Jr. f(s)ds where r. is the return in state s (in this 

case equal to a constant of $1) and f( s) is the expected state price density at T. Given linearity 

of the pricing function across assets, any asset with return r. at time T may be valued like the 

bond by simply taking the expectation of its returns with respect to f(s). The bond is the 

simplest because its returns are $1 in all states. Conversely, if the price of a risk-free bond were 

known and all possible states were identified, a consistent f(s) could be located. Since the focus 

is on the use of the model, the discussion is somewhat limited. An excellent treatment of the 

complete set of no-arbitrage restrictions is given in Ingersoll. 

Given the system of (1) asset prices, (2) states of the asset economy, and (3) distribution 

of state prices, any one of the three may be determined if the other two are known. The 

discussion above used payoffs and a supporting price distribution to determine no-arbitrage 

consistent prices, but observed asset prices and a payoff function could be used to solve for a set 

of state probabilities. Or if the state probabilities are parameterized as a continuous function, 

the parameters of that function can be estimated. Thus, a return stream r., and a distribution of 

time dependent state prices yield a current value consistent with no arbitrage. Any asset, V;, 

with return stream r; .• in the economy may therefore be priced via the relation: 

V; = J r; .• f ( s )ds. ( l) 

Call and put options written on futures have clear return functions, r;... For calls, the 

return at time Tis simply max{YT - x, O} where xis the exercise price and YT is the random 

futures price at time T. For puts, the function is max{x - YT, O}. The outcome of Y at T 

completely determines the relevant state for an option's payoff. By noting that for YT > x, the 

value of the put option (P) is zero, and that for YT < x, the value of the call option (C) is zero, 

current values of puts and calls can be expressed as their discounted expected payoff: 
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a, 

C; = b(T)f {YT - x;} f(YT)dYT, 
XI 

and Pi = b(T)f{xi - YT} f(YT)dYT. 
0 

(2) 

(3) 

A key distinction between this and the typical option pricing approach is that no 

assumptions have been made about the underlying price dynamics or changes in the economic 

environment prior to expiration. The only assumption made is that there are no arbitrage 

opportunities, thus guaranteeing the existence of f(YT) = dF(YT)/dYT. 

ESTIMATION OF EXPECTED DISTRIBUTION PARAMETERS 

One objective of this research is to estimate parameters that will allow F(YT), the 

implied pricing function or the ex ante price distribution, to be described. Distributions for F 

are chosen that are as unrestrictive as possible. One commonly used function is the lognormal 

distribution, but many studies find empirical distributions that are more leptokurtic and more or 

less skewed than that implied by a lognormal distribution of prices (Gordon; Hall, Brorsen, and 

Irwin). 

T?is study uses two distributions as the primary candidates for F(YT): (1) the two­

parameter lognormal; and (2) the three-parameter Burr-12 or Singh-Maddala (SM) distribution.1 

Both distribution allow for only positive values of YT, and the SM may take on a wide range of 

skewness and kurtosis (Tadikamalla). The SM cumulative distribution function (CDF) is: 

FsM(Yla,).,1) = 1 - ()./(Y' +).)t for a,)., 1, Y >0, and thus the density, or PDF is: (4) 

fsM(Yla,A,1) = a).a1Y1 · 1(Y' +).)"Ca+tl. (5) 

The cumulative distribution function for the lognormal distribution is: 

FLN(Ylµ,a) = N(ln(Y-µ)/a) 

where N( •) is the cumulative normal density function. The lognormal density is: 

f1.N(Y I µ,a) = (21r)"112( aY)"1exp[-(ln Y-µ )2 / (2a2)] 

(6) 

(7) 

A comparison of the two distributions is made to lift up possible improvements in 

moving to a three parameter distribution. There)s no guarantee that the parameters of F(YT) 

will conform to an ex post price distribution with either parameterization. The relative 

performance of the two candidate distributions is visited in a later section. 

1 These are among several distributions first investigated in Fackler ( 1986). 
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EVALUATION OF ESTIMATED PARAMETERS 

Calibration, or reliability, refers to the correspondence between a predicted and an 

actual event. In terms of distributions, calibration describes how close the predicted and 

resulting functions are. If there were a reason for the market's aggregation of individual 

expectations to yield estimated parameters that required an adjustment to correspond to the 

"true" parameters, then this adjustment is termed the calibration function. Specifically, if the 

true ex ante parameters of a distribution are </,(x) and the estimates are F(x), then K(F(x)) = 

¢,(x) implicitly defines a transformation K( •) of F to generate estimates K(F(x)) that are well 

calibrated or reliable. The function K( •) is called the calibration function. Equivalently, given a 

subjective or implied p.d.f., the process generating the subjective or implied p.d.f. is said to be 

well calibrated if the proportion of times the realized value lies below the rth fractile of the 

implied p.d.f. is ·equal to r (Curtis et al.). A calibration function accounts for more than a 

simple bias in that it corrects all moments of an estimated distribution. The result of calibration 

is to make the long run probabilities (density) of K(F(x)) = <f,(x) for any level of x. If F(x) is 

already well calibrated, then K( •) will simply be an identity mapping. If, for example, F(x) 

places too much weight in the lower tail, K( •) will be lower than a uniform density at low values 

of x and higher at high values reflecting the re-weighting of F that is necessary to force a 

correspondence to <f,(x). K( •) therefore re-weights F( •) and is itself a probability measure. The 

test for calibration then, is equivalent to testing the uniformity of K, (Fackler and King) for if 

F( •) is calibrated, K is simply a one-to-one mapping whose CDF is a straight line. 

For the purposes of this study, the calibration function is based on the beta distribution 

with density 

K(x) = xP-1(1-xt·1/8(p,q), (8) 

where B(p,q) is the beta function with parameters p and q. Fackler and King outlines a means 

of using maximum likelihood estimates of the parameters of the Beta distribution to explicitly 

model the calibration function. Note that the uniform is a special case of the Beta with p = q = 1 

and would imply perfect calibration. Other shapes of the fitted calibration curve indicate the 

"reweighting" of the estimated distributions needed to correspond to those subsequently 

observed. 
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DATA 

Soybean futures and options prices beginning on 10/31/84 (the inception of options 

trading) and ending on 9/30/88 were used. The data, provided by the Chicago Board of Trade, 

consist of all time stamped transactions at which a price changed and are thought to be highly 

accurate and free of errors. Some trades were excluded to alleviate induced biases. Trades that 

occurred more than one year prior to expiration were excluded. Also, deep in- or out-of-the­

money options were scrutinized carefully although there is no theoretical reason for exclusion. 

Based on Bookstaber's arguments, synchronous futures and option prices were used to 

avoid possible distortions found in closing prices. A point in time near the center of the trading 

day (11:00 a.m.) was chosen and one trade per strike price traded that day was chosen based on 

its proximity to 11:00. Then, the futures price nearest in time to each option was selected as the 

"matched" futures price. Option prices were required to have a matched futures observation 

within 90 seconds of the option price to be admissible. Days with less than three option trades 

in the time window were deleted. A description of the resulting sample is given in Table 1. 

To solve for the parameters of the expected price distributions, a risk-free rate also was 

needed. The rate used is based on the daily discount-basis yield of three month treasury bills as 

provided by the· Federal Reserve Bank of Cleveland. 

mm 
/3 

Methodology and Results 

The expression 

(9) 

was used to solved for a set of implied distribution parameters, /3, that most nearly results in the 

observed option prices for both the SM and LN distributions.2 Daily samples of "n" puts and 

"m" calls were used subject to the requirement that (m + n) be greater than the dimension of /3 

(greater than 3 for the SM and greater than 2 for the LN). A least squares penalty function 

was used. Implied ex ante price distributions were computed for a total of 1715 contract days 

( or 3430 distributions) over the 26 contracts withe an average of 8.76 different options per day. 

1 The Gauss programming language was used on a DTK 386 machine. The algorithms were 
based on code originally written by Paul Fackler. 
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Figure 1 panel A illustrates the implied ex ante price densities for the July 1988 soybean 

futures contract that was implicit in the options prices on the 64th day prior to expiration of the 

option. Panel B shows the corresponding CDFs for both distributions. 

Since the futures prices do not enter directly into the estimation of the distributions 

[equation (9)], comparisons of the first moment of the implied distributions with the current 

futures price gives an indication of the expected direction of futures price movements. For 

example, if the futures price is lower (higher) than the mean of the implicit ex ante price 

distribution, it indicates that the futures price is expected to increase (decrease). This type of 

information is riot available if the futures price is used in the estimation of the ex ante 

distribution. Table 1 also summarizes the mean difference between average futures price and 

E(YT) as reflected in the implied distributions. Note the increased differences during the near­

harvest contracts. For the positive (negative) differences, it may indicate that the options 

market expectation is for the price to rise (fall) as contract expiration approaches. 

The SM distribution yields negligible differences between futures prices and the first 

moments of the implied distributions, and these differences are smaller for the SM distribution 

than for the lognormal distribution. The true distribution of expected prices may be better 

reflected by the three parameter SM distribution than the more restrictive two parameter 

lognormal distribution. 

CALIBRATION 

For each of the non-overlapping 26 soybean contracts, ex ante distributions were 

examined at seven fixed intervals prior to expiration (7, 10, 20, 40, 60, 80, and 100 days), and 

comparisons were made with the contract prices at expiration. The fitted beta distribution 

[equation (8)] was examined as an indication of the shape of the calibration function. Figure 2 

panel A shows a representative beta calibration function. The ex ante distribution [F(YT)], and 

the calibrated distribution [K(F(YT)] are given in panel B. The slope of the calibration function 

in A corresponds to the reweighting necessary to arrive at the calibrated function in B. The ex 

ante distribution shown is for the May 1988 soybean contract at 40 days prior to expiration 

parameterized as an SM distribution. The beta calibration function (p = 1.41 and q = .93) is 

derived hy assessing the accuracy of 21 different contracts that traded 40 days out, and these 

experiences are used to compute a calibrated ex ante distribution. 
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Table 2 gives a summary of the estimated values of p and q for the seven fixed intervals 

used in calibration exercise. A "menu" for interpretation is included near the bottom of the 

table. For both the SM and lognormal distributions, there is some evidence that ex ante 

distributions are not well calibrated one week prior to contract expiration. The general shape of 

the beta function would be indicate a tendency for the futures prices to rise at expiration. More 

precisely, the option based estimates were drawn from a distribution that was over-dispersed 

and located to the left of the unknown distribution. 

Over the range of 10-40 days prior to expiration, there is little evidence of 

miscalibration. At 80-100 days prior to expiration, the lognormal distribution appears to be 

miscalibrated, but the SM distribution appears reasonably well calibrated. 

SUMMARY AND IMPLICATIONS 

No-arbitrage pricing models can be used to derive ex ante price distributions from 

options price data. The SM distribution appears to be particularly useful in recovering 

information about expected price distributions. 

Evidence from this study is that implied ex ante distributions are not accurate at times 

very near (seven days prior to) contract maturity. However, for the other time intervals 

investigated, a reasonably accurate ex ante distribution can be generated from options data with 

the SM distribution. The lognormal distribution, used in most options pricing studies, appears 

to be slightly less accurate than the SM distribution. 

These techniques can be extended to provide probabilistic assessments of many uncertain 

future variables. The extensions would be simplest in markets for which contingent claims 

markets (like options markets) are already well functioning. For example, assessments of future 

interest rate and exchange rate probability distributions could be recovered from options on 

interest rate instruments and currency exchange futures. Options on stock indexes may foretell 

probability distributions of a performance measure of an aggregate economy. Metals, lumber, 

enert:,,y, fiber, food, and agricultural commodities each have reasonably well behaved options 

markets from which probabilistic information may be recoverable. 

The analysis of producer and processor rriarketing strategies often relies on a subjective 

description of price risk. Techniques used in this study offer a promising alternative for 

estimating these ex ante distributions. 
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Table 1. 
Descriptive Statistics of Soybean Options Samples 

I 

Total % {--LOGNORMAL--} {----------SM---------} 
Contract Days Obs. Difll DifFO Calls Cents/bu. STD Cents/bu. STD 

Jan-85 28 192 11.6 14.2 50.5 0 .165 0.422 0.136 1.300 
Mar-85 57 400 16.4 18 .1 61.3 0.071 0.962 0.119 0.400 
May-85 72 482 16.6 21.2 64.7 -0.069 1.667 -0.075 1.233 
Jul-85 93 684 17.2 21.8 65.8 -0.300 0.996 -0 .144 0.961 
Aug-85 32 213 21.0 28.5 65.8 -1. 258 1.768 -0.738 1. 277 
Sep-85 22 169 22.4 33.2 71.0 1.439 14.705 -5.031- 6.347 
Nov-85 138 1310 16.9 18.2 63.3 -0.694 2.316 -0.364 2.155 
Jan-86 58 432 16.1 21.8 58.3 0.021 0.668 -0.017 1.371 
Mar-86 79 619 14.8 19.3 64.8 0.355 1.806 0.250 0.684 
May-86 86 569 18.8 24.5 65.9 -0.076 1.552 0.027 1.046 
Jul-86 120 870 18.8 25.3 71.3 0.223 4.267 -0.531 2.588 
Aug-86 11 157 23.9 35 .1 70.7 6.797 22.345 1.438 3.248 
Sep-86 20 184 23.8 39.5 66.1 -1.120 3.902 0.202 3.544 
Nov-86 74 1338 17. 2 19.7 60.4 6.116 1.065 2.041 0.745 
Jan-87 44 326 19.0 26.5 61.3 -0.100 0.787 -0.072 4.889 
Mar-87 32 310 19.9 28.9 62.0 -0.007 1.257 -2.585 0.909 
May-87 20 242 21. 9 33.4 67.4 -0.023 0.507 -0.093 0.589 
Jul-87 87 687 18.1 25.2 68.1 1.169 5.934 0.008 2.526 
Aug-87 49 420 18.6 33.0 67.2 2.833 11.145 1.662 9.328 
Sep-87 42 335 19.4 35.5 58.5 0.095 3.803 -0.363 2.570 
Nov-87 121 1365 14.1 13.7 64.0 0.338 2.314 0.267 1.959 
Jan-88 81 653 14.2 20.5 64.0 -0.069 1.023 -0.088 5.519 
Mar-88 106 953 14.5 16.8 67.2 0.545 6.517 0.362 0.798 
May-88 92 787 15.2 17.3 62.9 0.525 4.963 1.317 6.925 
Jul-88 128 1058 17.6 19 .1 68.5 2.082 8.789 0.792 9.275 
Aug-88 23 265 23.3 28.3 66.8 -0.911 2.359 0.088 1.548 

Days ..... Total number of trade days for which option premia were sufficient to recover parameters of 
implied distributions. 

Total Obs .... Total number of observations that remained in the contract after the deletion/estimation 
criteria. 

Difll.. ... Mean absolute difference in minutes of all strike prices used from 11:00. 

DilFO ..... Mean absolute difference in seconds between the option and futures prices. 

% Calls ..... Percent of the sample represented by calls. 

Cents/bu ..... Mean of futures price minus first moment of implied distribution. 

STD ..... Standarq deviation of daily Cents/bu. by contract. 
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Table 2. 

Calibration Statistics for Implied Soybean Distributions 

Parameters of Beta 
Days to Number of Calibration Function LR prob> 
Maturity Observations p q Statistic LR 

Lognormal Distribution: 

5 22 5.274 3.660 19.978 0.000 
10 24 1.455 1.117 2.067 0.356 
20 25 1.331 1.228 1.070 0.586 
40. 21 1.184 0.724 4.480 0 .106 
60 20 1.288 0.791 3.854 0 .146 
80 19 0.898 0.538 7.544 0.023 

100 19 0.894 0.506 9.444 0.009 

SM Distribution: 

5 22 4.678 2.901 17. 713 0.000 
10 24 1.428 1.091 1.982 0.371 
20 25 1.359 1. 261 1.234 0.540 
40 21 1. 410 0.930 2.975 0.226 
60 21 1.463 1.031 2.410 0.300 
80 19 1.259 0.845 2.438 0.295 

100 19 1.442 0.895 3.451 0 .178 

Note: A "Menu" to interpret shape of Beta calibration function is: 

uniform distribution 

"S"-shaped; (similar to normal CDF) 

p=q=l 

p=q>l 

p=q<l 

p<l, q>l 

p>l,q<l 

reverse "S"-shaped; ( mirror image of "S" across 45° line) 

"C"-shaped; (humped over uniform CDF) 

"U"-shaped; ( dropped under uniform CDF) 

12 
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