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A SIMPLE DUALITY MODEL OF PRODUCTION 

INCORPORATING RISK AVERSION AND PRICE UNCERTAINTY 

ABSTRACT 

Proceeding within the framework of a linear mean-variance utility 

function, this paper develops a duality model of production that 

incorporates risk aversion and price uncertainty. In contrast to 

risk models based on an expected utility function, this model 

provides a practical alternative to standard duality models for 

econometric research. 



A SIMPLE DUALITY MODEL OF PRODUCTION 

INCORPORATING RISK AVERSION AND PRICE UNCERTAINTY 

Empirical applications of the dual approach to modelling 

producer behavior in agriculture have invariably assumed that 

producers are risk neutral. This reflects the widely held opinion, 

based on the results of studies conducted within the framework of 

expected utility maximization (e.g. Pope, Epstein), that duality 

models cannot readily incorporate risk aversion and uncertainty. 

Indeed this presumed inability to model risk has been a major 

criticism of the dual approach. 

In contrast the present paper demonstrates that duality 

theory can easily accomodate price uncertainty within the context 

of a linear mean-variance model of choice under risk. The 

resulting dual model retains the essential advantages of price 

certainty models in terms of econometric estimation, hypothesis 

testing and policy inference (Fuss and McFadden), and the standard 

price certainty model is nested within this model. Thus the model 

developed here provides a practical alternative to standard price 

certainty models whenever risk aversion and price uncertainty are 

important determinants of behavior. 

Although the assumption of linearity is highly restrictive, 

linear mean-variance models have had extensive application in 

agricultural economics. Moreover the analysis can be extended to 

more general nonlinear mean-variance models of choice in a manner 

that remains tractable for empirical reseaich, and it has recently 

been demonstrated that nonlinear mean-variance models often 

provide a close approximation to empirical expected utility models 

(Sinn, Meyer). 
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The Model 

The mean-variance approach has usually been applied in terms 

of a utility function that is linear in expected profits En and 

variance of profits Vn: 

(1) U = En - (a/2) Vn 

where a>O assuming risk aversion (e.g. Chavas and Pope). Profits 

are defined as 

(2) n = PY - wx 

where y,x denote the vectors of output and input levels and p,w 

denote the corresponding price vectors. Assuming that outputs y, 

inputs x and input prices ware nonstochastic, the expected value 

and variance of profits conditional on (y,x) are 

(3) En(y,x) = PY - wx 

Vn(y,x) T = y Vp y 

where p denotes the vector of expected output prices p and Vp 

denotes the covariance matrix of prices p. Fcir example in the case 

2 of a single output Vn = y Vp, and in the case of.two outputs Vn = 
~2 ~ 22 2 . ~2 ~ 2 Cy) var(p) + (y) ~ar(p) + 2y y cov(p ,P ). 

Substituting (3) into (1), the producer·s choice ,problem is 

expressed as 

* -(4) U (p,w,Vp) = max U(x,y) - PY - wx - .(a/2). YT Vp y .... 

x,y&T 
* -where U (p,w,Vp) denotes the producer·s dual indirect utility 

function, i.e. the relation between maximum feasible utility u* 

and exogenous variables p,w,Vp. Only the M(M+1)/2 distinct 

elements of the symmetric matrix Vp are included as arguments of 

the dual. The properties of this utility function are summarized 

as follows. 

Proposition 1. Assume existence of the utility function (4). 
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Then 

a) u* is increasing in p, decreasing in w, decreasing in Vp; 

b) u* is linear homogeneous in (p,w,Vp), 

* - * -i.e. U (Ap,AW,AVp) = AU (p,w,Vp) for A>O; 

c) u* is convex in (p,w,Vp), i.e. 

b * -a. a. a. * -b b b +(1-A)Vp) ~ AU (p ,w ,Vp) + (1-A)U (p ,w ,Vp) for O~A~l; and 

d) (assuming u*c.) is differentiable) 

(5) 

(6) 

(7) 

* - -j oU (p,w,Vp)/Op 

* - i oU Cp,w,Vp)/ow = -x 

ou*(p,w,Vp)/itVp .. = -(a/2)(yj*>2 
.J .J 

* - i* j* OU (p,w,Vp)/OVp .. = -a y y 
l..] 

j=l,.,M 

i=l,.,N 

j=l,.,M 

i~j;j=l,.,M 

where x*,y* denotes the solution to (4) conditional on (p,w,Vp), 

i j 
and Vp .. denotes cov(p ,P ). 

l..] 

Proof. 1-a is obvious. Since U(x,y) is linear in (p,w,Vp) by 

(4), x* and y* are homogeneous of degree zero in (p,w,Vp), and in 

turn 1-b is established. Suppose 
a. a. 

(x ,Y ) solves (4) given 

-a. a. a. b b -b b b 
(p ,w ,Vp ), (x ,y) solves (4) given (p ,w ,Vp ), and 

C C 
(x ,Y ) 

-c C C -a. a. a. -b b b 
solves (4) given (p ,w ,Vp) = A(p ,w ,Vp )+(1-A)(p ,w ,Vp ). Then 

*-c C C -cc cc cT CC U (p ,w ,Vp ) = p y - w x ·- (a/2) y Vp · y 

= A [pa.ye - wa.xc - (a/2) ycT Vpa. ye] 

-b C b C + (1-A) [p y - .. w x 
cT b c 

(a/2) y. Vp. y.J 

* -a. a. a. * -b b b ~AU (p ,w ,Vp) + (1-A) U (p ,w ,Vp) 

C C -a. 0. a. 
since (x ,Y) does not generally solve (4) given (p ,w ,Vp) or 

( -b b V b * -a. a. a.) > -a. c a. c YcT Vpa. p ,w, p ), e.g. U (p ,w ,Vp _ p y - w x - (a/2) 
C y • 

This establishes 1-c. 1-d is obtained by applying the envelope 

theorem to problem (4) (e.g. Takayama, pp. 137-9). (7) follows 

from the symmetry restriction on Vp, i.e. Vp .. =Vp .. (i,j=l,.,M). 
l.J .J 1 

Q.E.D. 
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Proposition 1-c,d implies the following comparative static 

* properties for the output supply and factor demand relations y = 

* y(p,w,Vp), x = x(p,w,Vp): the matrix of second derivatives 

(8) .....2 * -V U ( p,w,Vp) 

r 8y/c1p 

I-ax/Op 

L-OQ/bp 

by I iJw 8y I bVp l 
-iJx/Ow -Ox/OVpl 

-DQ/ Ow -oQ/ oVpj 
T 

Q = (ct/2)yy 

is symmetric positive semidefinite. These restrictions on (8) 

imply, as in the standard theory of the competitive risk-neutral 

firm, 

(9) ayj (p,w,Vp) /<lpj ~ 0 j=l,.,M 

i - i ox (p,w,Vp) /Dw !: 0 i=l,. ,N 

(10) oyjCp,w,Vp)/bpi = 8yi (p ,w, Vp) /iJpj i,j=l,. ,M 

i - j ox (p,w,Vp)/Ow = 
j - i Ox (p,w,Vp)/bw i,j=l,.,N 

byj(p,w,Vp)/Ow i i - j i=1,.,N;j=1,.,M. = -ax (p,w,Vp)/Dp 

Thus output supplies are increasing in own expected prices, factor 

demands are decreasing in awn prices, and standard reciprocity 

relations are satisfied. 

In addition the above 'restrictions on (8) imply that 

(ct/2)8(yyT)/bVp is symmetric negative semidefinite and in turn 

ayjayj(p,w,Vp)/<1Vp .. !: 0 (j=l,.,M).· · Thus in· the case :.of risk 
JJ 

aversion (a>O), 

(11) j -Dy ( p, w, Vp) / <1Vp.. !: 0 j=l,.,M. 
JJ 

In other words, an increase in the variance of output price pj 

leads (ceterus paribus) to a reduction in supply of output j by 

the risk averse firm. In the case of a single output, risk 

aversion and uncertainty about the output price leads to a 

reduction in output supply relative to the case of risk neutrality 
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or price certainty. 

We can also deduce from Proposition 1 that the impacts of 

output price uncertainty on factor demands are ambiguous.~ Since 

all terms in the submatrix ox(p,w,Vp)/oVp are off the diagonal of 

matrix (8), all of these terms are unsigned by convexity of the 

dual. 

The impacts of output price uncertainty on output supplies 

and factor demands are related to the impacts of expected prices 

as follows. Symmetry of (8) implies the following reciprocity 

relations in addition to (10): 

(12)8yi(p,w,Vp)/8Vpjk= -(a/2)[yjbyk(p,w,Vp)/8pi+ykoyj(p,w,Vp)/Dpi] 

i -Dx ( p,w,Vp) /cWpjk = 

i,j,k=1,.,M 

(a/2)[yjbyk(p,w,Vp)/Dwi+ykbyj(p,w,Vp)/~i] 

i=l,.,N;j,k=l,.,M. 

In the case of a single output, (12) reduces to 

a y 8y(p,w,Vp)/8p (13) by(p,w,Vp)/cWp = 
i -ax (p,w,Vp)/cWp = - i a y by(p,w,Vp)/ow i=l,.,N. 

Thus if input i is normal in the sense that - i oy(p,w,Vp)/ow <O and 

the producer is risk averse, then axi(p,w,Vp)/cWp<O. In this case 

the producer's demand for input i decreases as uncertainty about 

output price increases. 

The above discussion demonstrates that all comparative static 

properties of major interest for model (4) correspond to first and 

second derivatives of the dual utility function * -U ( p,w,Vp). This 

result is consistent with the standard theory of the competitive 

risk neutral firm. Epstein (1977) also reaches a similar conclusion 

in the context of expected utility maximization and zero 

flexibility in production (as in this model, all input decisions 
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are made prior to exact knowledge of the relevant output prices). 

Proposition 1 implies more complex relations between 

derivatives of the dual than in standard price certainty models. 

The envelope relations (5) and (7) imply 

(14) au*(p,w,Vp)/<lVp .. = -(a/2) (oU*(p,w,Vp)/opj}Z 
JJ 

au*cp,w,Vp}/oVp .. = -a au*(p,w,Vp)/opi au*(p,w,Vp)/opj 
l.J 

i~j;j=l,.,M. 

Thus derivatives of the dual with respect to price covariances Vp 

are simple nonlinear functions of derivatives of the dual with 

respect to expected prices p. 

These restrictions (14) imply that in practice it is easier 

to specify functional forms for the output supply and factor 

demand equations (5)-(6) and then work backwards to the dual 

utility function rather than vice-versa. This contrasts with 

standard price certainty models, where it is simpler to specify a 

functional form for the dual and then derive output supply and 

factor demand equations using the envelope theorem. First 

functional forms are specified for the derivatives of the dual 

with respect to prices p,w: 

(15) au*(p,w,Vp)/opj = aj(p,w,Vp) 

* - i i -au Cp,w,Vp)/Ow = b (p,w,Vp) 

j=l,.,M 

i=1 ;·: ;N 

where these functions are homogeneous of degree zero (Proposition 

1-b) and satisfy the restriction that the M+N dimensional matrix 

.., * - -a~u (p,w,Vp)/opOw is symmetric. Restrictions (14) imply 

* - j - 2 (16) au (p,w,Vp)/oVp .. = -(a/2) a (p,w,Vp) 
JJ 

* - i - j -au (p,w,Vp)/oVp .. = -a a (p,w,Vp) ·a (p,w,Vp) 
l.J 

i~j ;j=l,. ,M. 

Proposition 1-b also implies, by Euler's theorem, 
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(17) * -U (p,w,Vp) = E. au*cp,w,Vp)/bpj pj + E. au*cp,w,Vp)/bwi 
J J. 

* -EjEk~j au (p,w,Vp)/DVpjk Vpjk 

j - -j i -= Ej a (p,w,Vp) p + Ei b (p,w,Vp) 

j - 2 
(a/2) E. a (p,w,Vp) Vp .. 

J JJ 

i 
w 

i - j -a EjEk)j a (p,w,Vp) a (p,w,Vp) Vpjk 

i 
w + 

by (15)-(16). Equation (17) defines a dual utility function that 

satisfies linear homogeneity (Proposition 1-b), symmetry and 

restrictions (14). 2 

For example, consider the case where one output supply and N 

factor demand equations are specified as follows: 

* - -DU (p,w,Vp)/bp (18) * y = 

k - 1/2 - 1/2 
aoo + Ek aOk Cw /p) + aO,N+l (Vp/p) = 

* - i au (p,w,Vp)/itw i* -x = 

= - 1 i)l/2 ~ k/ i 1/2 (Vp/wi)l/2 
aiO (p w + kk aik (w w) + ai,N+l 

i=l,.,N 

where the matrix of coefficients [a .. ] is symmetric. Then (14) and 
J.J 

(17) imply the following functional form for the dual utility 

function: 

(19) * -U (p,w,Vp) = + -112 k 112 + -112v 112 
Ek aOk p (w) aO,N+l p p 

-1/2( i)l/2 EE ( i)l/2( k)l/2 
aiO P w + i k aik w w + E. 

J. 

+ E. 
J. 

( i > 112v 112 c 12. > c · · · 
ai,N+l w P - a aoo + 

~ (wk/-p)l/2 + - 1/2 2 kk aOk aO,N+l (Vp/p) J Vp. 

If Vp=O, then (19) reduces ta a standard Generalized Leontief 

profit function under price certainty. Note that all coefficients 

of the dual utility function (19) except for a are included 

directly in the output supply and factor demand equations (18). 

Moreover, as will be discussed below, a can be calculated 

indirectly from estimates of these equations. 
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Furthermore a second order differential approximation to a 

true dual utility function u*cp,w,Vp), and knowledge of a in the 

linear mean-variance utility function (1), provides a second order 

differential approximation to a corresponding true production 

or transformation function. This statement is established by the 

following Proposition, which also demonstrates that second 

derivatives of the production or transformation function at an 

equilibrium combination of inputs and outputs can easily be 

calculated from the dual utility function and from knowledge of a, 

expected prices p and the covariance matrix of prices Vp. The 

following notation is adopted in this Proposition. Assume m 

outputs, n+l inputs and define the vector of net 

:l m :l n z=(y ,.,y ,-x ,.,-x ). Define the producer's transformation 

function in the form z 0 ::-x"1-:1.=f(z). Define the vector of 

:l m:l n O n+:l v=(p ,.,p ,w ,.,w) and v =w • Assume that at least factor 

prices 

price 

v 0 is nonstochastic (i.e. known with certainty when all input 

decisions are made), let v denote expected values for prices v, 

and let Vv denote the covariance matrix of prices v. Then the 

producer's maximization problem can be expressed in terms of the 

dual utility function 

(20) * 0 - o · 
(a/2) U (v ,v,Vv) = max vz + V f(z) 

z 

Proposition 2. Assume an interior solution 

(20), * 0 -U (v ,v,Vv) twice differentiable, 

differentiable at z*. Then 

[v0 f (z*) - a Vv] 
zz 

* 0 - -:l = - [U_(v ,v,Vv)] 
vv 

:"i' 
Vv z z . 

z*>>O to 

and f(z) 

where f and u* 
· .. zz denote matrices of second derivatives. 9 

vv 

problem 

twice 

Proof. The first order conditions for an interior solution z*>>O 
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to (20) are 

{21) -i O * i 
V + V Df(z )/Dz a Vv. z = 0 

~ 
i=l,.,m+n 

where Vvt denotes the i'th row of Vv. Total differentiating 

with respect to v, 

(21) 

(22) I+ v 0 f (z*) az*lrN - a Vv az*/Dv = 0 
zz 

where I denotes an identity matrix. Proposition 1-d implies 

* 0 -U __ (v ,v,Vv) = has full rank without loss of 
vv 

generality (i.e. without violating the homogeneity conditions in 

* 0 - * -Proposition 1-b). Substituting U __ {v ,v,Vv) for Dz /DY in {22) and 
vv 

rearranging establishes Proposition 2. Q.E.D. 

Thus the properties of the dual utility function (4) are 

largely analogous to the properties of the standard dual profit 

function in the absence of risk aversion (a=O) (e.g. Diewert). 

This suggests the following simple procedure for estimating output 

supply and factor demand relations under the assumption of a 

linear mean-variance utility function and stochastic output 

prices. First specify, in the manner discussed above, a second 

order flexible functional form for the dual utility function 

u*cp,w,Vp) that is linear homogeneous in (p,w,Vp) and satisfies 

restrictions (14), e.g. a modified Generalized Leontief or 

Normalized Quadratic. Corresponding output supply and factor 

demand equations typically are linear in coefficients of the 

utility function.' These equations are consistent with the 

functional form for the dual utility function provided that the 

reciprocity conditions {10) are satisfied. 5 

Within this context a simple nested test of the hypothesis of 

risk neutrality {a=O) is available: under risk neutrality all 

coefficients with price covariance terms in the output supply and 
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t, 

.. 

factor demand equations are insignificant, i.e. the dual utility 

function (4) reduces to a standard dual profit function n(p,w) = 

max py - wx. If the hypothesis of risk neutrality is rejected, 

then the coefficient ct for the linear mean-variance utility 

function can be calculated from estimates of equations (5)-(6) as 

follows. Differentiating (7) with respect to pj, 

(23) 2 * -j 0 U (.)/Op OVp .. = 
JJ 

ct yj ayj c . > 1 apj 

= ct au*c.)topj a2 u*c.)topj 2 

by (5). Rearranging (23), ct can be calculated from estimates of 

the output supply equations as follows: 

(24) Ol = 2 * -j -:-. a u c • > 1 ap avp .. 
JJ 

In addition ct can be estimated directly by respecifying an output 

supply equation (5) as (using 23) 

(25) j 2 * -j y = - c11a> au <->top avp .. 
.J .J 

Alternatively, if there are sufficient degrees of freedom, the 

dual utility function can be estimated jointly with (5)-(6) as 

T * -(26) py - wx = (c:t/2) y Vp y + U (p,w,Vp) 

Conclusion 

It is apparent here that duality models of production can 

accomodate risk aversion and price uncertainty in a manner that is 

tractable for empirical research. Indeed in the case of a linear 

mean-variance utility function, which is the most popular form of 

the mean-variance model in agricultural research, price 

uncertainty does not complicate or compromise the dual approach in 

any essential manner. The dual approach remains tractable, albeit 

more complex, for a nonlinear mean-variance utility function. 
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FOOTNOTES 

1. As in standard duality theory for the competitive risk-neutral 

agent, Proposition 1 exhausts the implications of the 

maximization hypothesis (4) for comparative statics. 

2. As a check on the consistency of equations (17) and (15), ,note 

that differentiating U = u* p + u! w + u:P Vp (17) with respect 
p 

to (e.g.) p yields 

- u* u* u* u* u = + p + w + Vp 
p p PP pw pVp 

= u* 
p 

since the derivative u* is homogeneous of degree zero in 
p 

(p,w,Vp) by Proposition 1-b and Euler's theorem. 

3. An analogous relation between a dual profit function and a 

transformation function is derived by Lau for the standard case 

of a competitive firm and nonstochastic prices. Proposition 2 

reduces to Lau·s result if either ~=O or Vv=O. 

4. In contrast, a Translog dual utility function implies that 

- * * * * expected shares py /U ,wx /U depend on the coefficient ~ of 

the linear mean-variance utility function (1). In this case the 

output supply and factor demand e~uations cannot be estimated 

by linear methods. 

5. Output supply and factor demand equations (5)-(6), satisfying 

reciprocity conditions (10), integrate up to a class of 

functions that includes the hypothesized functional form for 

the dual utility function (Epstein 1982). Estimating these 

equations jointly with the dual utility function of course 

restricts this class to the hypothesized utility function. 
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