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Abstract

In this paper, we generalize the notion of a communication equilibrium (Forges 1986, Myerson

1986) of a game with incomplete information by introducing two new types of correlation device,

namely extended and Bayesian devices. These new devices explicitly model the ‘thinking process’ of

the device, i.e. the manner in which it generates outputs conditional on inputs. We proceed to endow

these devices with both information processing errors, in the form of non-partitional information,

and multiple transition and prior distributions, and prove that these two properties are equivalent

in this context, thereby generalizing the result of Brandenburger, Dekel and Geanakoplos (1988).

We proceed to discuss the Revelation Principle for each device, and conclude by nesting a certain

class of ‘cheap-talk’ equilibria of the underlying game within Bayesian communication equilibria.

These so-called fallible talk equilibria cannot be generated by standard communication equilibria.

∗The author is available at n.vellodi@gmail.com. I am greatly indebted to Francoise Forges and Indra Ray for their
numerous suggestions, Sushama Murty for her initial guidance, Peter Hammond for invaluable discussions, and especially
my supervisor Herakles Polemarchakis, for his patience, good humour and generosity. Naturally, all errors and omissions
are the author’s sole responsibility.

1

mailto:n.vellodi@gmail.com


Contents

1 Introduction 3

2 Background 4

2.1 Inconsistent Beliefs and Non-Partitional Information . . . . . . . . . . . . . . . . . . . . 4

2.2 Correlated and Communication Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Canonical Equilibria and the Revelation Principle . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Generalized and Subjective Correlated Equilibria . . . . . . . . . . . . . . . . . . 10

2.4 Cheap Talk Games and Communication Equilibria . . . . . . . . . . . . . . . . . . . . . 10

3 Extended Communication Equilibria 12

3.1 Potential Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Bayesian Communication Equilibria 21

5 Further Topics 30

5.1 The Revelation Principle and Generalized Bayesian Devices . . . . . . . . . . . . . . . . 30

5.2 Fallible Talk and Bayesian Communication Equilibria . . . . . . . . . . . . . . . . . . . 33

6 Conclusion 35

A Appendix A 39

B Appendix B 40

C Appendix C 44

2



1 Introduction

Much has been written on the topics of the Common Prior assumption, non-partitional information

and communication equilibria. To the author’s best knowledge, nothing has been written on the

intersection of all three areas. This is the broad objective of the present paper.

It is well known that if players are fully rational and share a common prior on the uncertain states of

the world, then there is no incentive in equilibrium to bet whilst trading (see [Milgrom, Stokey, 1982]).

The inverse is often observed in reality; people who share different probability assessments regarding

an event often bet against each other, thus expanding the set of equilibrium payoffs available. This

behaviour is rational in the sense that betting can form part of a Nash equilibrium. However, there are

arguments against admitting so-called ‘heterogenous priors’; see [Harsanyi, 1967] and [Aumann, 1987].

It is also well known that information processing that admits bounded rationality generates similar

phenomena (see [Geanakoplos, 1989]). The paper of Brandenburger, Dekel and Geanakoplos (1989)

represents a concise attempt to link heterogenous priors and bounded rationality, within the context

of correlated equilibria. In this paper, we offer a natural extension of their work to communication

equilibria. It is easy to think of situations in which communication devices, which essentially act

as a third-party arbitrators between players in Bayesian games, could exhibit some form of bounded

rationality or imperfection. Take a market mechanism in a production economy under uncertainty,

which receives information regarding players’ endowments and preferences, and issues advice regarding

prices. It is certainly conceivable that such a mechanism could operate under information processing

imperfections. However, in order to study such situations, we must first explicitly model the manner

in which the device interprets information, i.e. its ‘thinking process’. In this paper, we construct two

new types of communication device that allow us to do precisely this.

We begin by giving a brief overview of the existing work on inconsistent beliefs and non-partitional

information, communication equilibria, canonical equilibria and the Revelation Principle and cheap talk

extensions. Chapter 2 introduces the concept of an extended communication device, or simply extended

devices. Such devices consist of an input space, and output space and a transition probability from a

subset of the power set of the input space to the output space. We provide examples that demonstrate

how such devices offer Pareto-improving outcomes to standard devices, through a process akin to

‘betting’. We then introduce the notion of decision-theoretic equivalence, and show that the set of

generalized extended communication equilibria is equal to the set of subjective extended communication
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equilibria, via this equivalence relation. Chapter 3 introduces the notion of a Bayesian communication

device, or simply Bayesian devices. We show that extended devices are essentially a reduced form

version of Bayesian devices. We redefine the notion of decision-theoretic equivalence so that it retains

tractability in this new setting, and prove that the set of generalized Bayesian devices is equal to the

set of subjective Bayesian devices. Chapter 4 discusses briefly the problem of classifying the set of

canonical extended and Bayesian equilibria, or equivalently proving a revelation principle in this case.

We show how the problem is trivial for subjective Bayesian devices, but that the problem is more

complex for generalized Bayesian devices. Chapter 5 discusses how Bayesian communication equilibria

nest a certain class of cheap talk equilibria of the game, in which players can communicate directly,

but such communication is prone to error. As such, this process is termed fallible talk. We conclude

by discussing possible further extensions.

2 Background

2.1 Inconsistent Beliefs and Non-Partitional Information

Consider the following situation. A decision-maker is faced with uncertainty, represented by a state-

space Ω. He already possesses beliefs about these uncertain states, represented by a prior probability

distribution π over Ω. When a state is realized, he can perceive it up to some level of accuracy. This

is represented by his information function:

P : Ω −→ 2Ω,

where 2Ω is the power set of Ω. Each element of the image space P(Ω) is referred to as an information

set, and we say that he ‘knows P(ω) at ω’.

Having perceived the information set the true state lies in, he now updates his prior distribution to

form his posterior distribution, accounting for this new information through a process of Bayesian

updating :

π̄(ω′|P(ω)) =


π(ω′)∑

ω̂∈P(ω) π(ω̂) if ω′ ∈ P(ω)

0 ω′ /∈ P(ω)

For example, suppose Ω = {1, 2, 3}, π(1) = π(2) = π(3) = 1
3 , and P(1) = P(2) = {1, 2},P(3) = {3}.
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Now suppose the true state is 1. Then the posteriors become π̄(1) = 1
2 , π̄(2) = 1

2 , π̄(3) = 0.

This example uses a special form of information function, in that the image under P forms a partition

of Ω. In this case, we say that the information function induces an information partition of Ω; more

specifically, if

1. ω ∈ P(ω), ∀ω ∈ Ω (Non-Delusion)

2. ω′ ∈ P(ω)⇒ P(ω′) = P(ω)

Within the context of Bayesian games, such information structures are generally assumed to hold.

Indeed, the ‘type-space’ representation of uncertainty implicitly assumes partitional information. The

standard form of a Bayesian game assumes a state space Ω, a type space Ti for each i, and a surjective

signal function τi : Ω → Ti (see [Osborne, Rubinstein, 1994]). Then if τi(ω) = ti, we have that

Pi(w) = τ−1
i (ti), where Pi is player i’s information function. That τi is a function implies that Pi is

partitional, in particular, the partition Pi is generated by the equivalence relation

ω ∼i ω′ ⇔ τi(ω) = τi(ω
′)

If the information function does not necessarily induce a partition, we call it a possibility correspon-

dence (see [Geanakoplos, 1989]). It can be shown that such structures embody a departure from full

rationality, or at the very least, error-free information processing. In a possibility correspondence, the

existence of ‘overlaps’ implies that agents do not necessarily ‘know what they know’, i.e. it may not

be the case that ω′ ∈ P(w)⇒ P(ω′) ⊂ P(ω). There are many forms of such ‘bounded rationality’ that

have been studied extensively. See for example [Geanakoplos, 1989], [Samet, 1990] and [Shin, 1993].

It is clear how the scenario above can be extended to an arbitrary n-person set-up. In this case,

the assumption that the prior distribution is identical for all players is precisely the Common Prior

assumption (CPA), or Harsanyi doctrine.1 Much has been written on the role of the CPA in Bayesian

games.2 Indeed, that posterior distributions are allowed to differ on account of diverging information

represents faithfully Harsanyi’s (1967) original rationale, which argues that differences in player’s beliefs

should stem purely from differences in information, i.e. that “...there is no rational basis for people

who have always been fed precisely the same information to maintain different subjective probabilities”

1Departure from the CPA is variously referred to as subjective/different/heterogenous/inconsistent priors/beliefs.
2See [Aumann, 1987].
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([Aumann, 1976]). As such, subjective priors could be explained by errors in information processing.

This is one of the central propositions of the present paper. There are however several defenses of

inconsistent beliefs. See, for example, [Morris, 1995]. Morris cites various examples where learning

opportunities may be limited, thus resulting in different priors. Indeed, such an observation implicitly

assumes that the formation of the prior is far from arbitrary, and moreover that a common prior assumes

boundless opportunities to learn prior to the commencement of the game. The present question is: how

can inconsistent beliefs be justified within the context of games with communication? Far from being

an advocation of heterogenous priors, this paper suggests that heterogenous priors can be explained

via bounded rationality, specifically non-partitional information structures.

Brandenburger, and Dekel and Geanakoplos 1988 - henceforth BDG - show that in the context of

correlated equilibrium (defined below), heterogenous priors and non-partitional information essentially

amount to the same thing. We will discuss this result at length below.

2.2 Correlated and Communication Equilibria

The concept of a correlated equilibrium was proposed in [Aumann, 1967] for normal-form games. It

poses both the first credible alternative to (mixed) Nash equilibrium and the first real attempt at

incorporating communication into a game theoretic solution concept. Essentially, the idea behind

correlated equilibrium is to introduce a layer of uncertainty into the solution in order to help correlate

players’ strategies. Take the familiar example of a crossroads: two cars approach a crossroads at right-

angles. Their pure strategies are ‘stop’ and ‘go’. Clearly, for some natural choice of payoffs, there exist

Nash equilibria that impose inequitable delays, or may even result in an accident. However, installation

of a traffic light, with two states corresponding to ‘stop’ and ‘go’, can clearly help correlate player’s

actions to achieve a pareto-superior outcome to any Nash equilibrium.3 This example demonstrates

how the uncertainty in a correlated equilibrium can be represented by a ‘device’ - in this case, a traffic

light - which generates outputs that the players use to make their choices. With this in mind, we

present a formal definition of correlated equilibrium, based on [Forges, 2009].

Definition 1. A correlation device is a tuple d = (Ω, (Pi)i∈N , π), where Ω is the state space, Pi is

player i’s partitional information function and π is the prior measure over Ω.

Now let Γ = (N, (Ai)i∈N , (ui)i∈N ) be a game. Let d = (Ω, (Pi)i∈N , π) be a correlation device. Then a

3This is an example of a canonical correlated equilibrium, which will be discussed at length later.
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correlated equilibrium of Γ is a tuple (d, (fi)i∈N ), where d is a correlation device, and f is a Nash

equilibrium of the game Γd, constructed by adding the device d to Γ.

Γd is played as follows: First, the state of nature is realized. Second, each player is informed of

their private information, using the Pi’s. Third, the player’s make their moves, conditional on this

information.

Specifically, the equilibrium conditions are:

∑
ω′∈Pi(ω)

π(ω′|Pi(ω))ui(f(ω)) >
∑

ω′∈Pi(ω)

π(ω′|Pi(ω))ui(ai, f
−i(ω)), ∀i ∈ N, ∀ω ∈ Ω : π(ω) > 0, ∀ai ∈ Ai

The notion of a communication equilibrium was introduced in [Myerson, 1982], later formalized in

[Myerson, 1986] and generalized in [Forges, 1986], as an extension of correlated equilibrium to Bayesian

games. Correlated equilibrium involves unidirectional communication. This may entail a loss of effi-

ciency in the incomplete information case, where players now have private information that could be

put to use by the device in generating its output. Recall the example of the traffic light. Assume now

that each car could be approaching at two speeds, ‘fast’ and ‘slow’, could be either ‘far’ or ‘near’ to the

cross-roads, and that the other car is uncertain about these parameters. If the traffic light could collect

information regarding each car’s speed and distance from the cross-roads, it could generate outcomes

pareto-superior to those without such capabilities.

Thus, if we extend the correlation device to allow bi-directional communication, i.e. to and from the

players, we can successfully utilize the information contained in players’ types to broaden the set of

equilibrium payoffs. This is essentially the intuition behind communication equilibria. We formalize

this in the following definition:4

Definition 2. An communication device is a tuple

dc = ((Si)i∈N , (Mi)i∈N , (π)) ,

where Si is the set of inputs from i to the device, Mi is the set of private outputs from the device to i,

π is the transition probability the device uses to generate output vectors given input vectors, and P id is

the device’s possibility correspondence on S =
∏
i∈N Si for each i.

4This definition follows Forges (1986). Later, we will show how Myerson’s definition is nested in Forges’.
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Now let ΓB = (N, (Ti)i∈N , p, (Ai)i∈N , (ui)i∈N ) be a Bayesian game. Let

dc = ((Si)i∈N , (Mi)i∈N , (π))

be a communication device. The game ΓdB formed by attaching the device dc to ΓB is played as follows:

first, the players’ types are realized according to p. Next, the players choose an input si ∈ Si to

communicate to the device5. The device then generates a private output mi ∈ Mi according to the

transition measure π for each player, conditional on having received the input vector s =
∏
i∈N si.

Finally, each player chooses an action in Ai, conditional on their type, their chosen input and the

device’s private output. Hence, a strategy for player i is a pair (σi, δi), where

σi : Ti −→ Si

δi : Si ×Mi × Ti −→ ∆Ai

In other words, σi chooses player i’s input, given their type, and δi chooses player i’s action in Γ, given

their input, private output and type. A strategy profile is defined in the usual way over the product

spaces.

An communication equilibrium (CE) of ΓB is a Nash equilibrium of the game ΓdB, for a given dc.

2.3 Canonical Equilibria and the Revelation Principle

The traffic light examples hint at the existence of a special class of devices, in which the output space

is the action space and (in the context of communication devices) the input space is the type space.

Such devices are called canonical devices, since the input/output spaces are the canonical choices. If

we had chosen the traffic lights to emit three different coloured lights, which the drivers then had to

interpret, this would no longer be a canonical device. Formally:

Definition 3. A canonical correlation device is one in which Ω = A. A canonical communication

device is one in which S = T and M = A.

There are two advantages of dealing with such devices. On the technical front, the equilibrium condi-

5We assume no randomization is allowed, as the set S could be modified to incorporate mixing if desired.
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tions, which now become:

∑
t−i∈T−i

p(t−i|ti)
∑
a∈A

π(a|t)ui(t, a) ≥
∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

π(a|si, t−i)ui(t, f(ai), a−i),

∀i ∈ N, ∀ti, si ∈ Ti,∀f : Ai → Ai

form a system of linear equations, whose solution is easily obtained.6 On the practical front, such a

representation makes more concrete the role of the device as a third party mediator, which issues direct

recommendations on actions, given information regarding players types. Diagrammatically, we have:

Non-canonical communication device: T
σ−→ S

π−→M
δ−→ A

Canonical communication device: T
σ−→ T

π−→ A
δ−→ A

Whilst the definition of strategies remain unchanged, the definition of equilibrium needs discussion.

One might be forgiven for assuming that a canonical communication equilibrium is any Nash equi-

librium of the game formed by attaching a canonical device to a Bayesian game ΓB. However,

[Forges, 1986], [Myerson, 1986] and subsequent authors include the extra requirement that, in a canon-

ical equilibrium, players must be honest and obedient, i.e. they report their true type to the device,

and take the action recommended to them by the device. Indeed, the inequalities stated above are for

such an equilibrium. Whilst it may seem unintuitive to allow for dishonesty and disobedience in equi-

librium, it is certainly feasible. Hence, we define a canonical equilibrium to be simply an equilibrium

with respect to a canonical device, and call a canonical equilibrium in which players are honest and

obedient an honest-and-obedient canonical equilibrium.

The Revelation Principle is a statement that applies to any equilibrium concept involving commu-

nication. Informally, it states that for any non-canonical equilibrium, there is a payoff-equivalent

honest-and-obedient canonical equilibrium. The construction involved in the proof is essentially the

same for correlated and communication equilibria; if one treats the device as a ’black box’, one can

simulate the actions players would have played in the non-canonical case, and enforce the canoni-

cal device to suggest these actions as its output. Clearly, there is no incentive to deviate from such

recommendations, since the original profile was also in equilibrium.

6This assumes that the action and type spaces are finite. We will maintain this assumption throughout this paper.
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2.3.1 Generalized and Subjective Correlated Equilibria

So far, we have dealt with devices that involve consistent beliefs, whether this be a common prior or a

uniform transition distribution, and partitional information. The relaxation of these restrictions was

examined in BDG in the case of correlation devices. Devices which use possibility correspondences,

rather than information functions are called generalized correlation devices, whilst devices that use

different priors on Ω are called subjective correlation devices.7 Amongst the results they prove are that

the set of generalized equilibria and the set of subjective equilibria are decision-theoretically equivalent,

where this concept is a stronger version of payoff equivalence that requires actions to be equal on classes

of information sets that are isomorphic to each other. This is an important result for two reasons. First,

it offers an implicit defense of the CPA, as it shows how permitting heterogenous priors is tantamount

to bounded rationality. Second, on the flip side, it shows that if bounded rationality is to be taken

seriously, or at least is of interest from a modeling perspective, then so too must subjective priors.

They also characterize the set of so-called generalized correlated equilibrium distributions, which are

essentially the canonical counterpart of equilibria generated using generalized correlation devices. They

prove a form of the Revelation Principle in the case of generalized correlated equilibria by characterizing

the set of canonical generalized correlated equilibria. We will discuss the extension of this result to an

analogously defined communication equilibrium.

It is easy to prove the Revelation Principle with respect to subjective correlated equilibrium:

Proposition 1. Let
(
d, α

)
be a subjective correlated equilibrium for the game Γ = (N, (Ai)i∈N , (ui)i∈N )

with respect to the subjective correlation device d = (Ω, (Pi)i∈N , (π)i∈N ). Then there exists a payoff

equivalent canonical subjective correlated equilibrium in which players are obedient.

Proof. Set Ω̂ = A. Set qi(a) = πi
(
{ω̄ ∈ Ω|α(ω̄) = a}

)
. Let P̂i(a) = {b ∈ A|bi = ai}, where ai is the

ith component of the action profile a. Finally, let α̂i(a) = ai. Then dcan = (Ω̂, (P̂i)i∈N , (qi)i∈N ) is a

subjective canonical device, and
(
dcan, α̂

)
is the desired subjective canonical correlated equilibrium.

2.4 Cheap Talk Games and Communication Equilibria

Whilst communication equilibria are the natural extension of correlated equilibria to games with in-

complete information, their original formulation was in the context of a set of stylized principal-agent

7They do not explicitly use the language of devices, but the definitions are equivalent.

10



games, where an informed agent reports information regarding his type to a totally uninformed prin-

cipal, who then takes an action that determines the payoff for both.8 Such games have been termed

cheap-talk games, as the information transmitted by the agent has no direct effect on the payoff to either

player. The earliest examples of the analysis of such games are to be found in [Crawford, Sobel, 1982]

and [Green, Stokey, 1980].9 One can extend this scenario to allow for more general forms of commu-

nication, i.e. allowing both principal and agent to have private information, allowing both to have

information transmission roles and actions, etc.

The similarities to the communication device setup are clear, with one important distinction. With

communication devices, all information transmission is private; the device acts as a third-party medi-

ator for communication between players, and does not reveal its received inputs or generated outputs

publicly.10. Clearly, in the cheap-talk scenario, the device is totally removed from the system, and

the players communicate directly. As a result, it is to be expected that cheap talk equilibria may be

contained within private communication equilibria, but maybe not the converse. In other words:11

Definition 4. Let ΓB = (N, (Ti)i∈N , p, (Ai)i∈N , (ui)i∈N ) be a Bayesian game. Then a cheap-talk

extension ext(G) of ΓB consists of T stages of costless, unmediated communication before G is

played, in which at each t ∈ T , each i simultaneously selects a message in M i
t and transmits it to a

subset of players. After the communication phase, players choose their actions. If the communication

is before players learn their types, then it is called an ex ante phase. If it occurs after they learn their

types but before their choose their actions, then it is called an interim phase.

Remark 1. The payoffs generated by all ext(G) is contained in the space of payoffs generated by all

communication equilibria.

For a formal discussion of this statement and its proof, see [Forges, 2009]. Of course, the duality

represented in Remark 1 depends entirely on the manner of communication allowed for. It is natural,

then, to assume that by generalizing the notion of a communication equilibria, we could find a suitably

generalized notion of cheap-talk that mirrors this duality. This is the aim of Chapter 5.2, which defines

a cheap-talk extension corresponding to our notion of a Bayesian communication equilibrium.

8See [Myerson, 1982], [Forges, 1985].
9The latter involves a more general setup than described, and will be discussed later.

10This idea was pursued in [Lehrer, 1996], which allows the device to issue public announcements.
11This definition is taken from [Forges, 2009].
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3 Extended Communication Equilibria

We are now ready to introduce the first of our generalizations of the concept of a communication device.

Combining the concepts outlined above, the most general form of a communication device presently

available follows the scheme:

T
σ−→ S

π−→M
δ−→ A

We can extend this to cover the case where the device uses different transition probilities to generate

its output. Naturally, this may be termed a subjective communication device, following the scheme

T
σ−→ S

πi−→M
δ−→ A

In words, the device receives an input vector from the players and then uses different transition dis-

tributions to calculate private output vectors for each player. Such devices are open to attack by

proponents of the CPA as discussed. We aim to analyze such devices by ‘opening up’ the manner in

which the transition probabilities are calculated, and then demonstrating that such subjective devices

can be viewed as having bounded rationality in the form of non-partitional information. Let us begin

with a formal definition.

Definition 5. A subjective extended communication device (SECD) is a tuple

dc = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N ) ,

where Si is the set of inputs for i to the device, Mi is the set of private outputs from the device to

i, Fi is a partition of S for each i, and πi is the subjective transition distributions the device uses to

generate output vectors given input vectors. More precisely,

π : Fi −→ ∆M

An extended communication device (ECD) is a subjective extended communication device where,

for fi ∈ Fi and fj ∈ Fj,

πi(fi) = πj(fj) when fi = fj

i.e. the distributions over M conditional on common information sets agree. A subjective extended
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communication equilibrium (SECE) of ΓB is a Nash equilibrium of the game formed by attaching

a SECD to ΓB.

Remark 2. Take a Bayesian game ΓB = (N, (Ti)i∈N , p, (Ai)i∈N , (ui)i∈N ), and a SECD

de = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N ). Then playing the strategy profile (σ, δ) yields an expected

utility to player i of type ti of

∑
t∈T

p(t−i|ti)
∑
m∈M

∑
a∈A

πi(m|fi,σ(t))ui(δ(a|m,σ(t), t), σ, t)

This definition allows us to associate each s ∈ S with an element fi ∈ Fi. Let fi,s denote this element.

We say that the device ‘knows fi,s for channel i at s’.12

The device operates as follows. It receives an input vector from the players. However, whereas a

communication device has full certainty when reading this input vector, this new device does not,

reading it to within a degree of uncertainty prescribed by the information encoded in the partitions

Fi. The device then generates an output conditional on this information.

Remark 3. If Fi = S, and if πi = π for all i, then the SECD de = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N )

is a communication device.

Indeed, we can show that the notion of a SECD does not generalize that of a subjective communi-

cation device, thereby verifying that extended devices generalize communication devices only in their

operation, not in their equilibrium payoff sets.

Proposition 2. Every subjective communication device can be simulated by an SECD and vice versa.

Proof. Take a subjective communication device dc = (S,M,Qi). Set Fi = S for all i. Then fi,s = s

for all i ∈ N, s ∈ S, so set

πi(m|fi,s) = Qi(m|s), ∀m ∈M,∀i ∈ N

Then dE = (S,M,Fi, πi) is an equivalent SECD. Conversely, let dE = (S,M,Fi, πi) be a SECD. Let

Qi(m|s) = πi(m|fi,s), ∀m ∈M,∀s ∈ fi,s, i ∈ N

Then dc = (S,M,Qi) is an equivalent SCD.

12Henceforth, we call each of the i processing routes within the device ‘channels’.
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We give an example to demonstrate how such devices can generate equilibrium payoffs that pareto

dominate those achievable through communication devices.

Example. Consider ΓB = ({1, 2}, (Ti), (pi), (Ai), (ui)), the game of Bayesian Matching Pennies: T1 =

{s1, t1}, T2 = {t2}, p1(s1) = p1(t1) = 1
2 , A1 = {T,B}, A2 = {L,R}, and von-Neumann-Morgenstern

payoffs are given in the tables below:

s1 L R

T 1,-1 -1,1

B -1,1 1,-1

t1 L R

T -1,1 1,-1

B 1,-1 -1,1

Define the functions µ1, µ2 : T −→ ∆A as follows:13 If

µµµ =



µ1

(
(T, L)|s1

)
µ2

(
(T, L)|s1

)
µ1

(
(T,R)|s1

)
µ2

(
(T,R)|s1

)
µ1

(
(B,L)|s1

)
µ2

(
(B,L)|s1

)
µ1

(
(B,R)|s1

)
µ2

(
(B,R)|s1

)
µ1

(
(T, L)|t1

)
µ2

(
(T, L)|t1

)
µ1

(
(T,R)|t1

)
µ2

(
(T,R)|t1

)
µ1

(
(B,L)|t1

)
µ2

(
(B,L)|t1

)
µ1

(
(B,R)|t1

)
µ2

(
(B,R)|t1

)


Then let

13In the notation for µ, we assume T ∼= T1 by projection onto T1, i.e. we drop the need to include the label t2.
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µµµ =



1+ε
2

1−ε
2

0 0

1−ε
2

1+ε
2

0 0

1−ε
2

1+ε
2

0 0

1+ε
2

1−ε
2

0 0


Clearly, µµµ is a pair of transition distributions from T to A. Let Fi = T for all i. Then

dcc =
(

(Ti)i∈N , (Ai)i∈N , (µi)i∈N , (Fi)i∈N
)

is a SECD.14 Furthermore, if (αc, δc) is an honest-and-

obedient strategy profile, then
(
dcc, (σc, δc)

)
is a SECE of ΓB. In this equilibrium, each player receives

an expected utility of ε
2 . It is clear that any CE can yield an expected utility of at best 0. Hence, even

a small deviation in the device’s beliefs over the signal space can cause Pareto-improving outcomes in

equilibrium.15 For more details on this example, see Appendix A.

The causes of this payoff improvement are essentially identical to those outlined in [Aumann, 1967];

by using differing probability assessments, the device is effectively ‘betting against itself’, in the sense

that each channel holds a different prior probability assessment over the signal space. This clearly

could not happen if the device was not subjective, as a direct extension of Aumann’s famous common

knowledge result (see [Aumann, 1976]).

Within this framework, we can formulate a device that is analogous to the generalized correlated

equilibria in BDG.

Definition 6. A generalized extended communication device (GECD)is an ECD where for each

i Fi is a class of S such that:16 ⋃
i∈N
Fi = S

14It is also in canonical form, but this is irrelevant for the purposes of this example.
15Clearly, the SECE constructed tends to a canonical CE as ε→ 0.
16A class of a set X is a collection of subsets of X.
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Clearly, this is an analogue of non-partitional information; the function

fi : S → Fi

fi(s) = fi,s

is the equivalent of a possibility correspondence as defined previously, whereas in the ECD case, fi

corresponds to an information function.

We are now ready to prove one of our central results, namely that every SECE has a decision-

theoretically equivalent GECE counterpart. In order to this, we must first formally define the notion

of decision-theoretic equivalence in this framework.

Definition 7. Let

de = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N )

and

d̂e =
(

(Ŝi)i∈N , (M̂i)i∈N , (π̂i)i∈N , (F̂i)i∈N
)

be two extended communication devices. Then the two extended communication equilibria
(
dc, (σ, δ)

)
and

(
d̂c, (σ̂, δ̂)

)
are decision-theoretically equivalent if their exist isomorphisms φi : Fi −→ F̂i for

each i, such that

1. M = M̂

2. φi(fi,σ(t)) = f̂i,σ̂(t)

3. πi(Fi) = π̂i(φi(Fi))

4. For f̂i, . = φi(fi, . ),

∑
t−i∈T−i

p(t−i|ti)
∑
m∈M

∑
a∈A

πi(m|fi,(ri,σi(ti)))ui
(
νi(ai|mi, ti), (δ−i(a−i|m−i, t−i), σ(t), t)

)

=

∑
t−i∈T−i

p(t−i|ti)
∑
m∈M

∑
a∈A

π̂i(m|f̂i,(r̂i,σ̂i(ti)))ui
(
νi(bi|mi, ti), (δ−i(a−i|m−i, t−i), σ̂(t), t)

)

16



∀ri ∈ Si, ∀r̂i s.t. (r̂i, σ̂−i(t−i)) ∈ φi
(
(ri, σ−i(t−i))

)
∀bi ∈ Ai, ∀ν : Mi × Ti → ∆Ai,∀ti ∈ Ti

In short, this states that strategies align on isomorphic information sets, and that expected utilities are

equal. The isomorphism on information sets implies that the equilibria are behaviorally linked in the

sense that, faced with the two information structures, the players/device make the same decisions. The

first condition is necessary because players have fully certain on their respective outputs, i.e. on Mi.

Note that the last condition is stronger than payoff equivalence, since it also enforces that isomorphic

deviations from the equilibria yield equal expected utility. As noted in BDG, it is easily seen that

decision-theoretic equivalence is an equivalence relation:

Remark 4. Decision-theoretic equivalence is an equivalence relation on the set of SGECE.

(sketch of proof). Transitivity follows from the composition of isomorphisms being an isomorphism.

Symmetry follows from the inverse of an isomorphism being an isomorphism. Reflexivity is clear.

We can now present the central results of this section. In each case, after outlining the statement and

proof, we discuss the intuition behind the proofs.

Theorem 1. Let de = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N ) be an SGECD, and
(
de, (σ, δ)

)
the associ-

ated equilibrium of a game ΓB. Then there exists a SECD d̂e =
(

(Ŝi)i∈N , (M̂i)i∈N , (π̂i)i∈N , (F̂i)i∈N
)

and strategies (σ̂, δ̂) such that the associated SECE of ΓB is decision-theoretically equivalent to(
de, (σ, δ)

)
.

Proof. Let Ŝi = Fτ(i), where τ : N → N is bijective and has no fixed point.17 Then Ŝ = Fτ(1) × ...×

Fτ(N).

Set

σ̂(t) =
(
fτ(1),σ(t), ..., fτ(N),σ(t)

)
For ease of notation, let Ŝ = F1× ...×FN . Construct partitions on Ŝ as follows: for (R1, ..., RN ) ∈ Ŝ,

let

P̂i(R1, ..., RN ) = {Ri} × F−i

Essentially, channel i is unable to distinguish between elements in Ŝ that have the same i-th component.

This induces the isomorphisms:

17For instance, let τ be the permutation (1 2 ... N) on the group with N elements.
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φi : Fi → F̂i

φi(fi) = {fi} × F−i

Let the partitions F̂i be generated by φi, i.e. let

f̂i,ŝ = φi(Pi(s))

F̂i =
⋃
ŝ∈Ŝ

f̂i,ŝ

Now construct the distributions:

¯̂πi(m|f̂i,ŝ) = πi(m|s), where f̂i,ŝ = φi(Pi(s))

Then d̂e =
(

(Ŝi)i∈N , (M̂i)i∈N , (π̂i)i∈N , (F̂i)i∈N
)

is the necessary device, and
(
d̂e, (α̂, δ)

)
is decision-

theoretically equivalent to
(
de, (σ, δ)

)
.

To see that this is indeed an equilibrium, it is clear that there is no incentive for any player to deviate

from δ with respect to d̂B if there isn’t with respect to dB. To show that there is no incentive to

deviate from σ̂(t), suppose that τ(j) = i and τ(i) = k. Then

F̂i(σ̂(t)) = F̂i
(
..., fτ(i),σ(t), ..., fτ(j),σ(t)...

)
= F̂i

(
..., ŝi, ..., fi,σ(t)...

)
= f̂i,(ŝi,σ̂−i(t−i)) ∀ŝi ∈ Ŝi,

i.e. player i reports in the set Fτ(i), hence any deviation by i will not change the ith component of

σ̂(t), since τ has no fixed point, and will thus be in the same information set with respect to F̂i. Hence,

deviation at the input stage has no effect on each player’s expected utility.

We prove the converse to this result.

Theorem 2. Let de = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N ) be an SECD, and
(
de, (σ, δ)

)
the associated

equilibrium of a game ΓB. Then there exists a GECD d̂e =
(

(Ŝi)i∈N , (M̂i)i∈N , (π̂i)i∈N , (F̂i)i∈N
)

and
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strategies (σ̂, δ̂) such that the associated GBCE of ΓB is decision-theoretically equivalent to(
de, (σ, δ)

)
.

Proof. Let Ŝ = S × {1, . . . , N}. Let Ŝi = Si × {1, . . . , N} for some fixed i ∈ N , and let Ŝi = Si for

i 6= i. Construct σ̂(t) as

σ̂−i(t) = σ−i(t)

σ̂i(t) =
(
σi(t), j

)
, for any j ∈ N

Construct partitions on Ŝ as follows: for (s, j) ∈ Ŝ, let

P̂i(s, j) = Pi(s)

Then the isomorphisms φi naturally follow:

φi : Pi → P̂i

φi(Ri) = Ri × {1, . . . , N}

Again, let the classes Fi be generated by φi. Then construct the prior distribution:

π̂
(
m|(s, i)

)
= πi(m|s)

This distribution is well-defined because of the construction of the classes above, specifically, because

the classes are pairwise disjoint, i.e.:

Fi ∩ Fj = ∅, ∀i, j ∈ N

Then d̂e =
(

(Ŝi)i∈N , (M̂i)i∈N , (π̂i)i∈N , (F̂i)i∈N
)

is the necessary GECD, and
(
d̂e, (α̂, δ)

)
is the decision-

theoretically equivalent equilibrium.

Again, it is clear that there is no incentive for any player to deviate from δ. To show that there is no

incentive to deviate from σ̂(t), it suffices to note that in the construction of Ŝ, the second component

is essentially a dummy, in that it has no effect on either the partitions F̂i or the prior π̂. Hence, player

i can report any element of the set {1, . . . , N} without effect on the payoffs. Since the other strategies
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are identical to the initial equilibrium, the no-deviation property is inherited.

In both the proofs above, the construction of the new signal space Ŝ is the key step. Both constructions

are broadly taken from the proofs of Propositions 4.1 and 4.2 in BDG. In Theorem 1, the construction is

essentially expanding the signal space to allow each channel to be able to ‘imagine what all others know’,

i.e. form the product space over all the classes of S, which represent the knowledge for each channel.

This may seem like cheating; by effectively endowing each channel with the combined knowledge

of all channels, it is easy to induce a partition on this construction, as has been shown. Indeed,

the construction offers an implicit argument against the existence of non-partitional information; by

extending the state-space sufficiently, one can ‘reveal’ a partition for a decision-maker, by allowing

him to perceive what he can perceive. A similar observation is made by [Luce, 1956] in the context

of preference theory.18 In Theorem 2, the construction is again natural in some sense. Essentially, by

adding the dummy set {1, . . . , N} to S, we are able to combine the given heterogenous priors into a

common prior by indexing using this dummy set.

These observations are not intended to undermine the results. They simply serve to give the reader

some insight into the choice of constructions, which, at first glance, may seem both arbitrary and

mathematically recondite. Indeed, the objective of these results is simply to create a mapping between

the two sets of equilibria.

3.1 Potential Drawbacks

Having introduced the concept of an ECD, we offer some potential shortcomings. Recall that the

original aim of constructing such a device was to simulate existing communication devices whilst

‘opening up’ the process through which they generate output. As such, it should preferably retain as

many properties of communication devices as possible, whilst explicating the ‘thinking’ process in as

efficient a manner as possible. There are two ways in which extended communication devices fail by

this measure.

First, the definition of the transition probability distributions is not strictly maintained by extended

18We thank Peter Hammond for pointing us toward this source.
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devices; in a communication device, we have

Qi : S −→ ∆M,

whereas in an extended device,

πi : Fi −→ ∆M,

Hence, the uncertainty embodied in the thinking process of an ECD is captured in the Fi, rather than

a direct thought process.

Second, and more importantly, extended devices do not perform Bayesian updating. In a sense,

Bayesian updating is the most natural form of information processing available, operating through the

following simple algorithm: prior understanding, observation, interpretation and subsequent under-

standing. Furthermore, it is the canonical model of information processing adopted within the game

theory literature. Hence, it would be desirable to model the device’s thinking process using Bayesian

updating.

4 Bayesian Communication Equilibria

In the last section, we introduced the notion of an ECD, and discussed various possible drawbacks of

such a device. We now attempt to address those drawbacks by constructing a new device, namely a

Bayesian communication device. This new class of device both preserves the structure of the transi-

tion probabilities and incorporates Bayesian updating. We will see how extended devices represent a

‘reduced-form’ version of Bayesian devices, in the sense that, whilst it does not restrict the equilibrium

payoff set, the device’s thought process is far more simplistic.

Definition 8. A Bayesian communication device (BCD) is a tuple

dB = ((Si)i∈N , (Mi)i∈N , π, q, (Pi)i∈N ), where Si, Mi are as before, π is a prior distribution on S, q is

a transition probability distribution from S to M , i.e. q : S → ∆M , and Pi is an information function

on S.

A subjective Bayesian communication device (SBCD) is a Bayesian communication device in

which the prior π and the transition distribution q is allowed to vary for each i, i.e. a tuple

dB = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (qi)i∈N , (Pi)i∈N ).
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A generalized Bayesian communication device (GBCD) is a Bayesian communication device in

which Pi is a possibility correspondence for each i.

A subjective generalized Bayesian communication equilibrium (SGBCE) of ΓB is a Nash

equilibrium of the game formed by attaching a subjective generalized Bayesian communication device

to ΓB.

Remark 5. Take a Bayesian game ΓB = (N, (Ti)i∈N , p, (Ai)i∈N , (ui)i∈N ), and a SGBCD dB =

((Si)i∈N , (Mi)i∈N , (πi)i∈N , (qi)i∈N , (Pi)i∈N ). Given a strategy profile (σ, δ), the expected utility to player

i of type ti when playing the extended game ΓdB is

Ui((σ, δ), ti) =
∑

t−i∈T−i

p(t−i|ti)
∑
m∈M

∑
s∈S

∑
a∈A

π̄i(s|Pi(σ(t)))qi(m|s)ui((δ(a|m, t), σ(t), t)

where π̄i is channel i’s posterior, given by

π̄i(s
′|Pi(s)) =


πi(s

′)∑
ŝ∈Pi(s)

πi(s′)
if s′ ∈ Pi(s)

0 s′ /∈ Pi(s)

Alternatively, let Qi : S → ∆M be defined as

Qi(m|s) =
∑
s′∈S

π̄i(s
′|Pi(s))qi(m|s′)

Then

Ui((σ, δ), ti) =
∑

t−i∈T−i

p(t−i|ti)
∑
m∈M

∑
a∈A

Qi(m|σ(t))ui((δ(a|m, t), σ(t), t)

The device works as follows. Having received an input vector, it performs Bayesian updating on the

priors given the information encoded in the Pi’s. It then combines this posterior with the transition

distributions to generate an output. This is clearly a more natural extension of the communication

device, as it preserves the existence of transition distributions from S to M ; in Remark 5, these is

Qi (we will call these distributions the overall transition distributions). The only modification to the

standard communication device is in prescribing the manner in which the device explicitly interprets

its inputs. Diagrammatically, we have:

Communication device: T
σ−→ S

π−→M
δ−→ A
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Bayesian communication device: T
σ−→ S

update−−−−→
priors

S
q−→M

δ−→ A

At first glance, it may seem as though, rather than dealing with the level of arbitrariness in the

transition distributions, Bayesian devices simply add a layer of thinking, whilst maintaining the same

arbitrariness in the distribution q. This is not the case. The process of Bayesian updating and the

manner in which these posteriors are combined with the transition distribution results in a probabilistic

weighting process; more weight is given to the distribution q(M |s) corresponding to a greater posterior

on s.

Remark 6. If Pi(s) = s for all s ∈ S, and if πi = π and qi = q for all i, then the subjective Bayesian

communication device dc = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N ) is a communication device.

Moreover, we can show how extended devices are essentially Bayesian devices that operate using a

simplified thought process.

Proposition 3. For a given SGECD de = ((Si)i∈N , (Mi)i∈N , (π̂i)i∈N , (Fi)i∈N ), there exists a SGBCD

dB = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (qi)i∈N , (Pi)i∈N ) such that:

π̂i(m|fi,s) = Qi(m|s′), ∀s′ ∈ fi,s, ∀fi,s ∈ Fi, ∀i ∈ N.

and vice versa.

Proof. The converse direction is clear; set Fi = Pi, and

π̂i(m|fi,s) = Qi(m|s′), ∀s′ ∈ fi,s, ∀fi,s ∈ Fi, ∀i ∈ N.

as above.

Now Suppose M = {m1,m2, . . . ,mj} and S = {s1, s2, . . . , sk}. Then let the qi be the k × j right

Markov transition matrix for dB, i.e.

qT
i =



qi(m1|s1) qi(m1|s2) · · · qi(m1|sk)

qi(m2|s1) qi(m2|s2) · · · qi(m2|sk)
...

...
. . .

...

qi(mj |s1) qi(mj |s2) · · · qi(mj |sk)


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Let π̄ππi(s) be the k-vector of channel i’s posterior on S, given Pi(s), and let

Π̄i =

(
π̄ππi(s1) π̄ππi(s2) · · · π̄ππi(sk)

)
Then, if

QT
i =



Qi(m1|s1) Qi(m1|s2) · · · Qi(m1|sk)

Qi(m2|s1) Qi(m2|s2) · · · Qi(m2|sk)
...

...
. . .

...

Qi(mj |s1) Qi(mj |s2) · · · Qi(mj |sk)


we have by Remark 5 that

QT
i = qT

i Π̄i

Now let qi(m|s) = πi(m|fi,s), let Pi(s) = fi,s and let the prior π be uniform over S. Then

(Π̄i′)ij =


1∣∣Pi′ (s)
∣∣ if si ∈ Pi′(sj)

0 otherwise

Thus,

(
qT
i′ Π̄i′

)
ij

=
∑

sk∈Pi′ (sj)

π̄i′(sk|Pi′(sj))qi′(mi|sk)

=
∑

sk∈Pi′ (sj)

qi′(mi|sk)∣∣Pi′(sj)∣∣
= πi′(mi|fi,s), where sj ∈ fi,s

This shows that we can think of extended devices as ‘reduced-form’ examples of Bayesian devices. We

will see that such an analogy has heightened resonance in the context of the proofs of Theorems 3 and

4, which are essentially enriched versions of those of Theorems 1 and 2.

Like subjective/generalized extended communication devices, subjective/generalized Bayesian commu-
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nication devices can generate equilibrium payoffs that pareto-dominate communication devices:19

Example. Let ΓB = ({1, 2}, (Ti), (pi), (Ai), (ui)) be a Bayesian game: T1 = {t1, s1}, T2 = {t2, s2},

p1(s1) = p1(t1) = 1
2 , p2(s2) = p2(t2) = 1

2 , A1 = {T,B}, A2 = {L,R}, and von-Neumann-Morgenstern

payoffs are given in the tables below:

(t1, t2), (s1, s2) L R

T 0,8 3,3

B 1,1 0,0

(t1, s2), (s1, t2) L R

T 0,0 3,3

B 1,1 8,0

i.e., the first payoff structure obtains in states (t1, t2), (s1, s2), and the second obtains in states

(t1, s2), (s1, t2). We now define a device dB for ΓB. Let S = {(t1, t2), (s1, t2), (t1, s2), (s1, s2)} ≡

{1, 2, 3, 4}.

Let M = {m1,m2,m3,m4}. Define the (Pi)i∈I by the following:

P1(1) = {1, 2} P2(1) = {1, 3, 4}

P1(2) = {1, 2, 3} P2(2) = {2, 3, 4}

P1(3) = {1, 2, 3} P2(3) = {2, 3, 4}

P1(4) = {1, 2, 4} P2(4) = {4, 3}

Let π(s) = 1
4 for all s ∈ S. Let q(mi|S) = 1i, where 1i is a vector of 0’s and a 1 in the i-th component.

Now define the strategy profiles as:

αi(ti) = ti ∀i ∈ N, ti ∈ Ti

δ1(m1, t1) = U, ∀m1 ∈M1, t1 ∈ T1

δ2(m2, t2) = R, ∀m2 ∈M2, t2 ∈ T2

Then (dB, (α, δ)) is a GBCE of ΓB. For further discussion, see Appendix A.

19This example is based on Example 2 in BDG.
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We now redefine decision-theoretic equivalence in this setting:

Definition 9. Let

dB = ((Si)i∈N , (Mi)i∈N , π, q, (Pi)i∈N )

and

d̂B =
(

(Ŝi)i∈N , (M̂i)i∈N , π̂, q̂, (P̂i)i∈N
)

be two SGBCDs. Then the two SGBCE’s
(
dc, (σ, δ)

)
and

(
d̂c, (σ̂, δ̂)

)
are decision-theoretically

equivalent if their exist isomorphisms φi : Pi −→ P̂i for each i, such that

1. M = M̂

2. φi(Pi(σ(t))) = P̂i(σ̂(t))

3. For P̂i( . ) = φi(Pi( . )),

∑
t−i∈T−i

p(t−i|ti)
∑
m∈M

∑
s∈S

∑
a∈A

π̄i(s|Pi(ri, σ−i(t−i)))qi(m|s)ui
(
νi(ai|mi, ti), (δ−i(a−i|m−i, t−i), σ(t), t)

)

=

∑
t−i∈T−i

p(t−i|ti)
∑
m∈M

∑
ŝ∈Ŝ

∑
a∈A

¯̂πi(ŝ|P̂i(r̂i, σ̂−i(t−i)))q̂i(m|ŝ)ui
(
νi(bi|mi, ti), (δ−i(a−i|m−i, t−i), σ̂(t), t)

)

∀ri ∈ Si, ∀r̂i s.t. (r̂i, σ̂−i(t−i)) ∈ φi
(
(ri, σ−i(t−i))

)
∀bi ∈ Ai, ∀ν : Mi × Ti → ∆Ai, ∀ti ∈ Ti

We now prove the central result of this section. Again, the proof borrows elements from the proof of

Proposition 4.1 in BDG, but also makes some amendments.

Theorem 3. Let dB = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (qi)i∈N , (Pi)i∈N ) be an SGBCD, and
(
dB, (σ, δ)

)
the associated equilibrium of a game ΓB. Then there exists a SBCD

d̂B =
(

(Ŝi)i∈N , (M̂i)i∈N , (π̂i)i∈N , (q̂i)i∈N , (P̂i)i∈N
)

and strategies (σ̂, δ̂) such that the associated SBCE

of ΓB is decision-theoretically equivalent to
(
dB, (σ, δ)

)
.

Proof. Let Si = Pi(S), i.e. the partition of S generated by Pi. Let Ŝi = Sτ(i), where τ : N → N is

bijective and has no fixed point. Then Ŝ = Sτ(1) × ...× Sτ(N).
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Set

σ̂(t) =
(
Pτ(1)(σ(t)), ...,Pτ(N)(σ(t))

)
Again, for ease of notation, let Ŝ = S1 × ... × SN . Construct the partitions on Ŝ as follows: for

(R1, ..., RN ) ∈ Ŝ, let

P̂i(R1, ..., RN ) = {Ri} × S−i

Essentially, channel i is unable to distinguish between elements in Ŝ that have the same i-th component.

This induces the set of isomorphisms:

φi : Pi → P̂i

φi(Ri) = {Ri} × S−i

Now construct the posteriors:

¯̂πi(R1, ..., RN |{R̄i} × S−i) = πi({s ∈ S : Pj(s) = Rj , i 6= j |R̄i})

The left-hand side of this expression is the probability of the element (R1, ..., RN ) occurring, given that

the element (..., R̄i, ...) has occurred. It is essentially a projection/counting process; identify the signals

that lie in the intersection of the information sets R1, ..., RN , for some fixed R̄i and then calculate the

probability of this event occurring.

The input strategy profile σ̂(t) and the partitions P̂i satisfy part 2 of the definition for decision-theoretic

equivalence. It remains to construct the transition distributions q̂i : Ŝ → M . For payoff equivalence

to hold, we require that

Condition 1. Q̂i(m|ŝ) = Qi(m|s) , where P̂i(ŝ) ∈ φi(Pi(s))

In words, we require that the overall transition distributions are equal on isomorphic information sets.

Let

q̂i(m|ŝ) =
1∣∣P̂i(ŝ)∣∣

( Qi(m|s)
¯̂πi(ŝ|P̂i(ŝ))

)
, ∀m ∈M, ŝ ∈ Ŝ, where P̂i(ŝ) ∈ φ(Pi(s))

Then
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Q̂i(m|ŝ) =
∑
s∈Ŝ

¯̂πi(s|P̂i(ŝ))q̂i(m|s)

=
∑

s∈P̂i(ŝ)

¯̂πi(s|P̂i(ŝ))q̂i(m|s)

=
∑

s∈P̂i(ŝ)

¯̂πi(s|P̂i(ŝ))
¯̂πi(s|P̂i(s))

Qi(m|s)∣∣P̂i(ŝ)∣∣
= Qi(m|s)

The second equality of this derivation holds by definition of the posterior, the third holds by direct

substitution for q̂i(m|ŝ) and the fourth because ¯̂πi(s|P̂i(s)) = ¯̂πi(s|P̂i(ŝ)) for all s ∈ Pi(ŝ).20

Thus, the device d̂B =
(

(Ŝi)i∈N , (Mi)i∈N , (π̂i)i∈N , (q̂i)i∈N , (P̂i)i∈N
)

is the necessary device, and the

equilibrium (d̂B, (σ̂, δ)) is the necessary equilibrium.

That this profile is an equilibrium follows an identical argument to that in the proof of Theorem 1.

We now prove the converse to the Theorem 3.

Theorem 4. Let dB = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (qi)i∈N , (Pi)i∈N ) be an SBCD, and
(
dB, (σ, δ)

)
the

associated equilibrium of a game ΓB. Then there exists a GBCD d̂B =
(

(Ŝi)i∈N , (M̂i)i∈N , π̂, q̂, (P̂i)i∈N
)

and strategies (σ̂, δ̂) such that the associated GBCE of ΓB is decision-theoretically equivalent to(
dB, (σ, δ)

)
.

Proof. Let Ŝ = S × {1, . . . , N}. Let Ŝi = Si × {1, . . . , N} for some fixed i ∈ N , and let Ŝi = Si for

i 6= i. Construct σ̂(t) as

σ̂−i(t) = σ−i(t)

σ̂i(t) =
(
σi(t), j

)
, for any j ∈ N

Construct the partitions on Ŝ as follows: for (s, j) ∈ Ŝ, let

P̂i(s, j) =
(
Pi(s), i

)
20It is important to note that this last step only holds because the P̂i’s are partitions.

28



Then the isomorphisms φi naturally follow:

φi : Pi → P̂i

φi(Ri) = ({Ri}, i)

Now construct the prior distribution:

¯̂π(s, j) =
1

G
πi(s|Pi(s)),

where G =
∑

(s,j)∈Ŝ πi(s|Pi(s)) is the normalization constant. Let q̂(m|(s, i)) = qi(m|s) for all i. Then

Condition 1 is satisfied, and the strategy profile (σ̂, δ) is an equilibrium of ΓB with respect to d̂B.

Again, that this profile is in equilibrium follows from the proof of Theorem 2.

For numerical examples of the constructions used in Theorems 1 and 2, see Appendices B and C

respectively. It is important to note that the GBCE constructed in the last proof does not satisfy

non-delusion.21 Figure 1 demonstrates this observation graphically.

21This result mirrors that following Proposition 4.2 in BDG, since the signal-space construction above largely mirrors
their construction of Ω̃.
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NND

SBCE OBCE

Figure 1: Chain of Inclusions generated by Theorems 3 and 4

NND refers to ‘non-non-delusion’, i.e. information structures that do not satisfy non-delusion.

Remark 7. Non-delusion does not expand the set of GBCEs of a Bayesian game ΓB.

Proof. Follows directly from Remark 4 and sequential application of Theorems 3 and 4.

Owing to the vast array of different devices, equilibria, associated payoff spaces and relationships

between these objects, it is worth summarizing the results obtained graphically. See Figure 2.

5 Further Topics

5.1 The Revelation Principle and Generalized Bayesian Devices

In section 2.3, we outlined the notions of canonical devices, equilibria and the Revelation Principle.

The system of linear inequalities defining a canonical equilibrium were shown to not only embody

a computational tractable problem, but also to provide a characterization of the space of transition

distributions that qualify as canonical, i.e. µ : T → ∆A is an honest-and-obedient canonical equilibrium

of ΓB if and only if

∑
t−i∈T−i

p(t−i|ti)
∑
a∈A

π(a|t)ui(t, a) ≥
∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

π(a|si, t−i)ui(t, f(ai), a−i),

∀i ∈ N, ∀ti, si ∈ Ti,∀f : Ai → Ai

Essentially, the Revelation Principle comprises of two parts. First, it defines and classifies the set

of honest-and-obedient canonical equilibria. Second, it maps non-canonical equilibria into this set.

However, we have shown through examples how the set of equilibrium payoffs is expanded by allowing

for subjective priors. Since a canonical equilibrium generated through the Revelation Principle clearly
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Proposition 3

Theorems 1, 2
Theorems 3, 4Proposition 2

Remark 5

Remark 3

Remark 5

Proposition 3

Proposition 3

Figure 2: Graphical Summary of Results

cannot contain payoff profiles outside the set of non-canonical equilibria payoff profiles, it is evident

that, if we are to assert the Revelation Principle in the context of either subjective or generalized

devices, we must re-define the set of honest-and-obedient canonical equilibria, i.e. we must relax the

constraints embodied in the linear equations above for a canonical device µ to qualify as a generalized

or subjective canonical device. The question is thus embodied in the following diagram:

CE′s
RevPrinc−−−−−−→ CCE′sy y

SCE′s,GCE′s
RevPrinc−−−−−−→ ?

First, let us consider subjective devices, be they extended, Bayesian or orthodox communication de-

vices. Just as was the case for correlated equilibria, it is easy to prove the Revelation Principle in this

setting.

Theorem 5. Let
(
de, (σ, δ)

)
be an SECE with respect to the device

de = ((Si)i∈N , (Mi)i∈N , (πi)i∈N , (Fi)i∈N ) for the game ΓB = (N, (Ti)i∈N , p, (Ai)i∈N , (ui)i∈N ). Then

there is a canonical subjective communication equilibrium
(
dcc, (σc, δc)

)
for ΓB that is payoff equivalent

to
(
de, (σ, δ)

)
, in which every player truthfully reveals his type, and takes the action prescribed to them

by the device.

31



Proof. If such a canonical equilibrium exists, it is by construction the case that σic and δic are the

identity maps on Ti and Mi respectively, for each i. It remains to construct a family of transition

distributions:

µi : T −→ A

such that
(
dcc, (σc, δc)

)
is a canonical communication equilibrium for ΓB that is payoff-equivalent to(

de, (σ, δ)
)

, i.e.

∑
t∈T

p(t−i|ti)
∑
m∈M

πi(m|fi,σ(t))ui((σ, δ), t) =
∑
t∈T

p(t−i|ti)
∑
a∈A

µi(a|t)ui((t, a), t)

Choose

µi(a|t) =
∑
(σ,δ)

∑
m∈δ−1(a)

(∏
i∈N

λi(σi, δi|ti)
)
πi(m|fi,σ(t))

where the distribution λi is the naturally induced marginal for each i and ti, and δ−1(a) = {m ∈M :

δ(a|m) > 0}.

The device constructed works as follows:

1. The device asks players to report their types.

2. The device simulates the reports (the σi(ti)s) that would have been sent according to the original

equilibrium, given the types reported in step 1.

3. The device determines both the distribution on M that would have been arrived at under the

original device, for each i, and the action profile players would have chosen under the original

device given this output.

4. The device prescribes this action.

It is now clear why the device-strategy profile combination created is an equilibrium; if there was any

incentive to deviate under the new equilibrium, there must have been in the original equilibrium, which

is absurd.

The statement and proof of the Revelation Principle for subjective Bayesian devices is identical in

nature, with the expressions for payoff equivalence duly altered.

Let us now consider generalized devices. To tackle this question, we draw analogy to Proposition

5.1 in BDG. This result characterizes the set of honest-and-obedient canonical generalized correlated
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equilibria of a normal-form game Γ, and hence verifies the first part of the Revelation Principle.22 We

now propose a classification of all honest-and-obedient canonical generalized Bayesian communication

equilibria.

Definition 10. Define

Qµ(ai, ti) =
{
q : T−i → ∆A−i | supp q(s−i) ⊂ supp µ(.|ai, (s−i, ti)) ∀s−i ∈ T−i,

∑
t∈T

p(t−i|ti)
∑

a−i∈A−i

q(a−i|t−i)ui((t, a), t) ≥
∑
t∈T

p(t−i|ti)
∑

a−i∈A−i

q(a−i|t−i)ui((t, bi, a−i))
}

Then Qµ(ai, ti) is the set of all transition distributions on A−i with support contained in µ(.|ai, ti) for

which ai and ti are optimal for i. For an arbitrary set Y , let

aff Y =
{∑

n

βnyn | yn ∈ Y,
∑
n

βn = 1
}

Conjecture 1. µ : T → ∆A is a canonical GBCE if and only if µ(.|ai, ti) ∈ aff Qµ(ai, ti)

Remark 8. The statement that µ(.|ai, ti) ∈ Qµ(ai, ti) is precisely that µ(.|ai, ti) is a canonical BCE.

The form of Conjecture 1 mirrors that of Proposition 5.1 in BDG, with the definition of Qµ(ai, ti)

extended to cover transition distributions, rather than simply probability distributions. Remark 8

shows that the conditions for a canonical GBCE are broader than for a canonical BCE, which is

logical. Proving it is beyond the scope of this project, as it would require extensive construction and

discussion in and of itself.

5.2 Fallible Talk and Bayesian Communication Equilibria

In Section 2.4, we discussed how direct communication between players can be formalized into a game-

theoretic solution concept, namely a cheap-talk extension of ΓB, and how the equilibrium payoffs

generated by such systems are contained in those that use private communication, examples of which

include the various notions of communication equilibria employed throughout this paper. We can now

construct a form of cheap talk that embodies the ‘public’ counterpart to BCDs. Consider the following

rules of an extension to ΓB:

22They refer to these equilibria as generalized correlated equilibrium distributions.
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1. Players learn their types.

2. Given these types, players send a message, or signal, to some subset of the remaining players.

3. Each player can interpret these messages up to some level of uncertainty, represented by a prior

and an information function on the signal space.

4. Having interpreted these signals, the original game is played.

It is clear how this scheme is closely related to that followed in a BCE.23 Such a scheme clearly has

practical application. One can think of a situation in which a person solicits the advice of an expert, but

cannot fully comprehend their advice, maybe for linguistic or technical reasons. Such communication

could be termed fallible talk. Note that this applies whether the players have partitional or non-

partitional information. More specifically,

Definition 11. Let ΓB be a Bayesian game. We define a fallible talk extension of ΓB as a game

in which many interim phases of unmediated communication are allowed before ΓB is played. More

precisely, let Si be a set of signals for player i, πi(.|si) be a prior measure on S for i, and Pi be an

information function on S for i. At each stage, every player selects an si ∈ Si. These choices are then

revealed to a subset of the remaining players. Having received the vector of inputs s−i, player i combines

this with si and interprets this new information by updating πi(.|si) using Pi in the following fashion:

suppose player i receives messages from players in J ⊂ N . Then he updates his prior conditional on

the event Ei, where

Ei = {(sJ , s−J), ∀s−J ∈ S−J}

At the end of the communication phase, the game is played.

Of course, such communication makes more sense in the canonical case, i.e. where each the signals

each player can send lie in their type space.

It is important to note that [Green, Stokey, 1980] also allow for subjective priors and non-partitional

information in their cheap talk games. However, they assume these properties for the underlying game,

rather than the additional communication phases, i.e. they allow the prior p on T to be different for

each player, and allow the agent to learn his type in a non-partitional fashion. With fallible talk, the

23One difference is that there is no message space involved in the scheme above, but this difference is purely cosmetic.
We could easily insert such an interim phase, but this would add no descriptive power to the specification of the process.
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underlying game involves full rationality and a common prior, whilst the communication phase may

not.

An interesting application of fallible talk is to the opinion game.24 To describe this game, we must

abandon the type space construction of a Bayesian game, and use a state-space/partition construction,

as discussed in Section 2.1.

Definition 12. The Opinion Game Let Ω ⊂ R, let p(Ω) be a prior distribution, let Pi be an

finite information function,25 let Ai = R, and let ui(a, ω) = −(ai − ω)2 (the players are rewarded

for approximating the true state ω with greater accuracy). Then ΓO = ({1, 2},Ω, π,Pi, Ai, ui) is a

Bayesian game.

Now, consider a fallible talk extension of ΓO in which the signal space for each player is Ω, and the

priors and partitions are the same as for the underlying game. Then we have:

Remark 9. For the fallible talk extension of the opinion game described above, there exists an equi-

librium in which each player takes the same action.

This is simply a re-wording of Aumann’s famous common knowledge result; if two people share a

common prior, and their posteriors are common knowledge, then their posteriors are equal. Specifically,

it follows the form outlined in [Geanakoplos, Polemarchakis, 1982]; rather than common knowledge,

they assume a finite number of revisions of the players’ posteriors through direct communication. The

result holds even if we use possibility correspondences that satisfy non-delusion and balancedness. This

is essentially Theorem 6 in [Geanakoplos, 1989].

6 Conclusion

The purpose of this paper was to extend the notion of a communication equilibrium to allow for explicit

modeling of the underlying device’s thinking process. We achieved this through the introduction of two

new devices, namely extended and Bayesian communication devices. We then showed how, in both

cases, allowing the device to adopt ‘multiple priors’ is equivalent to imposing bounded rationality on its

information processing capabilities. We discussed the Revelation Principle in the context of extended

and Bayesian equilibria, and concluded by discussing an analogue of cheap talk, namely fallible talk in

the context of Bayesian communication equilibria.

24As outlined in [Geanakoplos, 1989].
25i.e. |Pi(Ω)| <∞.
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The remit of this paper restricts the breadth and depth to which we can explore the concepts introduced

in it. As such, there remain many topics worth exploring.

For instance, it may be beneficial to consider refinements to the solution concepts involved. Nash

equilibrium is effectively the only solution concept used throughout; for all types of device, we look

at the Nash equilibria of the games formed by attaching the device. Indeed, parts of the proofs of

Theorems 1,2,3 and 4 would clearly not hold for more refined solution concepts.26 If we interpret the

game as being static, then ex-post and ex-ante equilibria agree, so Nash equilibrium is sufficient as a

solution concept. If, however, we interpret the extended game as being in extensive form, this solution

concept clearly runs into problems, as exemplified by such refinements as sub-game perfection and

sequential equilibrium ála introduced in [Kreps, Wilson, 1982]. [Myerson, 1986] suggests an analogue

to sequential equilibrium for communication equilibria, namely sequential communication equilibrium.

The concepts discussed informally in Sections 5.1 and 5.2 could be formalized. It would be ideal

to prove Conjecture 1, and discuss it’s implications at length. Regarding fallible talk, it would be

beneficial to not only formalize the concept and results pertaining to it, but also to apply the concept

to existing examples, e.g. from the principal-agent literature. One could, for example, take the classic

quadratic-uniform game presented in [Crawford, Sobel, 1982], and apply fallible talk, so that principal

now receives the agent’s report, but has difficulty understanding it. This may well alter the structure

of the set of so-called ‘partition equilibria’ associated with the game.

We have been primarily interested in characterizing the set of equilibria generated by a class of commu-

nication devices, rather than fixing a device and examining the equilibria associated with it. It would

be interesting to consider the effects on welfare of marginal improvements in the device’s information

(the fineness of the partitions/classes), for any fixed SECE, GECE, SBCE, GBCE, etc. This type

of analysis was performed in [Green, Stokey, 1980], who find that, in their class of cheap talk games,

improvements in information do not necessarily generate welfare improvements.

Finally, it would be of interest to find direct, meaningful applications of the concepts involved, in

particular BCDs. This paper is largely theoretic, and the few examples contained in it have been

purposefully simplistic. Possible applications include to stylized signaling games (see [Forges, 1990])

and market games àla [Shapley, Shubik, 1969].

26For instance, the no-deviation reasoning used for σ̂ in all cases.
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A Appendix A

First, consider the example from Section 3. The honest-and-obedient strategy profile is in equilibrium

if ∑
t−i∈T−i

p(t−i|ti)
∑
a∈A

π(a|t)ui(t, a) ≥
∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

π(a|ri, t−i)ui(t, f(ai), a−i),

∀i ∈ N, ∀ti, ri ∈ Ti, ∀f : Ai → Ai

We verify the inequalities for player 1 of type s1. There are four cases, since |T1| = |A1| = 2. First,

note that 1’s expected utility in equilibrium is given by

U1((s1, a1|s1) = p(t2|s1)
(
µ1((T, L)|s1)u1(s1, (T, L)) + 0 + µ1((B,R)|s1)u1(s1, (B,R) + 0

)
=

1

2

(1 + ε

2
· 1 +

1− ε
2
· (−1)

)
=

ε

2

1. r1 = s1, f(T ) = Tr1 = s1, f(T ) = Tr1 = s1, f(T ) = T

Then 1’s expected utility becomes

U1((s1, f(a1)|s1) =
1

2

(1 + ε

2
· 1 +

1− ε
2
· (−1)

)
=
ε

2

Similarly,

2. r1 = t1, f(T ) = Tr1 = t1, f(T ) = Tr1 = t1, f(T ) = T

U1((t1, f(a1)|s1) =
1

2

(1 + ε

2
· (−1) +

1− ε
2
· 1
)

= − ε
2

3. r1 = s1, f(T ) = Br1 = s1, f(T ) = Br1 = s1, f(T ) = B

U1((s1, f(a1)|s1) =
1

2

(1− ε
2
· 1 +

1 + ε

2
· (−1)

)
= − ε

2

4. r1 = t1, f(T ) = Br1 = t1, f(T ) = Br1 = t1, f(T ) = B

U1((t1, f(a1)|s1) =
1

2

(1− ε
2
· (−1) +

1 + ε

2
· 1
)

=
ε

2
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From these calculations, it is clear that the inequalities hold. Similar computations are possible for

the remaining types and players.

Next, consider the example from Section 4. Each player receives an expected utility of 3 in equilibrium.

Thus, there is no incentive for player 1 to deviate. The posterior matrices are given by

Π̄1 =



1
2

1
3

1
3

1
3

1
2

1
3

1
3

1
3

0 1
3

1
3 0

0 0 0 1
3


Π̄2 =



1
3 0 0 0

0 1
3

1
3 0

1
3

1
3

1
3

1
2

1
3

1
3

1
3

1
2


Since qi = I4, we have that Qi = Π̄i. Now, consider player 1. By lying, he received a payoff of at most

8
3 (by also deviating from T to B), which is less than 3. A symmetric argument holds for player 2.

B Appendix B

We construct numerical examples to illustrate the constructions used in Theorems 1. Throughout this

appendix, we adopt the matrix notation used in Proposition 3. Since the action-profile δ is invariant

under the transformation, we will omit this from the following discussion, i.e. we will assume payoffs

and a δ exist such that the remainder of the construction yields an equilibrium.

Now suppose we have a Bayesian game with two players, where T1 = {t1, s1}, T2 = {t2}, so T =

{(t1, t2), (s1, t2)} ≡ {t, s}, p1(s1) = p1(t1) = 1
2 , p2(s2) = p2(t2) = 1

2 , A1 = A1, A2 = A2, and payoffs

are simply ui(a, t).

Take the following device: S = T ≡ {1, 2} (i.e t = 1 and s = 2), M = {A,B}, the priors given by

π1(1) = 1
2 π2(1) = 1

3

π1(2) = 1
2 π2(2) = 2

3 ,

the possibility correspondences given by

P1(1) = {1, } := a P2(1) = {1, 2} := c

P1(2) = {1, 2, } := b P2(2) = {2} := d,

and the transition matrices given by
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qT
1 =

1
2

2
3

1
2

1
3

 qT
2 =

1
3

1
2

2
3

1
2



Then the posterior matrices are given by

Π̄=
1

1 1
2

0 1
2

 Π̄2 =

1
3 0

2
3 1



so the overall transition matrices are given by

QT
1 =

1
2

2
3

1
2

1
3


1 1

2

0 1
2


=

1
2

7
12

1
2

5
12



and

QT
2 =

1
3

1
2

2
3

1
2


1

3 0

2
3 1


=

4
9

1
2

5
9

1
2



Now take the report profile α to consist of the identity map for each i, and assume that the combination

of this profile, with the above SGBCD, plus an arbitrary δ is in equilibrium. We proceed to construct

the decision-theoretically equivalent SBCE via the construction used in the proof of Theorem 1. Hence,

we have

Ŝ1 = {c, d}, Ŝ2 = {a, b},
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Note that there is only one τ that satisfies the necessary conditions, i.e. τ(1) = 2, τ(2) = 1. We

construct σ̂ by

σ̂(t) =
(
P2(σ(t)),P1(σ(t))

)
=

(
P2(1),P1(1)

)
= (c, a)

Similarly, σ̂(s) = (d, b). Again, for convenience, write

Ŝ = {a, b} × {c, d} = {(a, c), (a, d), (b, c), (b, d)}

Then the partitions P̂i are given by

P̂1(a, c) = P̂1(a, d) = {(a, c), (a, d)} P̂1(b, c) = P̂1(b, d) = {(b, c), (b, d)}

P̂2(a, c) = P̂2(b, c) = {(a, c), (b, c)} P̂2(a, d) = P̂2(b, d) = {(a, d), (b, d)} ,

The posterior matrices are given by

¯̂Π1 =



1 1 0 0

0 0 0 0

0 0 1
2

1
2

0 0 1
2

1
2


, ¯̂Π2 =



1
3 0 1

3 0

2
3 0 2

3 0

0 0 0 0

0 1 0 1


For example, suppose (a, c) was reported. Then

π̂1

(
(a, c) | {(a, c), (a, d)}

)
= π1

(
s ∈ S, P2(s) = {1, 2} | {1}

)
= 1

π̂1

(
(a, d) | {(a, c), (a, d)}

)
= π1

(
s ∈ S, P2(s) = {2} | {1}

)
= 0

π̂1

(
(b, c) | {(a, c), (a, d)}

)
= 0

π̂1

(
(b, d) | {(a, c), (a, d)}

)
= 0
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Next, we calculate the q̂i’s as being

q̂T
1 =

1
2

2
3

1
2

2
3

1
2

1
3

1
2

1
3

 q̂T
2 =

1
3

1
2

1
3

1
2

2
3

1
2

2
3

1
2



Thus, the overall transition matrices are given by

Q̂T
1 =

1
2

2
3

1
2

2
3

1
2

1
3

1
2

1
3




1 1 0 0

0 0 0 0

0 0 1
2

1
2

0 0 1
2

1
2


=

1
2

1
2

7
12

7
12

1
2

1
2

5
12

5
12



and

Q̂T
2 =

1
3

1
2

1
3

1
2

2
3

1
2

2
3

1
2




1
3 0 1

3 0

2
3 0 2

3 0

0 0 0 0

0 1 0 1


=

4
9

1
2

4
9

1
2

5
9

1
2

5
9

1
2



By inspection, Condition 1 holds.
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C Appendix C

We now construct an example for Theorem 2. Take the same underlying game ΓB as in the previous.

For the SBCD, take S, M , πi, qi and σ also as previously, but for convenience, relabel S = {α, β}. Let

the partitions be given by

P1(α) = {α, β} P2(α) = {α}

P1(β) = {α, β} P2(β) = {β},

Combining the transition distributions with the posteriors yields

QT
1 =

1
2

2
3

1
2

1
3


1

2
1
2

1
2

1
2


=

 7
12

7
12

5
12

5
12



and

QT
2 =

1
3

1
2

2
3

1
2


1 0

0 1


=

1
3

1
2

2
3

1
2



We now construct the associated GBCD. Then

Ŝ = {α, β} × {1, 2} = {(α, 1), (α, 2), (β, 1), (β, 2)}
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Suppose î = 2, then Ŝ1 = {t1, s1}, Ŝ2 = {t2} × {1, 2}. Define σ̂ by

σ̂1(t) = σ1(t) = t1

σ̂2(t) =
(
σ2(t), 2

)
, say

Similarly for s. The P̂i’s are given by:

P̂1(α, 1) = P̂1(α, 2) = P̂1(β, 1) = P̂1(β, 2) = {(α, 1), (β, 1)}

P̂2(α, 1) = P̂2(α, 2) = {(α, 2)} P̂2(β, 1) = P̂2(β, 2) = {(β, 2)} ,

The prior distribution π̂ is calculated by

π̂(α, 1) =
1

G
π1

(
α | P1(α)

)
=

1

3
× 1

2
=

1

6

π̂(α, 2) =
1

3

π̂(β, 1) =
1

6

π̂(β, 2) =
1

3

Hence, the posterior matrices become:

¯̂Π1 =



1
2

1
2

1
2

1
2

0 0 0 0

1
2

1
2

1
2

1
2

0 0 0 0


, ¯̂Π2 =



0 0 0 0

1 1 0 0

0 0 0 0

0 0 1 1


The transition matrix q̂ is given by

q̂T =

1
2

1
3

2
3

1
2

1
2

2
3

1
3

1
2


Hence the overall transitions become
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Q̂T
1 =

1
2

1
3

2
3

1
2

1
2

2
3

1
3

1
2




1
2

1
2

1
2

1
2

0 0 0 0

1
2

1
2

1
2

1
2

0 0 0 0


=

 7
12

7
12

7
12

7
12

5
12

5
12

5
12

5
12



and

Q̂T
2 =

1
2

1
3

2
3

1
2

1
2

2
3

1
3

1
2




0 0 0 0

1 1 0 0

0 0 0 0

0 0 1 1


=

1
3

1
3

1
2

1
2

2
3

2
3

1
2

1
2



Condition 1 clearly holds by inspection.
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