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ENDOGENOUS REGIONAL AGRICULTURAL PRODUCTION TECHNOLOGIES 

ABSI'RACT 

This research ·examines and compares estimates of technical bias for each of ten multistate farm 
production regions comprising the contiguous 48 states of the United States. The applied methodology allows 
for price-dependent aggregate technical choice and stochastic variation of the production technology in computing 
measures of technical bias. 



ENDOGENOUS REGIONAL AGRICUL1VRAL PRODUCTION TECHNOLOGIES 

1. iNTRODUCTION ' 

Recent contributions to production economics which focus on specifying models that capture information 

about the underlying structure of technology have garnished considerable exposure in the literature. Dual and 

primal specifications of production systems, such as those by McKay et al. (1983), Just et al. (1983), and Livernois · 

and Ryan (1989) are the most common. Perhaps the two most striking methodological departures from 

conventional primal and dual modeling constructs have been the application of nonparametric analysis and the 

development of frontier technology models. While the foundation of nonparametric production analysis was 

developed nearly 20 years ago by Hanoch and Rothschild (19n) and Afriat (1972), work in the early 1980s by 

Diewert and Parkan (1983) and Varian (1984) induced a resurgence of interest and several empirical applications .. 

Nonparametric methodologies have provided insight into the consistency of observed data vectors with 

conventional maintained hypotheses invoked in classical empirical analysis. While this information has great 

utility in developing models of technology, its usefulness is restricted by the· limited inferencing mechanism 

available for investigating the significance of departures from maintained hypotheses (Varian, 1985). 

Frontier technology models, on the other hand, claim an· origin in f'.arr
0
ell!s (195-Z,.Work and are designed 

to assess technical, allocative, and scale inefficiencies. In contrast to nonparametric methods, some frontier 

technology models do provide formal inferencing mechanisms to investigate apparent production inefficiencies, 

e.g., Meeusen and van den Broeclc (1977) and Kumbhakar (1988). However, while the frontier approach to 

model development has great utility in investigating micro-level data, its interpretation in an aggregate model may 

beg the question of technical inefficiency. For aggregate models in which microproduction processes are 

aggregated across segmented intraregional market structures, it is conceivable that behavior which appears to 

be inefficient may actually be associated with market dependent, systematic movement of the aggregate unit 

isoquant over some range of the technology map. We are unable to isolate perturbations in market structure 

from endogenous choice of microproduction processes and techniques. This fact necessitates the development 

of a model which provides the flexibility to adapt to aggregate technologies and yet provides information on the 

nature of technical choice under both systematic and stochastic variation in the frontier. 

Mundlak (1988) has presented a theoretical framework for price-dependent aggregate technical choice 

from available microproduction processes. Fawson et al. (1990) have provided a methodology to empirically 
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implement the Mundlak framework. Utilizing. a generalized Fechner-Thurstone (GFf) functional form and 

assuming that producers can compute optimal solutions to known nonstochastic production technologies ( or hire 

people who can), their parametric specification permits optimization errors associated with changing technology 

to occur because of (a) stochastic variation of the production technology map, (b) alterations of the 

microproduction functions, and/or (c) choice among available microproduction techniques. 

Analyses of aggregate production most often treat the technology as known and, except for possibly being 

time dependent, exogenous. Random error terms are generally tacked on to estimation equations and regarded 

as errors in optimization of a known technology rather than knowledge errors about the technology. In 

agriculture, the production period is particularly long and output is subject to the vagaries of highly uncertain 

and unpredictable weather. Thus, a major source of production variation is weather-induced changes in the. 

technology map itself. In addition, microproduction processes and techniques change rapidly, and the aggregate 

technology is dependent upon firm-level choices from among the available set of microproduction processes . 

. Changes in economic variables may provide incentive for producers to alter their choice of specific produc~ion 

techniques and microproduction processes. 

The objective of this study is to examine endogenous technical choice in each of ten multistate farm 

production regions comprising the contiguous 48 states of the United States. The GFT production system will 

be employed to examine annual time series data for the period 1950-1982. The econometric model is presented 

in the following section. Results of the empirical application are contained in Section 3. The results are 

summarized in Section 4. 

2 THE ECO!fOMETRIC MODEL 

The aggregate production system for each geographic production region is modeled in a manner 

consistent with profit-manmizing price-taking behavior subject to a budget constraint. Under conditions of a 

single aggregate output index, budget-constrained output maximization yields the same optimal solution as 

budget-constrained profit maximization. Let P be a vector of factor prices and let C denote expenditure on 

factors in a specified production period which is effectively constrained at c•. It is assumed that producers select 

a definite equilibrium n-tuple production bundle X = (x1, •• ., xJ such that the choice results in maximization of 

a GFT production function for aggregate output: 
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9fy). 
(1) F(X;9) = aIIiX; 

subject to 

(2) C = LJ);X;, 

where the n-tuple 9 of positive-valued functions, 9fy) i = 1, ... , n, is the parameter vector of F(X;9). For 

constant -y, the GFf production function is homogeneous of degree ~9;, strongly separable and homothetic in 

X, and exhibits constant elasticity of substitution among elements of X equal to unity everywhere. 

In terms of economic behavior, elements of the argument vector X are under the producer's control 

whereas elements of the parameter vector 9(-y) are not. The components of -y are referred to as technology -
changers. These are classified as: (a) technology changers that are systematic and observable, and 

(b) technology changers that are stochastic and nonobservable. It is assumed that the marginal products derived 

from F(X;9) can be expressed as a product of a systematic function and a stochastic element. 

We have chosen to assess two subclasses of the whole GFf-class: the constant elasticity of marginal rate 

of technical substitution form (GFI'-CEMRTS), and the constant ratio of elasticity of substi-tution form 

(GFI'-CRES). Neither functional form subclass (hereafter referred to as a class) imposes restrictions on 

comparative statics at a point. Thus, both are locally flexible representations of the aggregate production 

function in the technology changer variables. Because no likelihood support was found by Fawson et al. (1990) 

for alternative restricted functional forms nested within each of these classes, only the results of these two general 

classes will be examined in this paper. 

GFT-CEMRTS Fonn 

The GFI'-CEMRTS form specifies that the 9(-y) parameters of (1) are characterized as follows: 

(3) 

(4) 
. • t1i 

ei = 8ie , i = 1, .• ., n, 

where u = { u., .. ., u,.} is a latent random vector with a mean of zero and a finite positive definite variance matrix, 

00 • The vector u characterizes a vector of stochastic technology changers. In addition, the serial covariance 

matrices O., s = 1, 2, ... , n, may represent persistence of effects of stochastic changes in technology. The vector 
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Z characterizes systematic technology changers which are not parameters of the expenditure constraint and may 

include demographic information, weather variables, lagged values of C and P, and other exogenous variables. 

Taking logarithms of the ratio of 91 to et yields the n-1 estimation equations for the GFr-CEMRTS 

model: 

(5) 

i = 1, ... ,n,i :/- le, 

where ~ 0 = w., - W1m, ~J = wij - wki, ~q = W;q - Wtq, and E~ = Ui - Uir.· 

GFT-CRES Fonn 

The 9(-y) parameters of (1) for the GFr-CRES form are characterized as follows: 

(6) 
b .. b. 

e; (C,P ,Z) = PA[x;(c,P,Z)] 'n.n ,q , ij = 1, .. ., n; q = 1, ... , m, 

(7) 

In equilibrium, X; = xj(C, P, Z), j = 1, •• ., n, which are unknown functions. Since ej is functionally dependent 

only on (C, P, Z) when the first-order conditions are satisfied,~ logarithms of the ratio of 91 to et yields 

the n-1 estimation equations for the GFT-cRES model: 

(8) 

i = 1, ... , n, ijk, 

Estimation 

The stochastic variables, 11i, are explicitly included in the specification of the parameter vector and are 

not simply tacked on to the estimation equations. These error terms are assumed to be due to stochastic changes 

in the aggregate technology not collectively anticipated by decision makers rather than to errors in optimizing 

behavior. Nevertheless, the estimated equations obviously are not perfect fits of the actual optimizing behavior 

due to the presence of unobserved causal variables which change over the data period and to measurement errors 

on observed variables. 

The random element E~ in each estimation equation (5) and (8) is assumed to follow a second-order 

autoregressive schema: 
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(9) It It It • k ' € i,1+2 - <Ii~,€ ;,1+1 + <Iiu! i,1 = € u+2> Vi, , 

Following Basmann (1985), the autocovariance matrices are determined by the variance matrix and the 

two AR(2) autocorrelation coefficients, <Ii1,1 and ~u· Minimal sufficient statistics for each empirical model are 

estimated using the general linear model (GLM). The dependent variable vector and the matrix of independent 

variables are transformed according to a maintained AR(2) hypothesis on <Ii1,1 and <Iiu values over the stability 

domain implied by the Routhian conditions (Kenlcle, 1974). The GlS estimators are then obtained by applying 

the method of least squares to the transformed model 

3. EMPIRICAL APPUCA.TION 

The data used in this analysis were constructed by Fawson and Gottret (1988) and represent a 

comprehensive divisia index characterization of both prices and quantities of production aggregates for each of 

ten USDA specified farm production regions from 1950 to 1982. Variables include prices (P) and quantities 

(X) of six variable factors: hired labor, machinery, energy, fertilizer and pesticides (chemicals), marketing and 

processing services for feed, seed, and livestock (FSL), and other materials. They also include total expenditure 

on these variable factors (C) and seven additional systematic technology changers (Z): year, real estate quantity, 

family labor quantity, sample standard deviation of monthly average temperatures over the year, sample mean 

of monthly average temperatures for the year, sample standard deviation of monthly precipitation over the year, 

and sample mean of monthly precipitation for the year. Using these data, a five-equation system, (5) or (8), is 

estimated for each GFr-class model with materials designated as the numeraire factor. With a single output 

index and a binding budget constraint, the optimal solution is not dependent on output price. Thus, output price 

does not appear as one of the exogenous price variables in the estimation equations. 

The first stage of the empirical application utilized a grid search method to assess likelihood support for 

alternative serial correlation hypotheses on the stochastic technology changers. Hicksian technical bias is then 

investigated, conditional on maintained AR(2) specifications which generated the highest likelihood support, 

by computing primal cost-share-weighted summary measures of the sensitivity of marginal rates of technical 

substitution to changes in the technology changer variables. 



6 

Specification of the Autoregressive Process 

The likelihood support for alternative autocorrelation parameters cl>i.1 and cl>u was examined by means 

of a grid search of 138 two•tuple sets of autocorrelation parameters specified to provide extensive coverage within 

the stability triangle of a second·order autoregressive schema. The likelihood support for a given AR(2) 

hypothesis within a model class was assessed by examining the ratio of the likelihood function for a specific 

AR(2) two.tuple hypothesis set relative to the maximum value of the likelihood function over all 138 AR(2) 

hypothesis sets in the stability region. Three·dimensional plots of likelihood support were prepared for each 

model class in each production region. They revealed that several of the regional processes do not exhibit singly 

peaked likelihood grids. Almost half of the production regions for each class have saddle points in the cl>1 plane. 

In addition, the plots for several production regions are highly skewed and not all in the same direction. 

Although both the autocorrelation parameters with maximum likelihood support and the shape of the likelihood 

support surface varied greatly across regions, examination of the three dimensional plots reveal little likelihood 

support for the hypothesis of zero serial correlation. In fact, in no region was the likelihood support for_ the 

hypothesis of zero serial correlation within 40 percent of the maximum value of the likelihood function. 

Calculation of Technical Bias 

Following the convention of Lau (1978) and others, we defme direct Hicks·neutral technical change as 

expansion·path·preserving technical change. A direct Hicksian measure of technical bias then would assess the 

sensitivity of marginal rates of technical substitution at a given point in input space to changes in technology 

changing instruments. Because our GFf conceptualization treats the aggregate production technology map as 

endogenous in every period, each variable regarded as exogenous for a particular GFf!"class becomes a potential 

source of technical bias. Estimated parameters in (5) and (8) are the elasticities of the marginal rates of 

technical substitution with respect to exogenous variables for the respective GFf.class models. Thus, they are 

straightforward primal·based measures of direct Hicksian bias. Following Antle (1988, p. 357) and Antle and 

Capalbo (1988, pp. JS.39), prim.al cost·share·weighted summary measures of Hicksian bias for input i with respect 

to technology changer h were computed at given input levels as: 

(10) 

where Si is the ith input's cost share, fi is 8lnF/81DX; = ei> and 'Y h is the hth exogenous variable. For the 

GFr·CEMRTS class, 
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(11) 

where k is the numeraire factor. For the GFf-CRES class, 

(12) Bi.h(X, -yJ = ~Sj(b~b - b!J-

Equation (10) is qualitatively identical to Antic's {1988) and Antle and Capalbo's {1988) primal summary 

measures of Hicksian bias. For example, when technology changer -Yb is the trend variable, technical change 

is Hicks neutral, using, or saving with respect to time as Bi.h = 0, Bi.h > 0, or Bi,h < 0, respectively. In general, 

the i'b factor's relative marginal product is on average directly (inversely) related to variation in technology 

changer -yb as Bi,h > 0 (Bi.h < 0). Summary measures of bias were computed at the data means for the GFf­

CEMRTS and GFf-CRES model class and each production region. 

Evidence for the classical interpretation of factor using and saving technical changes (i.e., with respect 

to time) suggests that the factors machinery and ~emicals have been predominantly and significantly (.05 level) 

factor using across regions and model classes while feed-seed-livestock marketing and processing services (FSL) 

has been predominantly and significantly factor-saving across regions and model classes. The preponderan~ of 

significant evidence on fixed factors and weather variables as technology changer variables, which are common 

to both models, suggest the following: 

a. Inaeases in the real estate factor have had a positive impact o~ the relative marginal product 

of energy and a negative impact on the relative marginal product of hired labor, chemicals, and 

FSL. 

b. Inaeases in the family labor factor have had a positive impact on the relative marginal product 

of hired labor and chemicals and a negative impact on the relative marginal product of energy. 

c. lnaeases in the standard deviation of temperature have had a positive impact on the relative 

marginal product of machinery and a negative impact on the relative marginal product of energy 

and chemicals. 

d. Inaeases in the mean temperature have had a negative impact on the relative marginal product 

of energy. 

e. Inaeases in the mean precipitation have had a negative impact on the relative marginal product 

of energy and chemicals. 
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Overall, energy and chemicals appear to have been the most consistently affected by changes in technology 

changer variables common to both models. 

For factor price and total cost technology changer variables, which are endemic only to the 

GFr-CEMRTS class mode~ technical change bias measures suggest that the following variables exluoited a 

significant and generally consistent impact on relative marginal factor productivity in more than half of the 

regions. Hired labor was factor using and chemicals were factor saving in the price of hired labor. Machinery 

and hired labor were factor using and FSL and materials were factor saving in the price of machinery. 

Machinery was factor using in the price of energy. Chemicals, machinery, and energy were factor using and FSL 

was factor saving in the price of chemicals. FSL was factor using and chemicals was factor saving in the price 

of feed-seed-livestock marketing and processing services. Chemicals were factor using and materials were factor 

saving in the total cost of variable factors. 

For the GFr-CRES class mode~ economic variables influence the technology map through the functions 

x;(c, P, Z) which are unknown. As a result, the influence of economic variables on the production techno~ogy 

map is observed only through factor utilization, and we are unable to distinguish between price and budget 

effects. Therefore_ the Hicksian summary bias measures for these factor utilization variables lack a clear 

intuitive meaning. 

For variable relationships other than those identified above, a great deal of variability across regions was 

evident among significant summary bias measures. For all possible pairs of regions with a significant summary 

bias measure for the same variable relationships, nearly a third had different signs. The large number of 

differences suggests that the aggregate agricultural technology differs in important ways among regions of the 

United States. Interregional differences in signs of the significant summary measures were substantially greater 

for the weather variables than for the temporal and fixed factor variables. 

A great deal of variability among significant summary bias measures was also evident among model 

classes. A little over a third differed in sign between the GFr-CEMRTS and GFr-CRES models. Like the 

regions, differences among models were considerably greater for weather variables than for temporal and fixed 

factor variables. 
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The likelihood support plots, parameter estimates for each regional model evaluated at its respective 

maximum AR(2) hypothesis, detailed test statistics, and measures of Hicksian bias underlying the reported results 

are available upon request from the authors. 

4. CONCLUSIONS 

This research has examined endogenous technical choice as it relates to specification of aggregate 

regional agricultural production functions. The generalized Fechner-Thurstone (GFT) functional specification 

was employed to relax strict neoclassical efficiency constraints and to provide a means for modeling systematic 

and stochastic technical change without exclusive reliance on time trend variables as the only basis for shifts in 

the aggregate production technology map. 

Two GFI'-class models were specified under a second-order autoregressive schema: the constant 

elasticity of marginal rate of technical substitution model (GFI'-CEMRTS) and the constant ratio of elasticity 

of substitution model (GFI'-CRES). Summary measures of Hicksian bias suggested that changes in time and 

several other variables exlnoit a significant systematic effect on the shape of regional agricultural production 

technology maps. This lends strong support to the hypothesis that aggregate models which ignore the systematic 

effect of nontemporal technology changer variables on technical choice have omitted an important tool for 

investigating the nature of aggregate production technologies. 

Considerable evidence of substantial interregional differences in the aggregate agricultural technology 

maps was also observed. The autocorrelation parameters with maximum likelihood support and the shape of 

the likelihood surface varied greatly aaoss regions. So did the signs of significant .summary Hicksian bias 

measures. These findings lend further support to the notion that the aggregate agricultural technology differs 

in important ways among regions of the United States. Consequently, changes in the economic environment 

and/or government policies can be expected to impact the regions in fundamentally different ways. 
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