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Abstract 

A hybrid approach to optimizing complex dynamic systems is introduced that employs 

computer simulation and theoretical conditions derived from the maximum principle to opti

mize non-analytic deterministic or stochastic systems. A policy problem in the area of pesti

cide regulation and the management of pest resistance is used in the discussion. 
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ANALYZING COMPLEX DYNAMIC BIOECONOMIC SYSTEMS 
USING A SIMULATION OPTIMIZATION TECHNIQUE 

The use of intertemporal optimization techniques in the study of agricultural systems has 

expanded significantly in recent years. This shift to dynamic analysis has occurred because 

static neoclassical models cannot adequately address the many important problems that are 

connected with the multi-year nature of agricultural decision-making. The failings of static 

analysis are especially acute when the biological status of the agricultural system is not 

long-run independent of production decision-making. The perceived dominance of dynamic 

problems in agriculture has even led to calls for the abandonment of static analysis altogether 

in order to make agricultural economics more realistic and policy relevant (Trapp). 

Although the movement towards dynamic economic analysis will almost certainly con

tinue, this approach contains many problems of its own that continue to limit its empirical 

application. Chief among these is that most algorithms for empirical applications require that 

system objective functions and constraints be analytically expressed (Evtushenko). This is 

especially true for the maximum principle approaches that rely on boundary value, gradient, 

or math programming solution techniques. In addition, some specialized math programming 

techniques tend to require that problems be formulated in very specific, and often restricting, 

ways due to severe limits on computational ability. This problem has repeatedly arisen in 

dynamic programming applications, where the "curse of dimensionality" continues to plague 

complex analyses even though access to high-speed computing has greatly improved (e.g., 

Hornbaker and Mapp). Faced with these problems, some researchers have attempted to use 

digital computer simulation as a way of analyzing reduced sets of discrete policy options. 

However, this approach suffers from indeterminacy in the relationship between the policy sets 

being evaluated and the potential optimums for the system (Musser and Tew). 

This paper will introduce a hybrid approach to optimizing complex dynamic systems that 

employs computer simulation and theoretical conditions derived from the maximum principle 

to optimize non-analytic deterministic or stochastic systems. This technique can potentially 

avoid the worst shortcomings of the standard methods and still allow researchers great flexi

bility in designing dynamic studies. We believe this to be the first explicit demonstration of 
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how this approach might be applied to a dynamic agricultural system. For illustration, a policy 

problem in the area of pesticide regulation and the management of pest resistance will be 

used throughout the discussion. 

The Policy and Research Problem 

Resistance can be defined as the acquired ability of a pest population to withstand a 

specific pesticide control treatment due to the cumulative effects of repeated exposure to the 

treatment. The ability of agricultural pest populations to develop genetic resistance to control 

measures has been known for the better part of this century, but it has only been in the last 

two decades that the potential severity of the problem was recognized. Producers are espe

cially concerned about potential yield, quality, and cost effects of pest resistance. 

Environmentalists see a danger in the potential for increased pesticide use with increasing 

resistance, and thus higher residual levels of pesticides in food, water, air, and soil (Dover 

and Croft). Paradoxically, efforts to regulate the use of pesticides without explicitly consider

ing resistance may itself contribute to the resistance problem, as a shrinking set of pest con

trol alternatives forces producers to concentrate on using only one or two chemicals. 

Given the emerging severity of the pest resistance/pesticide regulation problem, federal 

agencies continue to search for an effective way of incorporating the existence of pest resist

ance into their procedures for analyzing pesticide benefits and developing pest management 

policy (Rajotte et al.). To this end, both economists and entomologists have concentrated on 

investigating various theoretical and empirical aspects of pest resistance and pesticide regu

lations. Economists have tended to focus on the effects of resistance on pesticide productivity, 

the potential divergence between private and public benefits given pesticide use with pest 

resistance, and the intertemporal private and public optimal uses of pesticides in the presence 

of resistance (Knight and Norton). In general, these studies have been limited in their use

fulness for policy formation by simplified characterizations of the systems involved. Biological 

and physical interactions within the agroecosystem are often exceedingly complex and not 

· easily condensed in a representative economic model. This is especially true when one re

alizes the need to incorporate the potential use of multiple classes of pesticides to combat the 

pest resistance problem. On the other hand, entomologists have developed realistic, empir-

2 



ically based computer models of resistance and the mechanisms of its development (e.g., 

Tabashnik). These studies have led directly to potential strategies for combating resistance. 

However, these strategies suffer from a lack of attention to the linkages between biology and 

economics in an agricultural production system. In particular, entomological models of re

sistance tend not to recognize the potential divergence between the interests of the producer 

and of society, resulting in management schemes that over-simplify the real decision-making 

process that needs to take place on both the local and national levels. 

To emphasize the empirical complexity of investigating this type of problem, an actual 

management situation found in a relatively simple apple agroecosystem will be used as an 

example. The tufted apple bud moth (TABM -- Platynota idaeusalis Walker) is the major direct 

pest on apple fruit in the Cumberland/Shenandoah production region (Hull et al.) and has been 

successfully controlled in the past using organophosphate insecticides. An apple grower's 

most effective total pest control strategy has been to use limited amounts of acaracides to 

keep European red mite (ERM -- Panonychus u/mi Koch), an indirect pest feeding on apple tree 

foliage, below their economic threshold until the black ladybird beetle (BLB -- Stethorus 

punctum Leconte), a predator of mites, appears in the orchards to control ERM naturally (Hull 

et al.). This integrated pest management system is possible because of BLB's tolerance to 

the organophosphate pesticides used in T ABM control. However, with T ABM resistance to 

organophosphates, growers cannot count on BLB to control ERM because BLB is generally 

not tolerant of the other pesticide classes that are effective against T ABM. Growers must then 

resort to increased use of acaracides to control mites. But from extensive use of acaracides 

problems arise. Not only do mites have the potential for rapid resistance development, but 

research has demonstrated that many acaracides are extremely toxic to humans and non

target animals. In the long-run, as regulatory pressure and TABM/ERM resistance expands, 

the danger is that the apple pest complex will become uncontrollable and/or that there will 

be a net increase in the use of pesticides over what would have occurred with no regulatory 

action. 

Formulating a model for an empirical investigation of the above apple agroecosystem 

proves to be an imposing undertaking. Assuming that a regulatory agency has as one of its 

objectives manipulating pesticide use so as to maximize, over a given planning horizon, the 
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total economic surplus associated with apple production and consumption, then at a minimum 

an empirical model would have to consider the time-varying relationships among two pest 

densities, predator density, two pest susceptibilities to different pesticides, predator suscep

tibility to the pesticides, immigration of susceptible pests and predators, environmental car

rying capacities, and crop yields for both fresh and processing markets. Given the inherent 

nonlinearities, discontinuities, and uncertain functional forms governing these relationships, 

the ability to specify and estimate a suitably realistic analytic model is doubtful. It was this 

difficulty that led many applied entomologists to abandon differential equation simulation 

models of pest management with resistance in favor of complex discrete computer simu

lations that describe the system evolution in decidedly non-analytic ways. While directly 

useful for their purposes, these types of simulation models pose obstacles to the economist 

interested in deriving optimality-based approaches to dynamic pest and resistance manage

ment. The lack of explicit discrete or continuous analytic equations prevents straightforward 

application of the maximum principle through nonlinear programming or two-point boundary 

value solution algorithms. Dynamic programming can potentially be used, with the discrete 

simulations generating the states of the system for every combination of decision variable 

levels during each decision period. But if the computer simulation contains stochastic ele

ments, the dimensions of the problem needs to be drastically reduced. Even if the problem 

at hand is simulated deterministically, the necessary state variables lead to computer storage 

requirements that far exceed current capabilities, and reducing its dimensions would require 

simplification to the point of changing the basic nature of the problem. Thus, another ap

proach is needed to combine the realism available in the complex simulation models of 

entomology with the optimization theory and goals used in economics. 

The Simulation Optimization Approach 

Consider the general dynamic optimization problem1 

1 The following discussion was adapted, in part, from Azadivar and Lee. 
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T 

MAX J f0[u(t), x(t), t] e - rt dt 
0 

subject to x(t) = f[u(t), x(t), t] ' x(O) = x0 (x0 fixed in Rn) 

T 
X;(T) = X; , 

T X;(T) ~ X; , 

i = 1, ... , I (4 all fixed) 

i =I+ 1, ... , m (xr all fixed) 

g/x(t), u(t), t] ~ 0 j = 1, ... , k 

g1[x(t),t]~o j=k+1, ... ,h 

u(t) e U , a fixed set in R' 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

where fo[u(t), x(t), t] may be the response of a simulation model at time t for values of v de

cision variables U1 , U2 , ..• , Uv represented by the vector u(t). Let these decision variables 

be constrained by membership in set U and non-negativity ([7] and [5] above), while pure state 

constraints include non-negativity ([61) and terminal conditions ([3] and [41). In addition, let 

x(t) denote the rate change in state variable levels, or the equations of motion. Some or all 

of these constraints may be non-analytic deterministic or stochastic functions represented by 

other responses of the same simulation model that may be generating fo[u(t), x(t), tl This 

formulation is completely general in that it contains both mixed and pure state constraints. 

There are two main problems immediately encountered when trying to proceed towards 

an empirical solution to a problem of this form: 

1. If fo[u(t), x(t), tJ, f[u(t), x(t), t], glu(t), x(t), tJ, and/or glx(t), t] represent simulation re

sponse functions, then they cannot be expressed analytically in terms of {u(t), x(t), t}. This 

makes the problem unsuitable for classical non-linear programming or boundary-value 

techniques, instead suggesting the need for some type of search routine through the 

feasible solution space. 
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2. Although fo[u(t), x(t), t] can potentially be evaluated for any given {u(t), x(t), t}, even under 

condition (1), it may not be possible to optimize by ordinary search techniques. Most 

search methods proceed sequentially towards a solution by comparing system response 

criteria for two or more points in the feasible region. But if fo[u(t), x(t), t] is a 

stochastically simulated function, comparing its mean response based on one observa

tion at each point in the feasible region may result in the selection of a wrong direction 

for the next search step. Even the average of several replications at each point may be 

insufficient to offset stochastic characteristics in the simulated response. 

Thus, from an economists viewpoint, the ideal solution procedure for this type of problem 

would be one that is capable of guiding the search process by incorporating some theoretical 

optimization conditions along with explicit use of simulation for representing non-analytic 

constraints, objective functions, and stochastic behavior. This can be accomplished by using 

a modified complex (i.e., constrained simplex) heuristic search procedure that has, as its goal, 

the direct optimization of the objective function subject to any number of pre-specified con

straints. How this integration might be accomplished will be discussed after a description of 

the modified complex procedure. 

The modified complex procedure (Azadivar and Lee) proposes to solve the problem 

MAX E [ Z(u, x) ] = Y(u, x) [8] 

> 
subject to </> 1 (u, x) = C 1 , j = 1, 2, ... , b 

< 
[9] 

where u is a vector of discrete-valued decision variables, Z(u, x) is the random variable cor

responding to observations on the simulated system, Y(u, x) is the unknown theoretical re

gression of Z(u, x), and </> 1 (u, x) is a set of b constraints. The algorithm makes the following 

assumptions: 

1. The theoretical regression function Y(u, x) is a real-valued, but perhaps unknown, func

tion; and 

2. There exists a finite constant M such that 
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VAR [ Z(u, x) ] < M 'r:/ u . 

The basic idea behind the search procedure is to move through the feasible region as 

simplex vertices, each composed of a specific vector u containing decision variable levels 

from the set U, get closer to each other and converge towards the optimum. This movement 

can be random or, somewhat in analogy with the implementation of dynamic programming, 

exhaustive. Perhaps a better alternative, and the one advocated here, is to compare a 

simplex's vertices to find an inferior one. Movement is then accomplished by projecting the 

inferior vertex with respect to the centroid of the remaining vertices. If this new point is itself 

rejected, then the projection is retracted and the point moved closer to the centroid until it is 

no longer inferior. Then comparisons are continued to find a new inferior vertex, new 

projection, etc., until convergence occurs. This simplex search method is transformed into a 

complex search by preventing any projected vertex of the simplex from leaving the feasible 

region. This can be accomplished by testing each projected vertex for adherence to the con

straint set. If it falls outside the constraints, then it is systematically retracted until it enters 

back into the feasible region. Note that, due to the complexity and stochastic nature of the 

objective and/or constraint functions, the solution will be approximate rather than exact, with 

the degree of approximation controlled by the researcher. 

The procedure outline'd above is directly applicable to problems involving deterministic 

simulation. But stochasticity in the simulation responses can lead to problems with this 

process. Given stochastic variation, there is no guarantee that a vertex rejected on the basis 

of comparing single simulations is indeed the worst point. In fact, the probability of this error 

increases as the variance in responses increases, and can only be ameliorated by incorpo

rating multiple observations on the simulated response for any given vertex. One way of do

ing this is to calculate confidence intervals on the mean responses for a vertex. Because the 

confidence interval lengths will shorten as the number of simulation observations on any given 

vertex increases, a vertex can be rejected (with a chosen level of probability) as soon as its 

confidence interval is distinct and its mean is worse than adjacent vertices. If comparisons 

are sequentially made after small numbers of simulation runs on a set of vertices, then the 

total number of simulation runs for each search step can be kept to a minimum. 
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Simulation stochasticity in the constraint set can also lead to difficulties in directly ap

plying the complex search method. This arises because stochastic variation implies that the 

constraints may never be satisfied on anything other than a probabilistic level. Thus, attaining 

a solution would require that the constraints be stated in terms of the maximum acceptable 

risk of violation. For example, a stochastic constraint from the set (9) might be expressed as 

where O < cx 1 < 1 

and cx1 is the maximum acceptable risk of violating the constraint. This representation can 

lead to constraints formulated in terms of upper or lower confidence limits of the type 

. where HU1(u, x) represents the upper confidence limit on the response </>1(u, x). 

Application of the Simulation Optimization Algorithm 

The complex method described above is very general and can be applied to a wide 

range of deterministically and stochastically simulated optimization problems. Exactly how 

this is accomplished will depend on the specific form of the problem being investigated and 

the type of information available. If the empirical problem involves analytic constraints and 

a simulated objective function, then it may be possible to use the necessary conditions from 

the maximum principle to aid in the search for optimal time-paths. In this case, initial decision 

variable, adjoint and state constraint multiplier levels would all have to be specified in the 

vertices. The problem would then entail the minimization of a function that represented the 

difference between calculated and required optimality conditions, subject to the adjoint, 

transversality, and other constraint conditions. This approach would be convenient, for it 

could take advantage of the requirement that the current-valued Hamiltonian be optimized in 

each time step, thereby allowing the optimal decision variable levels to be determined se

quentially through time. 

Although objective function simulation provides a case where the complex search tech

nique can be most closely related to the standard analytic approach, the most frequent oc

currence when dealing with dynamic bioeconomic models is to have simulated constraints. 
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In this case, complex search is used to directly optimize the objective function. As an exam

ple, reconsider the dynamic optimization problem posed in equations [1]-(7] in the light of the 

apple production problem discussed in the introduction: 

MAX 
u,v 

£ -r 

T {\' \'J(ah,Yhi(t)) } 
TES=~ L L 

O 
, , [Dh,h1, t) - SYh,h1, U, V, t)]d>7 (1 + r)- t 

h=1 /=1 

subject to the equations of motion 

V h, I, i, n 

[10] 

[11] 

b;(t) = f';[bj(t- 1), mj(t - 1), cj(t- 1), ~(t - 1), uk(t - 1), s1,k(t - 1), t] [ 12] 

V i, j, k, where j = 1 ... y 

s1,it) = E\is;,2(t - 1), u2(t - 1), t] 

Vi, j, k, z, where z=1 ... if, 

f;(t) = Y 1[s1,k(t-1), t] 

Vi, k 

c1(t) = '¥;[Yh,t(t - 1), t] 

Vi, h, I 

m1(t) = E;[t] 

Vi 

where we define 

U is a fixed set of pest controls in R>lr 

V is a fixed set of non-pest control inputs in R"' 

u(t) e U, v(t) e V 

TES is-the total economic surplus over all time periods 

Tis the terminal time of the planning horizon 

Dh,1(>1, t) is the demand function for a given crop and grade at time t 

SYh,i{>J, U, V, t) is the supply function for a given crop and grade at time t 

Yh,1(t) is the yield per acre of grade (I) for crop (h) at time t 

ah., is the total number of acres producing crop h of grade I 

b,(t) is the density of pest/predator (i) at time t 

s,.k(t) is the susceptibility of pest/predator (i) to control (k) at time t 

[13] 

[14] 

[15] 

[16] 
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f;(t) is the fecundity of pest/predator (i) at time t 

c;(t) is the environmental carrying capacity for pest/predator (i) at time t 

m;(t) is the immigration of susceptible pest/predator (i) at time t 

and the state variables are constrained as 

Yh,1(t) ~ 0 , b1(t) ~ 0 , s1,k(t) ~ 0 , f;(t) ~ 0 , c1(t) ~ 0 , m1(t) ~ 0 [ 17] 

with Dh,I, SYh,t, 8h,t, Yh,1(0), b;(0), S;,k(0), f;(0), C;(0), and m;(0) all predefined. 

Under normal circumstances, and with analytical representations for the objective and 

constraint equations, the next step towards a solution would be to form the current-valued 

Hamiltonian function and, with the presence of pure state constraints, the corresponding 

Lagrangian function. Sufficiency (if the solution cannot be assumed interior to the state con

straints) or necessary conditions, derived from the maximum principle, could then be applied 

(Seierstad and Sydsaeter). This process would result in a set (in this case, a large set) of 

differential equations that would need to be solved for the optimal time-paths of the decision, 

state, and multiplier variables. But with realistically specified functions, this process usually 

leads to an intractable analytic problem. Approximating the solution using two-point boundary 

numerical techniques, or reformulating the problem in terms of non-linear programming, are 

alternative approaches, but they also require analytic forms for the equations of motion. 

Because system complexity has, to date, prevented a realistic analytic specification of 

[10]-(17], entomologists have developed a discrete simulation model with which to investigate 

this system. This model, patterned after the SERA (Simulating the Evolution of Resistance in 

Arthropods) model of Tabashnik and Croft, has been greatly enhanced by Knight and is ca

pable of handling extremely complex deterministic or stochastic systems. Thus, an appropri

ate approach for determining optimal decision variable levels through time would appear to 

be the complex search technique. Assuming a deterministic simulation of the constraint set, 

the procedure could be used to directly optimize the objective function (10] subject to the 

non-analytic constraints [11 ]-[16] and the non-negativity constraints [17]. Actual application 

of the process would entail the following: 

1. Choose a number of initial vertices, each completely specifying a specific time-path of 

control actions to be taken over the entire planning horizon. 
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2. Simulate the entire planning period using each initial vertex and the constraints [11]-(16]. 

3. Test for conformance to the constraints (17]. This is probably most efficiently done at 

each time step in a simulation run, as violation of a constraint would immediately dis

qualify the vertex being simulated. Because, in practice, most simulation models will 

prevent these violations from actually occurring, the tests need to detect if the vertex 

would have led to a constraint violation. 

4. Once all the initial vertices are simulated for the entire planning horizon, compare the 

realized value of the objective functionals to find the inferior vertex. 

5. Project the inferior vertex through the centroid of the remaining vertices to find a possible 

new vertex. 

6. Simulate the entire planning horizon with the new feasible vertex. Compare the resulting 

objective functional value to the values simulated from the remaining vertices of step 4 

to find a new inferior vertex. 

7. Repeat steps 5-6 until the vertices collapse (within a specified tolerance level) to the 

centroid of the simplex. 

8. The last vertex simulated can then be taken as the optimal time-path for the decision 

variables, with the resulting simulation describing the optimal time-path for the state 

variables. 

Compa·rative Advantages of the Technique 

It appears that the complex search technique has some important theoretical advan

tages over combined simulation/dynamic programming for optimization studies of complex 

systems. The most important advantage is in the use of computer resources. If approached 

using dynamic programming, the apple production problem above would require the simu

lation of every stage-state of the system. This information would then have to be stored for 

use in a recursive dynamic programming algorithm. In essence, every defined vertex in the 

feasible region would need to be evaluated. But with the complex procedure, only a small 

initial set of defined vertices needs to be evaluated, followed by a sequential addition of vertex 

evaluations until an optimum is found. In general, only a limited subset of all possible vertices 

will ever have to be evaluated, with only a small number of objective function values being 
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stored at any given time. In fact, studies of theoretical deterministic systems have suggested 

that less than 1 percent of all possible vertices need to be evaluated before the complex 

search technique converges to an optimum {Azadivar and Lee). Stochastic systems would, 

of course, require additional simulation {the number partially depending on the probability 

required for the appropriate confidence limit estimates), but even analysis of these systems 

use significantly fewer simulations than the number of possible vertices. These factors sug

gest that complex search can increase the ability to investigate dynamic problems that are 

much more complex than previously possible. Some potential disadvantages to complex 

search do exist, with the primary one being the general inability to distinguish between local 

and global optimums. But, given the relatively small number of vertices needing evaluation 

before convergence, this problem can potentially be eliminated by using systematically dif

ferent initial starting vertices {so as to search over different initial sectors of the feasible re

gion) or by making sure that the initial vertices occupy significantly divergent areas of the 

feasible space. 

Conclusions 

Dynamic economic analyses of agricultural decision-making has been hampered over 

the years by simplistic models of the biological components in a farm production system. But 

discrete computer simulation, a method by which realism can be introduced to agricultural 

modelling, has not been widely adopted as a research tool because of the inability to relate 

simulation results with theoretical system optimums. The complex search simulation opti

mization technique presented in this paper has the potential to alleviate this shortcoming of 

simulation studies, thereby providing the economic researcher with a powerful tool to inves

tigate complicated dynamic bioeconomic systems that cannot be accurately modelled using 

conventional analytic methods. 
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