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Abstract Unemployment varies substantially over time and across subgroups of the

labour market. Worker flows among labour market states act as key determinants of this

variation. We examine how the structure of unemployment across groups and its cyclical

movements across time are shaped by changes in labour market flows. Using novel estimates

of flow transition rates for the UK over the last 35 years, we decompose unemployment

variation into parts accounted for by changes in rates of job loss, job finding and flows via

non-participation. Close to two-thirds of the volatility of unemployment in the UK over this

period can be traced to rises in rates of job loss that accompany recessions. The share of this

inflow contribution has been broadly the same in each of the past three recessions. Decreased

job-finding rates account for around one-quarter of unemployment cyclicality and the

remaining variation can be attributed to flows via non-participation. Digging deeper into the

structure of unemployment by gender, age and education, the flow-approach is shown to

provide a richer understanding of the unemployment experiences across population

subgroups.
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I. Introduction

A defining feature of the UK economy in recent decades has been the substantial variation in

the rate of unemployment. While the unemployment rate hovered at around 5 percent

throughout the 1970s, it soared to levels above 10 percent by the mid-1980s, an experience

repeated in the depths of the recession of the early 1990s. There then followed a period of

sustained improvement and even tranquillity, where unemployment in the UK returned to

levels seen in the 1970s, only to rise again in the course of the recent recession. However,

despite a larger accompanying fall in GDP than in either of the previous two recessions, the

UK unemployment rate did not return to the double digit levels experienced in the two

previous recessions. While welcome, the reasons for this are not yet fully understood.

In this paper, we delve into the origins of this variation in the unemployment rate over three

different recessions using a dynamic approach. Based on an influential literature dating from

the 1970s, it is now known that changes in the stock of unemployment are shaped by the

flows of workers into and out of the unemployment pool from both employment and

inactivity. Knowledge of the relative size of these flows has been used both to try to

understand the main reasons underlying rises (and falls) in unemployment and to shape

appropriate policy responses. Does unemployment rise as a result of increased inflows into

unemployment driven by elevated rates of job loss? Or does it rise because the unemployed

leave the unemployment pool at a slower rate due to declines in their ability to find jobs? Or

is it some combination of the two? What are the roles of flows into and out of employment

compared to the flows into and out of inactivity in shaping unemployment? Do these roles

change over time?

The answers to these questions are important if policy responses are to be shaped

appropriately. For example, policy that focused on encouraging outflows from unemployment

may not be as relevant in an economy in which rises in unemployment were driven by

changes in the rate of outflows from employment. Other studies have considered some of

these issues for the UK for earlier periods (Pissarides, 1986; Layard and Nickell 1991; Smith,

forthcoming). Indeed the consensus that emerged from studies of the 1980s recession was

that the increase in UK unemployment was prompted by an initial rise in outflow rates from

employment, as firms got rid of labour, but driven subsequently by changes in unemployment

outflow rates. Policy was then focused on improving search effectiveness of the unemployed

and avoiding the build-up of long-term unemployment, culminating in the introduction of the

various New Deals under the 1997-2010 Labour government. Recently, the debate over

which flows drive recessionary increases in unemployment has re-surfaced in the United

States where academics are divided over the roles of job loss or outflows from unemployment

(see Shimer, 2007, and Elsby, Michaels and Solon, 2009).

It seems therefore important to try to understand the reasons behind recent UK

unemployment performance and look to see whether the explanations that were thought to

hold in earlier periods still apply. Recent advances in data availability now make it possible,

for the first time in the UK, to look comprehensively at these issues over three full labour
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market cycles, the approach that we adopt here. We exploit information on worker flows

using data on recalled labour market status available in the UK Labour Force Survey (LFS).1

A key benefit of these data is that they provide measures of worker flows between the three

labour market states, unemployment, employment and economic inactivity, from 1975 up to

the end of the recent recession.2

After reviewing the evolution of labour market stocks, we document the time series of the

flow transition rates between employment, unemployment and non-participation (inactivity)

using these recall-based estimates of worker flows from the LFS. Inspection of the cyclical

properties of these transition rates reveals a marked countercyclicality in the rate of job loss,

mirrored by procyclicality in job-finding rates. Flows involving non-participation are also

cyclical, but less so than other flows. This therefore suggests that, in each of the last 3

recessions, a combination of both more spells of unemployment as well as increased duration

of those spells explains the substantial increases in unemployment witnessed.

We show how it is possible to use a formal decomposition of the variation in the

unemployment rate into parts accounted for by changes in rates of job loss, job finding and

flows via non-participation. Applying this decomposition suggests the following stylized

account of unemployment dynamics in the UK: In contrast to the received wisdom, the

leading contribution to UK unemployment cyclicality since 1975 has in fact been the

substantial rise in rates of job loss in times of recession, accounting for approximately two-

thirds of the fluctuations in the unemployment rate over each cycle. Declines in unemployed

workers’ job-finding prospects, while undeniably important, explain just over one-quarter of

the cyclical change in unemployment in each of the recessions we examine. The remaining

10 percent is attributed to flows involving non-participation. Over time, the relative roles of

unemployment outflows and inflows into unemployment have been broadly constant in each

of the three recessions covered by our analysis.

In the remainder of the paper, we delve further into the composition of unemployment by

examining unemployment rates by gender, age and educational attainment. In terms of

overall stocks, it is well-known that young, low-skilled male workers tend to face higher rates

of joblessness, a fact that we confirm using LFS data. We show that an analysis of differences

in worker flows provides a rich picture of the origins of these cross-sectional differences in

unemployment.

While changes in flow rates involving non-participation play a small role in shaping

aggregate unemployment, they are an important contributor to both the level and the

dynamics of female unemployment. That men face higher unemployment rates than women

can be attributed in large part to the fact that women are more likely to exit from

unemployment out of the labour force.

1 These measures of worker flows were first constructed by Gregg and Wadsworth (1995) in their analysis of the
evolution of the UK labour market from the mid-1970s to the mid-1990s.
2 Leading alternative sources from the British Household Panel Survey and the longitudinally-linked quarterly
LFS provide measures beginning only in the late-1980s and early-1990s respectively (Smith, forthcoming;
Petrongolo and Pissarides, 2008).
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The analysis of unemployment flows by age is similarly enlightening. The fact that younger

workers are more likely to be unemployed makes it tempting to conclude that youth bear the

brunt of joblessness disproportionately. Worker flows by age paint a more nuanced picture,

however. We confirm the findings of other studies using different sample periods to ours that

for the thirty-five years covered by our sample, while young workers are much more likely

to lose their jobs, they also are more likely to find jobs. Thus, younger workers face a more

fluid labour market, experiencing more jobless spells, but for shorter durations.

The breakdown of unemployment rates by educational attainment, however, points to a

subgroup of the labour market that is hit harder on all margins: the less-educated. Workers

who have left school prior to age 18 face significantly higher rates of job loss which are

aggravated further by depressed rates of job finding, and associated longer unemployment

spells.

The paper is organized as follows: Section II documents the behaviour of labour market

stocks over the last thirty-five years. Section III introduces worker flows, how they are

defined, and their average levels over the sample period. In section IV, we introduce the law

of motion for unemployment, which links variation in worker flows to variation in the stock

of unemployed workers. We then describe our measures of the flows, and document their

evolution since 1975. Section V then takes on the task of decomposing the variation in the

unemployment rate into parts accounted for by its constituent flows, and summarizes the

results. Finally, section VI analyzes unemployment rates across subgroups of the labour

market. Section VII concludes.

II. A brief history of labour market stocks in the United Kingdom

The main focus of this paper is to document the evolution of the unemployment rate in the

UK, and the flows that underlie it. However, unemployment is just one of the three key

labour market stocks that form the basis of modern-day labour market indicators—

employment, ,ܧ unemployment, ܷ and non-participation, ܰ . Non-participation may also be

referred to as “out of the labour force” or “inactivity.” This is a rather heterogeneous group,

comprising the long-term sick, discouraged workers, students, early retirees and those

engaged in full-time domestic work. The headline measures of employment, unemployment

and non-participation that are published regularly by the Office for National Statistics (ONS)

in the UK are based on definitions developed by the International Labour Organization.

These ILO definitions have been adopted by many national statistical agencies, and are

summarized in Figure 1. A person who reports work for one hour or more in the survey week

is classified as employed. In the event of no work, two further criteria determine labour

market status: If having looked for work in the last four weeks and available to start work

within the subsequent two weeks, the respondent is recorded as unemployed. Otherwise, they

are classified as a non-participant.

The official source of data on these labour market stocks for the UK is the Labour Force

Survey (LFS). Figure 1 summarises the magnitude of these stocks using LFS data from 1975
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to 2010. On average over this period, out of a working-age population of 33.4 million,

approximately 26.1 million were employed, 2.0 million were unemployed and 7.3 million

were out of the labour force.3

These figures underlie the key labour market indicators that researchers, policymakers and

pundits alike use to obtain a first glimpse of the overall condition of the labour market. A key

indicator, and the focus of the remainder of this paper, is the unemployment rate. At a given

point in time ,ݐ this is defined as the ratio of the number unemployed ܷ௧ to the number either

employed, ௧ܧ or unemployed—the sum of which comprises the labour force ௧ܮ = +௧ܧ ܷ௧,

௧ݑ = ܷ௧ ⁄௧ܮ . (1)

The unemployment rate is intimately related to two further headline labour market measures,

the employment-to-population ratio (“e-pop”) and the labour force participation rate. The

former is self-explanatory. The participation rate is the fraction of the population that is in the

labour force—those either working or seeking work at a point in time. To see how these three

measures are intertwined, note that the unemployment rate can be related to employment and

the labour force according to the identity ≡௧ݑ� 1 − .(௧ܮ/௧ܧ) Total differentiation of this

identity reveals that

௧ݑ݀ = (1 − ݀](௧ݑ ln(ܮ௧/ܲ݌݋௧) − ݀ ln(ܧ௧/ܲ݌݋௧)]. (2)

Thus, when the unemployment rate rises, it could be associated with a rise in the labour force

participation rate, or a decline in the e-pop ratio, or some combination of the two. Moreover,

equation (2) further reveals that it is logarithmic changes in the labour force participation rate

and e-pop ratio that shape changes in the level of the unemployment rate.4

Figure 2 plots the working age unemployment rate, the e-pop ratio, and the participation rate

from the early 1970s to the latest available data. Based on equation (2), the e-pop ratio and

the participation rate are plotted on a logarithmic scale, while the unemployment rate is on a

standard scale so that equal-sized variation in each of these series places them approximately

on an equal footing with respect to changes in the unemployment rate.5

The unemployment rate in the UK has varied substantially over the sample period, ranging

from a low of 4% in 1975 to a high of 12% in 1986 with three notable cycles. A notable

feature of Figure 2 is that the unemployment rate is strongly countercyclical. The recessions

starting in 1973, 1979, 1990 and the most recent recession beginning in 2008 all have been

accompanied by sharp rises in the unemployment rate, as shown in Table 1. The trough to

peak rise in unemployment in the latest recession is noticeably lower than in earlier

downturns, which is remarkable given the large fall in GDP this time round—the contrast in

the unemployment and output changes across recessions apparently violating the stable

relationship predicted by Okun’s Law (1962).

3 The working age population has grown by around 4.5 million over this period, a combination of earlier baby
boom generations reaching adulthood and, more recently, rising net immigration.
4 This effectively means that percentage changes in participation and employment rates drive changes in
unemployment rates.
5 Note that the tick marks on the Figures are reported in levels to help the exposition.
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Figure 2 provides a perspective on the origins of these cyclical rises in joblessness. The rise

in the unemployment rate in each recession is accompanied by commensurate declines in the

e-pop ratio. In contrast, the aggregate labour force participation rate is only mildly

procyclical, falling modestly in the 1980 and 1990s downturns, and much less so in the latest

downturn. Thus, the majority of the rise in aggregate unemployment in times of recession can

be traced to near-symmetric declines in employment.6

A further characteristic of cyclical movements in unemployment evident from Figure 2 is the

persistence of high unemployment rates following an initial recessionary shock. Table 1

confirms that the duration of elevated unemployment rates far exceeds the duration of

declining output in recessions.

In the remainder of this paper, we look at what accounts for the substantial cyclical variation

in the UK unemployment rate. Cyclical variation, however, is not our only focus. A particular

benefit of using microdata on individual workers is that one can analyse the unemployment

experiences of particular subgroups of the labour market. Figures 3, 4 and 5 plot

unemployment rates by gender, age and education groups from 1975 on.7 These figures

confirm that the experience of unemployment is not allocated uniformly across the

population. Rather, some groups are much more likely to be in want of work than others.

Specifically, young, male, less-educated workers face significantly higher unemployment

rates than average. In addition, these same workers are more likely to experience larger rises

in unemployment in times of recession. In the light of this, an important question that arises is

what accounts for the fact that particular subgroups are hit harder than others in the labour

market.

In what follows, we also attempt to provide an account of the proximate determinants of

variation in unemployment in the UK across groups and across time. The next section

introduces these flows, and explains how they shape the evolution of unemployment.

III. An introduction to worker flows

The stocks illustrated in Figures 1 to 5 provide important information on the state of the

aggregate labour market over time. But, they miss a feature of labour market dynamics that

modern research on unemployment views as crucial, namely the fluidity of the labour market.

At all points in time, many individuals flow in and out of the three labour market states.

Unemployed workers flow into employment as they find new jobs. Employed workers flow

into unemployment when they lose their jobs. Likewise, employed and unemployed workers

flow out of and into non-participation as they enter and exit the labour force.

6 This is not true, however, when the stocks are disaggregated—for example, by gender. Contrasting trends in
inactivity rates by gender observed over our sample period are offset when aggregated.
7 To examine unemployment rates by age and level of education, we need the LFS micro data. Official statistics
from the ONS on unemployment disaggregated by age are only available from 1992, and no breakdowns are
published by education.
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A long and distinguished line of research has identified the existence of substantial worker

flows as a defining characteristic of labour markets. Much of this research evolved in the

United States, where readily available micro-data on worker flows began to be exploited in

the early 1970s.8 Seminal contributions by Kaitz (1970), Perry (1972) and Marston (1976)

were among the first to describe how existing data sources could be used to estimate worker

flows, and how these flows shape the evolution of unemployment. Figure 6 adapts a diagram

introduced by Blanchard and Diamond (1990) that has become a staple in any analysis of

worker flows. The three labour market states form the three corners of a triangle, and the

arrows between them represent worker flows between the three states.

Figure 6 reports the results of two approaches to measuring worker flows. The first is to

measure the number of workers who move between ,ܧ ܷ and ܰ . These gross flows are

reported next to each of the arrows in Figure 6, and are the average annual flows estimated

from LFS data back to 1975 for the UK.

A unifying theme in research on worker flows in the US is that the magnitude of gross

worker flows dwarfs that of the net change in the respective labour market stocks. Figure 6

reveals that the same is true for the UK. While the annual net inflow into unemployment

averaged 362 thousand since 1975, annual gross flows in and out of unemployment are much

larger: On average over the last thirty-five years, 707 thousand individuals initially in work

were measured as unemployed one year later, and 597 thousand unemployed workers were in

a job one year later. Flows between unemployment and non-participation also dominate the

net changes in their respective stocks. Notably, the numbers flowing between non-

participation and employment are between 1.5 to 2 times as large as the flows between

unemployment and employment.

Thus, while the variation in the aggregate unemployment rate illustrated in Figure 2 is

substantial, it belies a teeming mass of individuals who are continually losing and finding

jobs, and entering and exiting the labour force at all points in time.

Although numbers of individuals flowing between labour market states are instructive, from

the perspective of an individual worker, what really matters is the probability they face of

losing a job, or finding a job, or entering non-participation, and so on. These probabilities are

reflected in flow transition rates, and are the second main approach to the measurement of

worker flows.

Of course, the numbers of workers flowing between labour force states and the associated

transition rates are closely related concepts. To see this, consider the job loss flow, the flow

from employment to unemployment, ܧ to ܷ. If we denote the number of employed workers

in a given year whoݐ are unemployed in the subsequent year by ,௧ܷܧ the associated

transition rate is simply equal to

௧ߣ
ா௎ = .௧ܧ/௧ܷܧ (3)

8 In fact, the US Bureau of Labor Statistics (BLS) first published measures of worker flows starting in 1949.
Publication was discontinued in 1953, however, due to concerns with the quality of the data (National
Commission on Employment and Unemployment Statistics, 1979).
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More generally, the probability of a transition from an origin state ܣ to a destination state ܤ is

given by the number of workers making that transition over a given period, divided by the

stock of individuals in the origin state at the start of the period,ߣ�௧
஺஻ = .௧ܣ/௧ܤܣ

Average annual flow transition rates between the three labour market states for the period

1975 to 2010 based on LFS data are reported in parentheses in Figure 6. Looking at

transitions between employment and unemployment, it can be seen that, although the gross

flows in each direction are comparable in size, the fact that the pool of the unemployed is less

than one twelfth the size of the employment stock means that the probability of an

unemployed worker finding a job over the course of a year (39.4%) far exceeds the

probability of an employed worker losing theirs and becoming unemployed (3.0%).

In the following sections, we show how these worker flows and their corresponding flow

transition rates determine changes in labour market stocks. In addition, we demonstrate how

these worker flows can be used to help understand why unemployment rises in recessions,

and why certain groups are hit harder than others.

IV. How flows shape stocks

The previous sections have documented two important sources of variation in the labour

market. On the one hand, labour market stocks such as the unemployment rate have varied

substantially over time with expansions and contractions that buffet the aggregate economy.

On the other hand, at any given point in time, many workers flow between the employment,

unemployment and non-participation. In this section, we show how these two sources of

variation are intertwined.

(i) The law of motion for unemployment

The link between variation in unemployment and its constituent flows is formalized by the

law of motion for unemployment. This states that any change in the unemployment stock is

due either to people joining the unemployment pool, or to people leaving the pool. In turn,

these inflows and outflows can be traced to flows in and out of unemployment from

employment and non-participation. Formally, the change in unemployment across two

periods andݐ +ݐ 1 is equal to the difference between inflows and outflows, and may be

expressed as

∆ܷ௧ାଵ = +௧ܷܧ ܷܰ௧− −௧ܧܷ ܷܰ௧. (4)

Unemployment rises when inflows exceed outflows. Inflows may originate from employment

as workers lose their jobs ,(ܷܧ) or from non-participation as individuals begin to search for a

job (ܷܰ). Likewise, outflows from unemployment occur when unemployed workers find new

jobs ,(ܧܷ) or when individuals cease searching for a job (ܷܰ ).

The law of motion for unemployment may also be expressed in terms of flow transition rates.

Recall from equation (3) that the gross flow between an origin state ܣ and destination state ܤ
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is associated with the flow transition rate by the relation ܤܣ = ஺஻ߣ ∙ .ܣ It follows that we can

re-express equation (4) as

∆ܷ௧ାଵ = ௧ߣ
ா௎ܧ௧+ ௧ߣ

ே௎ܰ௧− ௧ߣ)
௎ா + ௧ߣ

௎ே )ܷ௧. (5)

Before examining the empirical behaviour of these flow transition rates, and how they have

contributed to unemployment changes in the UK, we first describe how these flows can be

measured.9

(ii) Measuring worker flows

In the majority of research that estimates worker flows, the approach has been to use

longitudinal data—data that includes repeated observations on the same individuals over

time. Using such data, it is straightforward to compute gross flows and their associated

transition rates. For example, the ܧ to ܷ transition rate is simply the fraction of those who

report that they are employed in a given survey who subsequently report that they are

unemployed in the next survey.

Many US studies have exploited the fact that the major source of data on labour force status

in the US, the Current Population Survey (CPS), has a longitudinal element to it. Households

in the CPS are surveyed for four consecutive months, rotated out of the survey for eight

months, and then return for a final four months. This “rotating-panel” structure has allowed

researchers in the US to compute worker flows back to 1967.

The UK analogue to the CPS in the US, the Labour Force Survey, has incorporated a

rotating-panel element since 1992. Individuals who remain at the same address are surveyed

for five consecutive quarters before rotating out of the survey. Estimates of worker flows in

the UK based on these data have been studied by Gomes (2010), Petrongolo and Pissarides

(2008) and Elsby and Smith (2010).

For the purposes of understanding the cyclical dynamics of the UK labour market, estimates

of worker flows based on longitudinal data from the LFS are subject to another important

drawback: They are available only from 1992 onwards. Consequently, such estimates cover

just one full recession, limiting their ability to inform us on the propagation of recessions

through the labour market.

For this reason, we explore an alternative and relatively under-studied set of measures of

labour market flows that extend back to 1975. The LFS asks individuals about their labour

force status a year prior to the interview date. This information on recalled status may be

9 The estimates we report are derived from data in which an individual’s labour force status is observed at
discrete points in time, specifically each year. In reality, however, individuals may make multiple transitions
within a year that we do not observe in discrete-time data—there is a time aggregation problem. Our estimates
of the number of individuals making any particular transition will tend to miss some transitions and wrongly add
others. Authors such as Shimer (2007) and Elsby, Michaels and Solon (2009) have provided empirical methods
for correcting estimates using data for the US. The latter show that, for monthly data, while correcting for time
aggregation does influence the levels of the estimated flows, their cyclicality is affected only modestly.
However, it is possible that the effects of annual time aggregation might be more severe.
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combined with the individual’s reported current status to infer measures of annual worker

flows, and thereby the accompanying transition rates.

To see how, consider transitions from employment to unemployment. The gross ܷܧ flow is

simply the sum of respondents who report that their current status is unemployed, while their

recalled status one year prior to the survey was employed. The associated transition rate ா௎ߣ

is just the gross ܷܧ flow divided by the number whose recalled status was employed.

These measures are not published officially, and so must be computed using the microdata

that underlie the LFS. These microdata files are available for every other year from 1975 to

1983, and on an annual basis thereafter. The frequency of the estimates that we study in what

follows mirrors the frequency of the available data.

As mentioned above, the information in the LFS on recalled status has the invaluable benefit

of being asked of all individuals, not just those who remain at the same address, unlike the

Quarterly LFS longitudinal data available from 1992. It is also straightforward to calculate

flows, since the current and recalled status of a particular individual are simple to match. The

use of recalled data does raise issues about the accuracy of remembered status, however.

Studies investigating recall accuracy indicate that over short periods—up to about three

years—recall bias is not severe (Paull, 2002; Elias, 1996). If individuals are asked to

remember over longer periods, unemployment tends to be underreported; this does not appear

to be simply short spells being forgotten, but is rather a general tendency to underreport. The

one-year recall required of respondents in this paper falls well within the horizon where

results should not be adversely affected by recall bias. However, Bell and Smith (2002) find

recalled stocks accurate, and transitions between employment and unemployment correctly

recalled, but where spells are short, transitions between unemployment and non-participation

estimated from recalled data tally less well with contemporaneous reports. As Akerlof and

Yellen (1985) suggest, this might be because individuals tend to remember better the most

personally-important or salient events. Moves between the two non-employment states are

unlikely to be as psychologically ‘painful’ or ‘enjoyable’ as losing or gaining a job.10

(iii) A brief history of worker flows in the United Kingdom

With our estimates of worker flows in hand, we can now begin to document the evolution of

these flows in the UK over the last thirty-five years. Figure 7 plots the respective time series

for all six transition rates in equation (5) above. Panels A and B depict flow transition rates

describing the probabilities of joining the pool of the unemployed (by either losing a job or

entering from non-participation) and leaving unemployment (through either finding a job or

exiting out of the labour force). Flow transition rates between employment and non-

participation are presented in panel C. In all panels, times of recession are indicated by

shaded regions that correspond to sustained periods of falling GDP. For reasons that will

become clear in section V, the series are plotted on logarithmic scales.11 As we noted in

10 It is also worth noting that recalled status is subjective, and does not necessarily accord with ILO definitions.
11 The values on the vertical axes are simply the fraction of workers in a particular state making the relevant
transition. Plotting these on a logarithmic scale has the effect of stretching the distance between lower transition
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section II, the unemployment rate is markedly countercyclical, rising in recessions and

subsiding in booms. Figure 7 allows one to tell a heuristic story of how changes in flow

transition rates correspond to the historical behaviour of the unemployment rate.

Panels A and B reveal that unemployment rises in recessions because rates of inflow into

unemployment tend to rise in downturns, and rates of outflow tend to fall. Specifically, the ܧ

to ܷ transition rate—the job loss probability—is strongly countercyclical, rising sharply in all

recessions. These are accompanied by more modest rises in the inflow rate from non-

participation into unemployment. Symmetrically, the ܷ to ܧ transition rate—the job finding

probability—is clearly procyclical, falling systematically in every recession since 1975.

Again, these also are accompanied, with an approximate one year lag, by modest reductions

in the outflow rate from unemployment to non-participation.12 So, casual observation of the

flow transition rates underlying the aggregate unemployment rate in Figure 2 would suggest

that both a rising rate of inflow and a declining rate of outflow are proximate causes for

increased unemployment in times of recession.

An additional feature of the behaviour of the unemployment rate in the UK is that, even after

the economy (GDP) starts to recover, the unemployment rate often continues to rise and

remains persistently high for some time. How can this be related to the evolution of the flows

in Figure 7?

Again, we see that both inflows and outflows play an important role in driving the persistence

of UK unemployment. Workers continue to lose jobs at an elevated rate for some time after

output begins to recover. A particularly prominent example of this is the recession of the

early 1980s: Even eight years after the end of the downturn, the job loss rate had not returned

to its pre-recession level.

The job-finding probability also displays persistence. After both the recessions of the early

1980s and early 1990s, the ܷ to ܧ transition rate continues to fall and remains stubbornly low

for many years after the recession ends. Falling rates of job finding mean rising durations of

unemployment. A simple way to think about this is to note that the overall exit rate from

unemployment is just the sum of the ܷ to ܧ and ܷ to ܰ transition rates, =ݔ ௎ாߣ + ௎ேߣ . It

follows that the probability that an unemployment spell lasts ܶ periods is simply (1 −

,ݔଵି்(ݔ the probability one fails to exit unemployment for ܶ− 1 periods, times the

probability of exiting in the ܶth period. In this environment, then, unemployment duration is

geometrically distributed,13 and so average duration is simply equal to ∑ ܶஶ
்ୀ଴ (1 − =ݔଵି்(ݔ

.ݔ/1 So, increased unemployment duration, and declining rates of outflow from

unemployment are just two sides of the same coin.

rates in such a way that an equal vertical distance on the scale represents a similar percentage change in
transition rates.
12 This lag is probably due to the build-up of long-term unemployment in the stock of unemployed following a
negative labour demand shock. A higher share of long-term unemployment is associated with higher subsequent
rates of labour force withdrawal (OECD, 2002).
13 Empirically, unemployment duration is not geometrically distributed. We have assumed that the rate of exit
from unemployment ݔ is the same for all unemployed workers. In reality, of course, this is not the case.
Nonetheless, the inverse relationship between exit rates and duration serves as a useful rule of thumb in practice.
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An important literature starting in the 1980s pointed to a European unemployment problem of

persistently high rates of long-term unemployment, from which the UK also suffered

(Layard, Nickell and Jackman, 1991). These trends are lucidly surveyed by Machin and

Manning (1999), who show the importance of rising unemployment duration in driving

increased unemployment in Europe in the 1980s and 1990s.14

What of flows between employment and inactivity? Their evolution is depicted in Panel C of

Figure 7. Flows out of employment to non-participation rise in recessions, as some

individuals who lose or quit their jobs choose to leave the labour force. Thus, both sets of

outflow rates from employment are countercyclical—those to unemployment more so than

those to non-participation. The timing of changes in these inflows and outflows is such that,

on average, both series tend to shift at the onset of a downturn rather than one leading the

other systematically.

Cyclical movements in flows out of non-participation to employment likewise mirror those of

ܷ to ܧ transitions. The smaller scale of flow transition rates from non-participation to

employment reflects the fact that a smaller proportion of those out of the labour force is in a

position to, or desires to, gain employment. However, in terms of absolute size of gross

flows, ܰ to ܧ flows dominate those from ܷ to ,ܧ for the simple reason that that stock of non-

participants is so much larger than the stock of unemployed workers. The procyclicality of ܰ

to ܧ flows indicates that job finding by non-participants is slowed by recessions in a similar

manner to job finding by unemployed workers.15

V. Decompositions of unemployment variation

The previous section showed that increased unemployment in times of recession can be

traced both to increased rates of inflow to, as well as reduced rates of outflow from,

unemployment. In this section we show how one can be more formal about the relative roles

of flow transition rates in shaping unemployment variation. Specifically, we pose the

question of what fraction of the overall variance in the unemployment rate across time can be

attributed to each of the flows.16

The recent literature has explored two avenues. The first, which we consider in section V(i),

is referred to as the “two-state” approach in the literature. Its name derives from the fact that

this approach does not explicitly take into account all three labour market states. It abstracts

14 As Figure 7B shows, however, the 2000s were notable for a marked rise in the ܷ to ܧ transition rate, which
reached a thirty year high in 2007, prior to falling back somewhat the latest downturn, though not to the levels
experienced in previous recessions.
15 Using annual data, it is hard to determine whether changes in inflows lead changes in outflows (or vice versa)
around unemployment turning points.
16 The decompositions we use provide a breakdown of flow steady-state unemployment, and not the realised
unemployment rate. We shall see in Figure 8 that the steady-state unemployment rate is a leading indicator of
the actual unemployment rate. Consequently, in order to understand the contributions of the flow transition rates
to the evolution of actual unemployment, it is necessary to take into account these dynamic effects. Elsby,
Hobijn and Şahin (2009), and Smith (forthcoming) show how it is possible to take into account these dynamics 
in decomposing the variation in the realised unemployment rate.
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from flows between unemployment and non-participation, focusing instead on flows between

the two states of employment and unemployment. We will see that this approach is a useful

benchmark by which to get one’s bearings for the role of worker flows in unemployment

dynamics.

Of course, this two-state abstraction does not provide the full picture of unemployment

dynamics. In section V(ii), we take on the more complicated task of showing how the two-

state model may be extended to an analysis of flows among employment, unemployment and

non-participation—the “three-state” approach. As we will see, this approach turns out to be a

very natural generalization of the two-state framework.17

(i) Two-state approach

The building block of the two-state model of unemployment dynamics is the following law of

motion for the stock of unemployed workers,

∆ܷ௧ାଵ = −௧ܧ௧ݏ ௧݂ܷ ௧, (6)

where ௧ݏ is the inflow rate into unemployment, and ௧݂ the outflow rate. The literature

sometimes refers to these flow rates respectively as separation and job-finding rates. We do

not follow this practice for two reasons. First, as we know from sections III and IV, these

flows are really a combination of flows between ܷ and ܧ and flows between ܷ and ܰ .

Second, not all separations of workers from employers result in an inflow into the

unemployment pool—some workers may line up a new job to start immediately after they

separate from their old one.

A growing literature has sought to relate variation in the unemployment rate to variation in

the flow transition rates ௧ݏ and ௧݂ (see, among others, Elsby, Michaels and Solon, 2009; Fujita

and Ramey, 2009; Shimer, 2007). To see how this might be done, a useful starting point is to

define the unemployment rate that would prevail in the long run if the inflow and outflow

rates in equation (6) did not change from their current level. This steady-state unemployment

rate is found by setting ∆ܷ௧ାଵ = 0 in equation (6) and solving to obtain

௧ݑ
∗ ≡ ܷ௧

௧ܮ/∗ = +௧ݏ)/௧ݏ ௧݂). (7)

In practice, of course, the flow transition rates ௧ݏ and ௧݂ do move over time, as we have seen

in Figure 7, and therefore so does the steady-state unemployment rate. Thus, the actual

unemployment rate that we observe in the data ௧ݑ is in fact continually converging toward a

moving target ௧ݑ
∗.

17 It is important to note that the results of these decompositions are the outcome of an accounting exercise, and
are not necessarily indicative of the degree to which these changes in flow rates cause changes in
unemployment. For example, it is quite possible to construct stories for why changes in the flows might be
interrelated: If workers who lose their jobs in a recession experience a loss of skill, a rise in job loss could retard
the job-finding rate. If that were true, one could argue that the real “causal” contribution of the job-loss rate
would be larger than the 65 percent figure suggested in Table 2. These possible inter-linkages between flows
have been emphasised by Burgess and Turon (2005), who showed empirically that allowing for this endogeneity
did indeed increase the role of the inflow rate.
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Another way to see this is to note that one may rewrite equation (6) above as

∆ܷ௧ାଵ = +௧ݏ)− ௧݂)(ܷ௧− ܷ௧
∗). (8)

This makes it clear that actual unemployment ܷ rises whenever steady-state unemployment

ܷ∗ lies above current unemployment, and vice versa. In this way, steady-state unemployment

acts as a leading indicator of the future path of realized unemployment.

The prognostic nature of the steady-state unemployment rate can also be seen clearly in the

data. Figure 8 graphs the steady state unemployment rate implied by the flow transition rates,

together with the actual unemployment rate from 1975 to 2010.18 Over the cycle, movements

in steady state and actual unemployment rates appear similar. However, it is clear that steady-

state unemployment acts as a leading indicator for actual unemployment. At times when

unemployment is rising—in recessions—the steady-state unemployment rate rises and peaks

before the actual unemployment rate.19

The importance of the steady-state unemployment rate for us is that it provides a link from

variation in the flow transition rates ௧ݏ and ௧݂ to variation in the unemployment rate. This link

can be used to inform a decomposition of unemployment variation into the relative

contributions of the two flows in driving cyclical unemployment. In particular, Elsby,

Michaels and Solon (2009) pointed out that simple log differentiation implies that a Taylor-

series approximation to changes in the steady-state unemployment rate can be broken down

as follows:

∆ lnݑ௧
∗ ≈ ∆]௧ߙ lnݏ௧− ∆ ln ௧݂], whereߙ�௧ = (1 − ௧ିݑ ଵ

∗ ). (9)

A useful implication of this is that, in order to ascertain the relative roles of the inflow and

outflow rates in driving fluctuations in the steady-state unemployment rate, just compare the

logarithmic variation in the two flows. It is for this reason that the flow transition rates

displayed in Figure 7 are presented on log scales.

Equation (9) is used by Elsby, Michaels and Solon (2009), to zoom in on each cyclical ramp-

up in the US unemployment rate over time to trace out the cumulative log rise in the inflow

rate, and the cumulative log decline in the outflow rate, since unemployment began rising.

Figure 9A summarizes the results of this approach for the UK. This confirms the informal

story implied by Figure 7—that both the ins and the outs of unemployment play an important

role in driving cyclical unemployment in the UK. Figure 9A also enables us to infer the

quantitative contributions of the two margins. In each cyclical upswing in the unemployment

rate, Figure 9 suggests something like a two-thirds inflows to one-third outflows split of the

increase in unemployment. Thus, both flows matter, with the inflows being relatively more

18 Figure 8 is based on a measure of ௧ݏ capturing the overall inflow rate to unemployment, and ௧݂ the overall
outflow rate. ௧ݏ and ௧݂ are calculated on the basis of equation (13) below.
19 To see this formally, note that equation (8) can be rearranged to show that actual unemployment will lag
further behind steady state unemployment, the faster unemployment is changing—and the fastest changes in
unemployment tend to occur at the start of recessions (see Smith, forthcoming).
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dominant. Figure 9 also suggests that this decomposition of unemployment variation has

remained quite stable across recessions in the UK.

This basic impression is also substantiated by an alternative summary measure of the two

contributions suggested by Fujita and Ramey (2009). They note that equation (9) above can

be used to derive a useful decomposition of variance for the steady-state unemployment rate.

Specifically, they note that the variance of log changes in the unemployment rate can be

written as

ݒܽ ∆)ݎ lnݑ௧
∗) ≈ ∆௧ߙ)ݒܿ݋ lnݏ௧ , ∆ lnݑ௧

∗) + ∆௧ߙ−)ݒܿ݋ ln ௧݂, ∆ lnݑ௧
∗). (10)

This is useful because the variance of changes in the steady-state unemployment rate is a

single-statistic measure of fluctuations in unemployment over time. This decomposition of

variance in turn implies very natural summary measures of the contributions of the two flows

to changes in the steady-state unemployment rate, namely the ratio of their variance

contribution to the total variance of the log change in steady-state unemployment,

௦ߚ =
௖௢௩(ఈ೟∆୪୬௦೟,∆୪୬௨೟

∗)

௩௔௥൫∆୪୬௨೟
∗൯

, andߚ�௙ =
௖௢௩(ିఈ೟∆୪୬௙೟,∆୪୬௨೟

∗)

௩௔௥൫∆୪୬௨೟
∗൯

. (11)

Because the decomposition in equation (9) holds only approximately for discrete changes in

steady-state unemployment, the contributions ௦ߚ and ௙ߚ will approximately sum to unity. In

practice, however, we shall see that the approximation in fact works very well.

The first columns of Table 2 summarize the results of this decomposition of variance. These

reiterate the message of Figure 9. While reductions in the outflow rate in times of recession

account for around 30 percent of the rise in unemployment, elevated rates of inflow account

for around 70 percent. Again, this suggests that, for the UK economy, both flows matter for

shaping unemployment fluctuations, with the inflow rate being relatively more dominant.

(ii) Three-state approach

As we noted earlier, the second approach to decomposing changes in the unemployment rate

takes seriously the possibility that flows in and out of non-participation can matter for

fluctuations in joblessness. Indeed, we saw in Figure 7 that there did appear to be some

cyclicality in the flow transition rates to and from non-participation, albeit much smaller than

that seen in flows between employment and unemployment.

That the participation margin might have a bearing on cyclical unemployment fluctuations is

a possibility only recently taken seriously in the literature on worker flows (see, in particular,

Smith, forthcoming). Much of the previous literature has instead tended to ignore the

potential role of non-participation flows. Often, this is justified with reference to the

comparatively acyclical profile of the labour force participation rate, relative to the

unemployment rate, which is evident in Figure 2.

This line of argument, however, is an important example of a stock-flow fallacy. While the

stock of labour force participants might move little over the business cycle, small changes in
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the transition rates between unemployment and non-participation can nevertheless have a

large impact on unemployment, for the simple reason that non-participation is so much larger

than unemployment as a stock, as we saw in Figure 1.

Once non-participation is reintroduced, we revert to the full law of motion for

unemployment, stating that changes in unemployment depend on inflows from and outflows

to employment and non-participation. Each flow can be expressed in terms of the relevant

transition rate multiplied by the relevant stock. The full law of motion, given in equation (5),

is reproduced here for convenience:

∆ܷ௧ାଵ = ௧ߣ
ா௎ܧ௧+ ௧ߣ

ே௎ܰ௧− ௧ߣ)
௎ா + ௧ߣ

௎ே )ܷ௧. (12)

Combining the law of motion for unemployment with similar laws of motion relating changes

in employment and non-participation to their respective inflows and outflows, one can re-

express the components of the steady-state unemployment rate in equation (7) above as

follows (Shimer, 2007):

௧ݑ
∗ =

௦೟

௦೟ା௙೟
, whereݏ�௧ = ௧ߣ

ா௎ + ௧ߣ
ாே ఒ೟

ಿೆ

ఒ೟
ಿೆାఒ೟

ಿಶ ǡ�����݂௧ = ௧ߣ
௎ா + ௧ߣ

௎ே ఒ೟
ಿಶ

ఒ೟
ಿೆାఒ೟

ಿಶ. (13)

The overall inflow rate ௧ݏ is now split into two parts. The first term is straightforward: it is

just the direct inflow rate from employment to unemployment—the job loss rate. The second

term, ௧ߣ
ாேߣ௧

ே௎/(ߣ௧
ே௎ + ௧ߣ

ோ), can be interpreted as the indirect inflow rate from employment

to unemployment via nonparticipation. It multiplies the flow transition rate between

employment and nonparticipation, ௧ߣ
ாே , by the proportion of outflows from nonparticipation

that transition to unemployment, ௧ߣ
ே௎/(ߣ௧

ே௎ + ௧ߣ
ோ), and so captures the probability that an

individual transitions from ܧ to ܰ and also subsequently moves ܰ to ܷ. The overall outflow

rate ௧݂ is similarly split into two components: the direct rate of outflow from unemployment

to employment (the job-finding rate ௧ߣ
௎ா) and the indirect rate of outflow from unemployment

to employment via non-participation (Petrongolo and Pissarides, 2008; Smith, forthcoming).

In particular, note that the log change in the inflow rate can be approximated as follows

∆ lnݏ௧≈ ߱௧
௦∆ lnߣ௧

ா௎ + (1 − ߱௧
௦)∆ lnߣ௧

ாே௎ ,�������߱ ௧
௦ = ௧ߣ

ா௎/ݏ௧. (14)

That is, the log change in the inflow rate is just a share-weighted sum of the log changes in

the job-loss rate ݐߣ
ܷܧ and ݐߣ

.ܷܰܧ Following a similar logic to decompose the contribution of the

outflow rate, one can re-write the two-state decomposition above as

∆ lnݑ௧
∗ ≈ ௧ൣߙ ߱௧

௦∆ lnߣ௧
ா௎ + (1 − ߱௧

௦)∆ lnߣ௧
ாே௎ − ߱௧

௙
∆ lnߣ௧

௎ா − ൫1 − ߱௧
௙
൯∆ lnߣ௧

௎ோ൧, (15)

where ߱௧
௙

= ௧ߣ
௎ா/ ௧݂.

Mirroring the two-state analysis of each recession in Panel A of Figure 9, Panel B breaks

down the contributions of the inflow and outflow rates into parts associated with flows

between employment and unemployment, and indirect flows via non-participation. Figure 9B

reveals that variation in job-loss and job-finding rates has accounted for the vast majority of
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increases in unemployment in each recession since the early 1980s. In contrast, the

participation margin has accounted only for a modest fraction of the variation, perhaps 10

percent of each upswing. Of the two, inflows into unemployment via nonparticipation appear

to be the more important

Equation (15) above also allows one to compute analogous “beta” contributions in the three-

state case, one for each of the four ,ܷܧ ,ܷܰܧ ,ܧܷ and ܧܷܰ transitions. As before, these four

betas will sum to unity only approximately, since both equations (14) and (15) hold only

approximately. Again, however, we shall see that the above decomposition holds with a high

degree of precision in practice.

The full three-state decomposition of steady-state unemployment changes, summarising the

relative influence of the four flow transition rate components, is reported in Table 2. Again,

the decomposition of variance reiterates the message of Figure 9B. In the UK, variation in the

rate of job loss has been the dominant driver of unemployment dynamics, accounting for

nearly 65 percent of overall variation in steady-state unemployment. Changes in the job-

finding rate have also been influential: nearly 25 percent of unemployment variance can be

attributed to these. In terms of non-participation flows, together these account for

approximately 10 percent of the variance of unemployment, with inflow rates involving non-

participation being more influential than non-participation outflow rates (7.5 percent versus 2

percent, respectively).

Taken together, then, our analysis of the flow-based origins of the cyclicality of

unemployment in the UK has identified job loss as a leading determinant of the variation in

joblessness since the mid-1970s. However, it is important to note that job loss does not

account for all of the variation. In addition, we will see below in section VI that it can be

especially important to recognize the roles of job-finding and flows via non-participation in

accounting for the unemployment profiles of particular subgroups of the labour market.

VI. Worker flows and the structure of unemployment across groups

Up to now, we have focused on changes in labour force stocks over time, and the role of

worker flows as proximate determinants of these. As we saw in section II above, temporal—

cyclical—changes are not the only source of variation in the labour market. In Figures 3, 4

and 5, we saw that there is substantial heterogeneity in unemployment across different

subgroups in the labour market, specifically by gender, age and educational attainment. In

this section, we look more closely at this heterogeneity. We review the flow-origins of the

different experiences of unemployment across groups. We provide two sets of

complementary estimates that summarise key features of worker flows for the different

groups and the relationship between these flows and the groups’ varying unemployment

experiences.

Our starting point is estimates of the differences in average flow transition rates across groups

using recall-based LFS data from 1975 to 2010. Table 3 summarizes these results, and
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provides a rich picture of the average unemployment propensities and durations of the

different groups.

These provide a sense for how differences in average flow transition rates across groups map

into differences in their respective group-specific unemployment rates. In addition, however,

we shall see that they provide an important perspective on the differences in the nature of the

typical unemployment experience of different groups. For example, the participation margin

will be seen to play a more significant role for some groups, while the job-finding margin is

crucial for other groups.

The second summary measures we document are a direct extension of the decomposition of

the time-series variation in the aggregate unemployment rate captured by equation (15)

above. In particular, we apply analogous decompositions to the variation over time in group-

specific unemployment rates noted in Figures 3, 4 and 5. Doing so provides a sense of the

degree of heterogeneity in which flows matter for different groups. We will see that,

mirroring the heterogeneity in average flow transition rates, there are also considerable

differences in the origins of variation in unemployment over time within groups. Table 4

summarizes these results.

(i) Gender

We noted in Figure 3 that the unemployment rate for men has tended to be higher than that

faced by women in the last thirty-five years. What might account for this? Inspection of Table

3 indicates that, although men are more likely to lose their job on average, this effect is offset

in large part by the fact that men are less likely to enter unemployment via non-participation

than women. Taken together, the difference in their overall rates of inflow into the

unemployment pool is in fact rather small.

Instead, Table 3 reveals that it is a reduced rate of outflow from unemployment relative to

women that appears to account for much of the higher unemployment rate faced by men. In

turn, the majority of this difference in rates of outflow can be traced to the fact that women

are much more likely to exit unemployment via non-participation than men.

A common theme in the flow transition rates of women is the relative importance of flow

transitions via non-participation. This feature of female unemployment dynamics accords

well with the observation that women are more likely to move in and out of the labour force

with the demands of childcare responsibilities, an activity more than proportionately allocated

to women. It suggests that an understanding of the female labour market requires an

understanding of the participation decisions women face, including issues of possible gender

differences in contributory-based benefit eligibility.

This basic conclusion is reaffirmed in the analysis of the variation over time of gender-

specific unemployment rates in Table 4. There we see that the overall inflow/outflow

decomposition of unemployment variation is about the same for men and women, with

around 70 percent of unemployment variation accounted for by inflows, and the remaining 30

percent contributed by outflows. However, the composition of these effects is very different
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across men and women. The role of flows via participation in driving fluctuations in male

unemployment over time is negligible, accounting for around 6 percent of its variance. Thus,

job-loss and job-finding flows between unemployment and employment are the crucial

determinants of male joblessness.

In contrast, for women the participation margin contributes over 20 percent of the

fluctuations in the female unemployment rate. Thus, in addition to being an important

determinant of differences in the average levels of unemployment between men and women,

changes over time in flows via non-participation are also a distinguishing characteristic of

female unemployment dynamics.

(ii) Age

Figure 4 documented substantial differences in unemployment rates across workers of

different ages. Most notably, the unemployment rate faced by young workers is substantially

higher than older age groups’. In recent years, unemployment rates among those aged 16 to

24 have risen to more than double those faced by all other age groups.

Table 3 provides a unique perspective on the unemployment experiences of young workers. It

reveals substantial heterogeneity in rates of inflow to and outflow from the unemployment

pool across age groups. Younger workers are much more likely to flow into the

unemployment pool, with inflow rates approximately double those faced by workers aged 25

to 49. Table 3 reveals that higher rates of youth unemployment are more than entirely

explained by this phenomenon, and in particular by markedly higher rates of job loss among

younger workers. In direct contrast, we see that differences in outflow rates work against

higher youth unemployment: Younger workers aged 16 to 24 exit unemployment faster than

their older counterparts. Thus, youth face a much more fluid labour market than older

workers, flowing in and out of the unemployment pool frequently.

The message of Table 3 is therefore much more nuanced than the impression presented by

inspecting the overall levels of the unemployment rates by age. Casual observation of Figure

4 might suggest that the brunt of unemployment is borne by younger workers. Table 3

reveals, however, that the unemployment spells faced by youth tend to be substantially

shorter than those experienced among older workers. Younger workers tend to “churn”

through the labour market more frequently, a message that is missed in a simple reading of

the overall unemployment rates.20

Turning now to an analysis of what drives cyclical movements in unemployment rates by

age, Table 4 again reveals quite clear distinctions between younger and older workers. The

main stylized fact that emerges is that the role of the participation margin in driving

unemployment fluctuations appears to be U-shaped in age. That is, flows via non-

participation play an important role in the unemployment dynamics of workers aged 16 to 24

20 It is worth noting that increased participation in tertiary education by young adults observed in the UK over
the last twenty years will have reduced the size of the youth labour force and so raised the unemployment rate
for a given unemployed stock. The unemployment-population ratio shows a much lower rate of increase over
the most recent downturn.
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and 50 plus, while being relatively unimportant for workers aged 25 to 49, presumably

reflecting the greater salience of the timing of labour force entry for younger workers and

retirement for older workers.

(iii) Education

Unemployment varies considerably by education attainment. Figure 5 showed that less-well-

educated workers are much more likely to be in want of work. Unemployment rates of

individuals who left school before age 18 hover at around double those faced by university-

educated workers.

The message portrayed by labour market stocks, then, is that less-skilled workers are hit

harder in the labour market. However, we saw in our analysis of unemployment flows by age

group that it can be the case that inspection of labour market stocks can miss an important

part of the picture of unemployment experiences of different groups.

So, do less-educated workers really bear the brunt of unemployment? The measures of

average flows in Table 3 suggest that they do, from the perspective of both the inflow and

outflow margins. Workers who left school prior to age 18 not only face significantly higher

rates of entry into unemployment, they also experience substantially longer jobless spells

relative to their more-educated counterparts. Thus, higher rates of unemployment among the

low-skilled appear to be a consequence of both increased incidence and increased duration of

unemployment spells.

While the unemployment experiences of the less-educated are conspicuously more severe at

all points in time, their dynamics over time are not much different from the aggregate picture

presented in Table 2. Just as is the case for the overall dynamics of unemployment, there is

something like a 70:30 inflow/outflow split of unemployment over time among the less-

educated.

VII. Conclusion

The UK unemployment rate has recently stabilised following the end of the third recession

experienced over the last thirty years. Economists have long realised that a better

understanding of what drives changes in the unemployment rate—and hence an appropriate

policy response—can be gleaned from an examination of the numbers of workers moving

into unemployment relative to the numbers moving out of unemployment. In a downturn

many individuals lose their jobs and others fail to find work immediately after job loss. Yet,

equally, some people are able to find work even in the depths of a recession.

This analysis has, for the first time in the UK, used individual micro data to show that

recessionary ramp-ups during the last thirty-five years can be accounted for by rises in the

unemployment inflow rate and falls in the outflow rate—with changes in inflows over the

cycle accounting for around 70% of unemployment variation, and outflows for the remaining

30%. This result holds, broadly, in each of the last 3 recessions, in good times as well as bad.
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It also appears true when the data are disaggregated by gender, age and education. The

analysis is not designed to not reveal why the flow rates were different this time round

compared to earlier recessions, but does have important implications for the unemployment

policy debate. Prior emphasis on unemployment duration and job finding led to a flurry of

active labour market policy prescriptions. While our results reaffirm the potential importance

of these policies (including the possibility that the reforms of the late 1990s may have

mitigated the rise in unemployment in the recent recession), they also highlight the need to be

aware of the importance of job loss in shaping unemployment. The appropriate policy

responses to job loss rest on the nature of these job losses: Are they the outcome of a mutual

agreement on behalf of firms and workers to go their separate ways? Or, do they represent the

loss of otherwise profitable relationships that are severed inefficiently? While our analysis

does not answer this question, it revives as an important point of discussion for future policy

debates and academic research.

Several other novel aspects of the analysis in this paper are worth highlighting. First, a three-

state decomposition of log unemployment variation was developed and used—for the first

time. Second, we have applied decomposition methods to disaggregated UK population sub-

groups, which has allowed us to investigate heterogeneity in unemployment levels and

cyclicality. Thirdly, the data we have drawn on also distinguish this paper from previous UK

research. Their micro, individual-level, nature has allowed us to focus on flows between the

three states, which we have shown to be important particularly when analysing differences

across genders and age groups. Furthermore, the unusually large time dimension of these

micro data has meant we can look back over three complete business cycles.

The failure of the unemployment rate to rise as far in the latest downturn as many people

feared, and indeed relative to past downturns, appears to be in part because the outflow rate

from unemployment stayed comparatively high this time round, and in part because of a

lower than expected rise in the job loss rate. An explanation of why these differences arose

goes beyond the scope of this paper, but is an area ripe for further study. It raises the

tantalising prospect for policymakers that the relatively small decline in the job finding rate in

the recent recession might have been due to successful active labour market policies—the

various New Deal policies targeted at different vulnerable labour market subgroups—and

perhaps also the revamped unemployment benefit regime—the Job Seeker’s Allowance, with

its associated sticks and carrots, now being stress-tested for the first time in the recent

recession. Similarly, the rapid fall-back in the job loss rate might be a response to the

expansionary government policy and depreciation pursued over the recession. The

importance of changes in the job loss rate imply that demand-management policies designed

to counteract the impact of adverse shocks on employment can be effective in alleviating

rises in unemployment.
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Table 1: Unemployment rate in recessions

Recession start 1973 1979 1990 2008

Unemployment

rate at start of

recession

3.4% 5.3% 7.0% 5.3%

Total rise in

unemployment

rate

2.3 percentage

points (pp)
6.7pp 3.7pp 2.8pp

Period of

unemployment

rate rise

(duration)

1974q1–1977q3

(15 quarters)

1979q3–1984q1

(19 quarters)

1990q3–1993q1

(11 quarters)

2008q2–2010q1

(8 quarters)

Total fall in GDP -3.3% -6.1% -2.6% -6.6%

Period of GDP

fall

(duration)

1973q3–1975q3

(9 quarters)

1979q3–1981q3

(7 quarters)

1990q3–1991q3

(5 quarters)

2008q2–2009q3

(6 quarters)

Source: ONS.

Table 2: Role of inflows and outflows in unemployment dynamics, 1975-2010

Contribution to unemployment variance of changes in:

Inflow rate 71.1%
Job loss rate (E to U) 64.1%

Inflow rate via nonparticipation 7.5%

Outflow rate 30.2%
Job finding rate (U to E) 28.2%

Outflow rate via nonparticipation 2.0%

Source: Authors’ calculations using Labour Force Survey microdata (using recalled labour
force status one year ago). Biennial data between 1975 and 1983 are linearly interpolated
so the decomposition relates to annual changes in unemployment throughout the sample.
Notes: The table shows the proportion of the variance of steady state unemployment
accounted for by changes in the relevant transition rate, using the log decomposition
described in the text. Components might not sum to 100% due to approximation error.
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Table 3: Average unemployment and flow transition rates by gender, age and education

Unemp-
loyment

rate

Inflow
rate

Of which: Outflow
rate

Of which:

Job via non-
partici-
pation

Job
finding

rate

via non-
partici-
pation

loss

rate

(a) Gender:

Men 8.0 4.0 3.5 0.5 46.6 37.5 9.1

Women 6.9 3.8 2.6 1.3 58.9 43.2 15.8

(b) Age:

16-24 13.6 7.5 6.2 1.2 55.1 44.7 10.4

25-34 7.6 4.2 3.3 0.9 51.8 41.2 10.5

35-49 5.3 3.7 2.2 1.6 40.5 38.6 1.8

50 plus 5.9 3.8 2.3 1.4 43.4 26.8 16.6

(c) Age left full-time education:

< 16 8.2 4.2 3.0 1.2 43.9 31.9 12.1

16-17 8.4 4.3 3.5 0.8 51.1 40.8 10.3

18-20 5.6 3.0 2.4 0.6 61.0 50.1 11.0

> 20 3.9 2.1 1.7 0.4 66.4 56.8 9.6

Source: Authors’ calculations using Labour Force Survey microdata 1975-2010 (using
recalled labour force status one year ago). Biennial data between 1975 and 1983 are linearly
interpolated.
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Table 4: Steady state unemployment variance decomposition by gender, age and education
(%)

Contribution Contribution

of

inflow

rate

Of which: of

outflow

rate

Of which:

Job

loss

rate

via non-

partici-

pation

Job

finding

rate

via non-

partici-

pation

(a) Gender:

Men 71 66 5 30 30 1

Women 69 55 14 31 24 8

(b) Age:

16-24 66 57 8 36 33 3

25-34 76 71 6 25 25 1

35-49 60 58 5 41 41 0

50 plus 69 61 11 31 26 4

(c) Age left full-time education:

< 16 70 64 7 32 33 -2

16-17 68 64 5 33 32 1

18-20 84 74 5 16 10 7

> 20 74 67 8 26 25 2

Source: Authors’ calculations using Labour Force Survey microdata 1975-2010 (using
recalled labour force status one year ago). Biennial data between 1975 and 1983 are linearly
interpolated so the decomposition relates to annual changes in unemployment throughout
the sample.
Notes: The table shows the proportion of the variance of steady state unemployment
accounted for by changes in the relevant transition rate, using the log decomposition
described in the text. Components might not sum to 100% due to approximation error.
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Figure 1: Labour force stocks

Source: Labour Force Survey microdata (every other year between 1975 and 1983, and
every year thereafter).
Notes: Numbers are average stocks (in millions) during 1975 to 2010. All numbers relate to
the working age population (men aged 16-64 and women aged 16-59). Data are not
weighted to account for changing frequency of observation.
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Figure 2: Key labour force ratios

Source: ONS.
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Figure 3: Unemployment by gender

Figure 4: Unemployment by age

Figure 5: Unemployment by age left full-time education

Sources: ONS (Figure 3). Labour Force Survey microdata (every other year between 1975
and 1983, and every year thereafter) (Figures 4 and 5).
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Figure 6: Gross flows and flow transition rates

Source: Labour Force Survey microdata (every other year between 1975 and 1983, and
annually thereafter).
Notes: E, U and N represent employment, unemployment and nonparticipation,
respectively, for the working age population (men 16–64 and women 16–59). Numbers in
boxes are average stocks and average annual net inflows (thousands) between 1975 and
2010. Numbers next to arrows are the relevant average annual gross flows (thousands).
Annual flow transition rates are in parentheses. Flows and flow transition rates are based on
recalled status one year ago.
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Figure 7: Aggregate flow transition rates

A: Unemployment outflow rates

B: Unemployment inflow rates

C: Between employment and nonparticipation

Source: Labour Force Survey microdata (every other year between 1975 and 1983, and
every year thereafter).
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Figure 8: Actual and steady state unemployment rates

Source: Labour Force Survey microdata (every other year between 1975 and 1983, and
every year thereafter).
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Figure 9: Changes in log inflow and outflow rates by recession

A: Two-state approach

B: Three-state approach

Source: Labour Force Survey microdata (every other year between 1975 and 1983, and
every year thereafter).
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