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Abstract

Suppose a decision-maker is willing to make statements of the form:

“I prefer to choose alternative a when in context p, than to choose al-

ternative b when in context q”. Contexts p and q may refer to given

probability distributions over a set of states, and b and c to alter-

natives such as: “turn left” or “turn right” at a junction. In such

decision problems, the set of alternatives is discrete and there is a

continuum of possible contexts. I assume there is a is a mixture oper-

ation on the space of contexts (eg. convex combinations of lotteries),

and propose a model that defines preferences over a collection of mix-

ture spaces indexed by a discrete set. The model yields a spectrum of

possibilities: some decision-makers are well represented by a standard

von Neumann–Morgenstern type of utility function; whilst for others,

utility across some or all the mixture spaces is only ordinally compara-

ble. An application to the decision problem of Karni and Safra (2000)

leads to a generalization, and shows that state-dependence and compa-

rability are distinct concepts. A final application provides a novel way

of modeling incomplete preferences and explaining the Allais paradox.

∗I thank Simon French, Peter Hammond, Andrea Isoni, Saul Jacka, Aron Toth and

Horst Zank for their helpful suggestions and detailed feedback.
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1 Introduction

When a decision-maker sees no benefit to fooling her opponent in a game,

she presumably sees no reason to define her preferences over her own mixed

strategies. Yet if the decision-maker is to be modeled using a von Neumann–

Morgenstern (1944) [vNM] expected utility function, or one of the general-

izations we discuss in more detail below, this is what she is required to do.

There are models, such as that of Gilboa and Schmeidler (2003) [GS] and

O’Callaghan (2011) which address this concern by reducing the domain of

preferences to be the set of alternatives (pure actions) that are available to

the decision-maker. Then, preferences are indexed by the set of possible

beliefs the decision-maker has regarding her opponent’s move. Whilst this

approach certainly addresses the issue concerning preferences over own mixed

strategies, it also introduces new difficulties.

In particular, if preferences are to be represented by an expected utility

function, they must satisfy a diversity condition. In [GS], this condition says

that for every set of four alternatives available to the decision-maker, and

each possible strict ordering of the four alternatives (there are 4! “ 24 of

these), there exists a context such that preferences agree with that rank-

ing. These diversity conditions are not only unnecessary for an expected

utility representation, they are also strong enough to exclude the majority

of possible decision-makers. Indeed, as is discussed in Ashkenazi and Lehrer

(2001) and O’Callaghan (2011), for decision problems where there are only

two states of nature and more than three alternatives, the diversity condition

of [GS] is so strong as to exclude all possible preferences. Moreover, there

appears to be no intuitive conditions on preferences that resolve this problem.
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My purpose therefore is to identify a minimal domain that allows us to ob-

tain an expected utility function without recourse to these extra conditions

on preferences. I show that it suffices to define preferences over alternative-

context pairs. The results are obtained in the more general setting of mixture

preserving functions on mixture spaces in the spirit of classic paper of Her-

stein and Milnor (1953) [HM].

1.1 Two motivating examples

The first class of problems that is well suited to the model I present in this

paper is where the decision-maker’s “opponent” is nature. Moreover,

(i) she knows she will face a choice in the presence of uncertainty about

the future state of nature;

(ii) she knows, that when the situation arises, she will have knowledge of

the context she is in (for instance, she will know the likelihood of any

given state of nature);

(iii) given a context, she knows her preference for one alternative over an-

other;

(iv) given a particular course of action, she knows which context she would

rather be in;

(v) building upon (iii) and (iv), she is willing to go further and make state-

ments of the form “I prefer to choose alternative a when in context p,

than to choose alternative b when in context q”.1

Although (ii) of this list is arguably a strong assumption for the class of

examples of this paper, I will simply take it as given and accept it as a topic

for future research without further discussion.
1In this paper we take this statement to be equivalent to “I prefer to be in context p

when choosing alternative a, than to be in context q when choosing alternative b”.
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Example. Consider a planner who is devising a complete, contingent plan of

how to respond to the future threat of a flood. There are two states (flood and

no-flood) and there are two alternatives: do nothing or evacuate. Crucially,

the contingencies are defined to be the set of possible probability distributions

over states, not the states that may subsequently obtain. The idea being that,

when the time comes, the action should be carried out without question.

In this example, the planner should have no reason to consider mixtures

over her set of alternatives: there is no obvious benefit to doing so. The

situation is different from a game against a strategic opponent, such as rock-

paper-scissors, where being predictable carries a cost. As Rubinstein (2000)

and Gilboa and Schmeidler (2003) highlight, data on players’ preferences over

mixed strategies may be unreliable as it is not clear whether observable, pure

actions of the player are part of a grand mixed strategy. If this hypothesis is

true in games against other players, it is even more true in games that are

“against nature”.

On the other hand, there is good reason for the planner to consider each

possible contingency (context) and, given this, say whether she would evac-

uate or not. It is not too much more to ask her to state her preferences over

contingencies given a choice of alternative. This suggests that (iii) and (iv)

are reasonable assumptions in the flood example.

This leaves (v). Now the planner needs to be willing to make statements

of the form “I prefer to announce evacuate when the probability of flood-

ing is 1

2
than to make no announcement when the probability of flooding is

1

4
”. Whilst there is no doubt that this is more demanding, it is worthwhile

putting it into perspective by considering the following class of statements

“I prefer to announce evacuate with probability 1

2
when the probability of

flooding is 1

2
than to evacuate with probability 1

4
when the probability of
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flooding is 1

4
”. The latter type of statement is necessary if we wish to apply

the benchmark [vNM] model of expected utility.

In fact the [vNM] model requires quite a bit more than this. It requires

that the decision-maker is willing to make preference statements about any

pair of probability distributions over the set of four outcomes defined by tak-

ing the product of the set of alternatives with the product of the set of states:

(d,n)”(do nothing, no flood), (d,f)”(do nothing, flood), (e,n)”(evacuate, no

flood) and (e,f)”(evacuate, flood).

This space of lotteries contains probability distributions where the (joint)

probability of the outcome (evacuate, flood) is not equal to the product of

the marginal probabilities. Let δx denote the probability measure assigning

probability one to outcome x and consider the following lottery:

1

2
δpd,nq `

1

4
δpd,fq `

1

4
δpe,nq.

For outcome pd, nq to occur with probability 1

2
, it seems reasonable to assume,

that in the absence of mischievous deities, there is a positive probability that

the central planner chooses “do nothing” and a positive probability that

“flood” occurs. Similarly, for pe, nq to occur with probability 1

4
, the planner

ought to be choosing “evacuate” with positive probability. However, by tak-

ing the product of the marginal probabilities of evacuate and flood, outcome

(e,f) occurs with positive probability. Now this can’t be because the sum of

1

2
, 1

4
and 1

4
is 1.

Even so, suppose the planner was willing to entertain the possibility of her

strategies somehow being correlated with those of nature’s; would she be

willing to say whether she preferred the above lottery to

7

16
δpd,nq `

3

16
δpd,fq `

1

16
δpe,nq `

5

16
δpe,fq ?
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It seems that a simple but challenging decision problem has been turned into

a complicated problem that is even more challenging. The difficulty is that

to define preferences over the space of lotteries on A ˆ S, where A is the

set of alternatives and S is the set of states, is to define preferences over the

3-dimensional unit simplex ∆pA ˆ Sq in R4. This adds considerable com-

plexity to the decision problem.

One solution to this latter difficulty is to use the multilinear expected utility

model of Fishburn (1980). This model allows us to define preferences on the

product of unit-simplices ∆pAq ˆ∆pSq “ r0, 1s ˆ r0, 1s. It therefore allows

the decision-maker to avoid defining her preferences on the strange lotteries

described above. However, it still requires that the decision-maker define her

preferences over her own mixed strategies. As a result, the conditions on

preferences that Fishburn imposes are more numerous and more complicated

than the model of this paper.

Instead, I propose to define a simple model of preferences over the prod-

uct Aˆ∆pSq. In the above example this amounts to two copies of the unit

interval. Aside from the intuitive appeal in decision problems like the flood

example above, the advantage to defining preferences on a smaller space, in

terms of the complexity of eliciting a utility function may be significant in

real-life complex decision problems such as those studied by computer scien-

tists like Braziunas and Boutilier (2010).

In order to show that the present model is not restricted to choice under

risk/ uncertainty, I now present a second example where the space of con-

texts need not be the set of probability distributions over states. It serves

to motivate the concept of a mixture space which is defined formally below.

For now it suffices to think of it as a suitable generalization of a convex space
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in which the operation of taking mixtures is defined.

Example 1.1. Consider a customer in a restaurant choosing a meal with

the assistance of a waiter. The menu defines a finite set of alternatives, and

there are a continuum of possibilities for each dish: how well the flavors of

the main ingredients combine, the degree to which the food will be cooked, the

quantity of salt it will contain, etc. Suppose that the waiter is able to describe

the context space as precisely as the customer wishes.

Given the choice of a particular item on the menu, the customer may well

be willing to state her preferences over the possible contexts, thus (iv) may

be reasonable enough here. She may also be willing to make statements of

the form: “I prefer the carrot soup with a table spoon and a half of cream,

to the tomato salad with one quarter of an onion in it.”

On the other hand, it is unclear that the decision-maker would be com-

fortable defining her preferences over mixtures of “soup” and “salad”, even

if by mixture we did mean probability mixtures. Presumably the only situ-

ation where she might even consider such alternatives is when she is unsure

of what to do and flips a coin to break the tie. So Fishburn’s multilinear

model, which also holds for mixture spaces, is arguably inappropriate here.

As above, to define preferences on a single mixture space, we must go even

further: either assume the decision-maker considers lotteries over the product

of the alternative space with the space of contexts; or allow for a continuum

of portion sizes for all items, and expand the menu to include mixtures of all

possible ingredients, cooking styles etc.

At this point it is natural to question the need for introducing any of the

above strange considerations to the decision problem. The answer is that

we are often interested in representing preferences with a utility function for

which numerical values have meaning in same sense that temperature values
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do. That is given a choice of scale and origin, say, Celsius, we can speak of

temperature as a number. Moreover, if someone else uses another scale and

origin, such as Fahrenheit, their statements are meaningful to us because we

know the affine transformation that converts one to the other.2

In game theory for instance the starting point is to specify a given player’s

“pay-offs” as numbers. [vNM] showed that this is a reasonable starting point

provided preferences are defined on the set of probability distributions (or

lotteries) over the outcomes of the game, and provided certain conditions

on preferences apply. In this case, the player’s payoffs are unique up to a

common scale and origin (a positive affine transformation).

For the customer in the restaurant example, where lotteries may play no

part, if we seek such a utility representation, we must appeal to the gener-

alization of [vNM] by [HM]. They define preferences over a mixture space

and impose very similar conditions on preferences to those of [vNM]. Their

representation is also unique up to a positive affine transformation, and so

utility units in their model are meaningful.

1.2 Outline

The main purpose of the present paper is to pin down the minimal condi-

tions on preferences that extend [HM] (and hence [vNM]) to the setting where

there is more than one mixture space and provide a precise characterization

of the utility function.

The model of Karni and Safra (2000) (henceforth [KS]) comes closest to

the present class of problems. There are two reasons why I choose to build

a new model. The first is that they introduce additional structure on the

2The analogy is not so good if we consider Kelvin as this has a fixed origin.
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space on which preferences are defined. This structure is not needed to make

the extension of [vNM] and [HM] to the general setting where mixtures are

not everywhere defined. I apply the model of the present paper to the space

they define in section (4). Second, they impose conditions on preferences

that are have no counterpart in the original models of [vNM] and [HM], and

are specific to the space on which they define preferences. This means that

the representation in this paper is therefore both simpler and more general

than [KS] and the related paper of Karni (2009). Correspondingly, it is less

straightforward to obtain, and the length of the derivation in section (3) tes-

tifies to this.3

What distinguishes the utility function of this paper from that of [vNM],

[HM], Fishburn (1980), [KS], but also the “state-dependent” utility models,

is the extent to which utility is numerically comparable over the domain of

preferences. In “state-dependent” utility models (eg. Dréze (1961)), compar-

ing utility numbers across states is meaningless, for there is an independent

scale and origin to utility for each state. It is the polar opposite of [vNM]

and the other models we have discussed.

Here however, there is a spectrum of possibilities. For some decision-makers,

utility is numerically comparable across mixture spaces in the sense that

the utility function is, to use the terminology of Karni (2009), unique up

to a positive affine transformation that applies uniformly across the domain

(i.e. utility is cardinally measurable and fully comparable across the domain

(CFC)). For others, the utility function will only be CFC within certain sub-

3Moreover, the relevant result in that paper contains two mistakes. The first is their

claim that the utility function is unique up to a common scale but not a common origin.

As Karni (2009) points out and amends, it is in fact unique up to a positive affine trans-

formation. The second mistake is also present in Karni (2009) and a counterexample to

their claim is presented in section (4) below.

9



sets of its domain. If such a subset is maximal, in the sense that it is the

largest subset for which numerical utility comparisons are possible, we will

call it a quasi-component of preferences.4 Across quasi-components, only or-

dinal utility comparisons are meaningful.

Such concepts may at first sight seem irrelevant to decision-making. However

the essential idea is that when, regardless of context, one alternative is ob-

viously better than another, it may be that the decision-maker has need for

the high resolution measurement scale that [vNM] require. For other pairs of

alternatives, the [vNM] model may be natural. The issue bears resemblance

to the way that one does not typically need scales to decide whether a tod-

dler is lighter than an adult, but periodically, we do need precise scales to

measure whether our own weight has increased or decreased.

I argue that this property of preferences may well be justified in applications,

and, unless there is good reason, it should not be assumed away. One such

application is provided in section (5), the final section of this paper, where

I will argue that, when preferences are incompletely defined on the space of

lotteries over monetary outcomes, preferences that accord to the Allais para-

dox are straightforwardly captured by a mixture-preserving utility function

that is not defined over the entire simplex of lotteries. This application also

highlights the fact that in general the set A need not index alternatives, it

may index the members of a union of subsets of a single simplex.

The next section presents the conditions we impose upon preferences, the

mixture space as well as the space of alternatives. Following this, in section

4This terminology is related to the concept of a component in topology. These sets

resemble components in some ways, but since they may contain limit points of other

quasi-components, we have chosen this terminology.
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(3) the two main representations are derived, the first generalizes the model

of [HM], and the second the model of [vNM].5

The paper then concludes with two applications of the model. The first,

in section (4) makes precise the differences between our model and that of

[KS] and shows how state-dependent preference can hold despite utility being

CFC across states. I then conclude in section (5) with the application to the

Allais Paradox.

2 Conditions on preferences and the space of

alternative-context pairs

To keep the notation as simple as possible, I assume that the space of con-

texts, M, is the same for all the elements of A, which we will refer to simply

as alternatives. Moreover M is a mixture space, which is defined in the

following way:

Definition 2.1 (Mixture set ). A set M is said to be a mixture set (or

space) if for any x, y P M and any λ, we can associate another element,

which we write as either λx ` p1 ´ λqy or xλ y, which is again in M, and

where

(1) xλx “ x

(2) xλy “ yp1´ λqx

(3) pxλyqµy “ xpλµqy .

5Although great care has been taken to define every new concept and explain each step

in the proofs, the derivation is rather technical. Hence, I suggest that non-specialists first

read the following section, which makes precise the limitations of the model, and continue

reading near the end of section (3) where the representations are to be found.
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A mixture space is more general than a simplex. As Mongin (2001) shows, a

mixture space needn’t even be isomorphic to convex subset of a vector space.

Even so, the following pair of examples shows that it is not general enough

to include spaces such as A ˆM, where A is a general set of alternatives.

The issue is of course that the mixture operation need not be defined on the

whole of AˆM.

Example. Let A “ ta, bu. Let pa, pq be an element of tauˆM and y “ pb, pq

an element of tbu ˆM. Clearly, there is no λ P r0, 1s other than 0 and 1

such that xλy lies in AˆM.

Example. If A is the set of rational numbers the set A ˆM is neither

a mixture space, nor a product of mixture spaces. For if we are to take

the interval r0, 1s, then 0 ă 1?
2
ă 1 is not rational. Neither therefore is

p 1?
2
, pq P AˆM for any p PM.

Note that the set we study can also be written as a union as follows

AˆM ”
ď

aPA

`
tau ˆM

˘
.

Unlike [HM], I will assume that the mixture space M is endowed with a

topology, and that, under this topology, it is compact. This, together with

the conditions I impose on preferences, as I show below, is sufficient for the

existence of a greatest lower bound (glb) and least upper bound (lub) of M

under the order that preferences define for each alternative b P A.

This is an important simplification that makes the proofs more straightfor-

ward. Further research is required to prove that this condition can be weak-

ened so as to have a representation for a union of general mixture spaces.6

Nonetheless, it still allows for a wide range of context spaces as the following

example highlights.

6Although these results are not presented here, my current efforts appear to show that,

for a topological mixture space at least, this should be possible.
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Example 2.2. For an arbitrary set S, r0, 1sS is, by the Tychonov theorem,

compact in the product topology. Now since ∆pSq, is a closed subset of r0, 1sS,

by theorem 26.2 of Munkres p181 ∆pSq is also compact, and as such, a valid

space of contexts for the results that follow.

Unless otherwise stated, the space of alternatives will be assumed to be fi-

nite. Where possible my proofs are written so that they would also apply to

the countably infinite case. Preliminary research into the latter shows that

it is somewhat more complicated, and that to progress we will need to make

slight alterations to some of the concepts we introduce. For the case where

A is uncountable, it is clear that further conditions on preferences will be

needed. The reason being that there can only be countably many disjoint

intervals (with nonempty interior) in R, whereas in general preferences may

lexicographically order elements of AˆM in the sense that for each a, b P A,

either pa, pq is strictly better than pb, qq for all p, q PM, or the reverse strict

preference for all p, q PM, so that any representation of such preferences will

need to map into the same number of disjoint intervals as the cardinality of A.

For any given x, y P AˆM, we take the statement “y is weakly preferred to

x” to be equivalent to x À y.7 The conditions on the relation À that will be

needed are defined as follows.

Definition (Complete pre-order (O)).

For all x, y, z P A ˆM, both the following hold:

(i) (Completeness) x À y or y À x, and

(ii) (Transitivity) if x À y and y À z, then x À z.

Definition (Continuity (C’ty)).

7This notation is used by Fishburn (1979) and Binmore (2009). I believe it to be easier

to read in the present setting due to the fact that our proof often deals with “intervals”

defined by preferences.
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For all x, y P AˆM, the following sets are closed:

ty P AˆM : y Á xu, and ty P A ˆM : x Á yu

When the decision-maker makes a preference statement comparing different

contexts p, q P M, given that she is choosing a particular alternative b P A,

I will use the shorthand p Àb q and understand it to be the same statement

as pb, pq À pb, qq.

Definition ([vNM). Independence on each mixture space (I)]

For any b P A, and any p, q, r PM if p „b q, then

p1

2
r „b q

1

2
r.

Condition (I) is stated in the form that [HM] introduced in their paper.

The first part of that paper is dedicated to showing that this implies the

more familiar form that [vNM] introduced, where the condition in (I) holds

not only for λ “ 1

2
, but for all λ P r0, 1s. The following condition is to

my knowledge new, and it is the condition that as I now show generalizes

condition (I).

Definition (Congruent betweenness (CB)).

For any b, c P A, p, q, p1, q1 P M, if both pb, pq „ pc, qq and pb, p1q „ pc, q1q

then

pb, p1

2
p1q „ pc, q 1

2
q1q.

Clearly if the cardinality of A is one, then condition (CB) is implied by

condition (I) and transitivity; since (I) implies that whenever p „b q and

p1 „b q
1 we have

p1

2
p1 „b q

1

2
p1 „b q

1

2
q1,

and transitivity ensures that that indecisiveness propagates. In fact, by tak-

ing p “ q and b “ c in the definition of (CB), we see that, because p “ q

implies p „b q, (CB) implies (I). Thus, when the cardinality of A is one, the

14



two conditions are equivalent in the presence of (O), but when A contains

two or more elements, (CB) implies (I), but not vice versa.

This justifies my claim that (CB) is a natural generalization of [vNM] in-

dependence to unions of mixture spaces, or equivalently, spaces for which

the mixture operation is not everywhere defined. Note that if for two mix-

ture spaces each element of the first is strictly better than all elements of the

second, then condition (CB) is silent for such comparisons, but it still has

implications within each mixture space.

Note that [KS] provide an example that shows why their version of the (CB)

is not implied by the combination of (O), (C’ty) and (I). The intuition is

that whenever there are at least two distinct indifference sets, both of which

contain elements from two particular mixture spaces, it is possible to find

utility functions that are mixture preserving on each of the mixture spaces,

together satisfy (O), (C’ty) and (I), but which fail to satisfy (CB).

If |A| “ 1, then AˆM is in fact a mixture space, and if it satisfies conditions

(O), (C’ty) and (CB), then we say that it is a vNM ordered space. More

generally, we have the following definition.

Definition 2.3. [Extended vNM ordered space]

Let M be a mixture space and A a discrete set, and let À be a binary relation

on AˆM. Then pAˆM,Àq will be referred to as an extended vNM ordered

space if it satisfies conditions (O), (C’ty), and (CB).

Any representation of preferences over a mixture set will involve a function

that is, first and foremost, mixture preserving.

Definition 2.4 (A generalization of [HM] and Moulin (2001)8). For any set

8I thank Peter Hammond for recommending this form of the definition.
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D, a function f : D Ñ R is said to be mixture preserving (MP) if for all

p, q P D, and all λ P r0, 1s such that pλq P D

fppλqq “ λfppq ` p1´ λqfpqq.

A special case of a mixture preserving function is of course an expected utility

function such as that of [vNM].

3 Mixture preserving utility

The next lemma ensures that for each a P A, the vNM ordered space tauˆM,

has a mixture preserving representation.

Lemma 3.1. Let |A| “ 1. Then pA ˆM,Àq ” ptau ˆM,Àq is a vNM

ordered space if and only if there exists a mixture preserving function U :

tau ˆMÑ R such that for every p, q PM,

pa, pq À pa, qq ô Upa, pq ď Upa, qq (1)

Proof. The proof follows from the fact that when AˆM is a vNM ordered

space it satisfies the conditions of [HM]. The only part that is not immedi-

ate, is the observation that condition (C’ty) is stronger than the continuity

condition of [HM]. Their condition is stated as follows.

For any p, q, r P ∆, the following sets are closed:

tλ P r0, 1s : pλq Àa ru and tλ P r0, 1s : r Àa pλru.

We prove the contrapositive. That is, we prove that if [HM]’s condition fails

to hold, then so does (C’ty). Suppose there exists a sequence tλn : n P Nu in

r0, 1s that converges to λ1 with the property that, for all n, pλnq Àa r, whilst

at λ1 we have r ăa pλ1q. In the presence of complete preferences, this is the

only possibility. Now, this implies that (C’ty) indeed fails to hold.
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Lemma (3.1) also provides justification for the following identity

ptau ˆM,Àq ” pM,Àaq

and we will use the latter as shorthand for the former, thus pa, pq „ pa, qq if

and only if p „a q for example.

The first result that arises from the assumption of compactness is the follow-

ing.

Lemma 3.2. Let rα, γs be a closed interval in R such that α ă γ and let

pM,Àq be a vNM ordered space with ă‰ H. Then given any mixture pre-

serving representation rU of pM,Àq, there exists unique θ, κ P R with θ ą 0

such that the function

U : C Ñ rα, γs, p ÞÑ θrUppq ` κ,

satisfies

p À. q ô Uppq ď Upqq

for each p, q PM.

Proof of lemma (3.2). Since pM,Àq is a vNM ordered space, by lemma (3.1)

there exists a mixture preserving function rU : MÑ R that represents prefer-

ences on M. The existence of mixture preserving representation is sufficient

for condition (C’ty), and so rU is continuous. Then since M is compact, by

theorem 26.4 of Munkres p182, the image of M under rU is compact.

By the extreme value theorem (theorem 27.4 of Munkres 190), this implies

that there exists a greatest lower bound g and a least upper bound l, both

in M such that

rUpgq ď rUppq ď rUplq
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for every p P M. Let rα “ rUpgq and rγ “ rUplq. By the fact that rU is a

representation, we know that for all p PM, g À p À l.

By condition (2) of the definition of mixture spaces, for every λ P r0, 1s

gλl is an element of M. Then since rU is mixture preserving, for all λ P r0, 1s

rUpgλlq “ λrα ` p1´ λqrγ,

so that the image of rU is equal to the interval rrα, rγs. The fact that ă is

nonempty, and implies that l ă g and hence rα ă rγ.

Now let θ satisfy the equation θprγ ´ rαq “ γ ´ α. Then θ ą 0 and it is

uniquely identified. Next, let κ satisfy θrα ` κ “ α; it too is uniquely identi-

fied. Then since

θrγ ` κ “ θrγ ` α ´ θrα “ γ,

we see that U :“ θrU ` κ is a candidate for the required function.

The fact that U is mixture preserving follows readily from the fact that

rU is mixture preserving and the fact that for each p, q PM, 0 ď λ ď 1

Uppλqq :“θ rUppλqq ` κ

“λ pθ rUppq ` κq ` p1´ λqpθ rUpqq ` κq

“λUppq ` p1´ λqUpqq;

whilst the fact that it is order preserving is similarly easy to show.

Remark 3.3. If ă is empty, then for all p, q P M, p „ q and so rUppq “ rα
for all p P M. Clearly if α is any other element of R, then there exists an

infinity of solutions to the equation θrα ` κ “ α.

Lemma 3.4. Suppose that there exist a ‰ b in A and p, q, p1 PM such that

preferences satisfy pa, pq À pb, qq À pa, p1q and pa, pq ă pa, p1q. Then there

exists a unique λ P r0, 1s such that pa, pλp1q „ pb, qq.
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Proof. Existence: This argument parallels the proof of Theorem 1 of [HM].

Consider the the set

T :“ tλ P r0, 1s : pb, qq À pa, pλp1qu.

By condition (C’ty) and the proof of lemma (3.1), T is a closed subset of

r0, 1s. Since pb, qq À pa, p1q, 1 P T ; so T is nonempty. By the same argument,

W :“ tλ P r0, 1s : pa, pλp1q À qu is also closed in r0, 1s; it is nonempty as

0 PW . Now since M is a completely preordered mixture set, T YW “ r0, 1s;

the fact that r0, 1s is a connected set, implies that no pair of its subsets de-

fine a separation thereof, and so T XW is nonempty. Let λ0 P T XW ; by

construction of these sets I have pa, pλ0p
1q À pb, qq À pa, pλ0p

1q. So that by

asymmetry of ă I have pa, pλ0p
1q „ pb, qq.

Uniqueness: Clearly if pa, pq ă pb, qq ă pa, p1q, then 0 ă λ0 ă 1. Now

take any r P M such that pa, rq „ pb, qq. Transitivity of „ implies that

pa, rq „ pa, pλ0p
1q. Moreover, theorem 6 of [HM] together with the fact that

I have assumed pa, pq ă pa, p1q implies that λ0 is unique.

Definition 3.5. Let x and y be elements of AˆM. Then the pair px, yq is

called a gap if both the following conditions hold:

(i) x ă y; and

(ii) the set sx, yr :“ tz : x ă z ă yu is empty.

Remark 3.6. Note that more generally the set sx, yr :“ tz : x ă z ă yu

can, by de Morgan’s laws and the fact that À is complete and transitive, be

rewritten as tz :  pz À xqu Y tz :  py À zqu. Then condition (C’ty) implies

that each of the sets in this union is open; therefore sx, yr is open.

Definition 3.7. Let x “ pa, pq and y “ pb, qq be elements of A ˆM. Then

the pair px, yq is called a quasi-gap (or alternatively a q-gap) if it is either

a gap or if both the following conditions hold:
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(i) x „ y; and

(ii) the sets

Dx “ tc P A : for some r PM, pc, rq ă xu; and

Ey “ tc P A : for some r PM, y ă pc, rqu

are disjoint with a P Dx and b P Ey.

Definition 3.8. In what follows I will denote any element that is a greatest

lower bound for a set tcu ˆM by gc. Similarly, lc will refer the the least

upper bound.

Lemma 3.9. If px, yq is a q-gap, then for all c P A, either pc, rq À x for all

r PM, or y À pc, rq for all r PM.

Proof. If x „ y, so that px, yq is a q-gap but not a gap, then in property (ii)

of the definition of a q-gap, the fact that the sets Dx and Ey are disjoint is

sufficient for the conclusion of this lemma to hold.

If x ă y, then the conclusion of this lemma is equivalent to the following:

@c P A  px ă lc and gc ă yq

which in turn, by the fact that sx, yr“ H, is equivalent to:

@c P A  pgc À x ă y À lcq.

So by way of contradiction, suppose not. If gc „ x ă y „ lc, then the fact

that tcuˆM is a vNM ordered set together with theorem 2b of [HM] implies

that there exists z P tcuˆM such that gc ă z ă lc. Transitivity then implies

that x ă z ă y, so that the pair px, yq cannot be a gap; therefore, either

gc ă x or y ă lc must hold.
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Suppose that gc ă x, then the fact that gc ă x ă lc together with by lemma

(3.4) there exists v P tcu ˆM such that v „ x. Repeating the argument of

the previous paragraph leads us to the same contradiction. The case where

y ă lc is identical.

Lemma 3.10. Every q-gap px, yq of pAˆM,Àq has the property that x „ la

and y „ gb for some a ‰ b in A.

Proof. Suppose that px, yq is a gap, and suppose that x  lc for all c P A.

Then there exists d P A, p, q P M such that x “ pd, pq ă ld “ pd, qq.

Now since (M,Àd) is a vNM ordered space, by theorem 2b of [HM] I have

p ăd p
1

2
q ăd q, so that because sx, yr“ H, and Àd is complete, y À

`
d, p1

2
q
˘
.

Now the same theorem implies that y À
`
d, p1

2
pp1

2
qq

˘
which, by conditions

(2) and (3) of the definition of a mixture space

p1

2
pp1

2
qq “ p1

2
pq 1

2
pq “ pq 1

2
pq1

2
p “ q 1

4
p “ pp1´ 1

4
qq.

Thus y À
`
d, pp1´ 1

4
qq

˘
. Indeed by the induction hypothesis, and an identical

argument I see that for all j P N y À
`
d, pp1 ´ 2´jqq

˘
, so that by condition

(C’ty) and the fact that pd, pp1´ 2´jqqq converges to x “ pd, pq, we see that

x „ y. This implies that px, yq cannot be a gap; this contradiction implies

that there exists a P A such that x „ la. An identical argument shows that

y „ gb for some b P A whenever px, yq is a gap. Moreover, by the definition

of a gap, a ‰ b.

Now suppose that x „ y, that is px, yq is a q-gap, but not a gap. By property

(ii) of q-gaps, there exists d P EyzDx with y “ pd, pq for some p P M. The

fact that d lies outside Dx implies, by condition (O), that x À pd, rq for all

r PM, so that y „ gd. Finally, by the same property of q-gaps, there exists

pc1, p1q P A ˆM such that pc1, p1q “ x and c1 P DxzEy. Now the fact that c

lies outside Ey implies that for all r PM, pc, rq À y, so that by pc, rq À pc, p1q

for all r PM. This implies that x „ lc; moreover, I can see that d ‰ c.
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I will now use the quasi-gaps of pA ˆM,Àq to define quasi-components.

These are subsets of A ˆM upon which my eventual representation will

have a common scale and origin. That is, on a given quasi-component, in

the language of measurability and comparability, preferences are cardinally

measurable and fully comparable.

Definition 3.11 (Quasi-component). Let px, yq be a quasi-gap in pAˆM,Àq.

(i) If for all other q-gaps pw, zq, x À w, then the (nonempty) set

rÐ, xs :“ tt P AˆM : x À tu

is called a quasi-component or q-component of pAˆM,Àq.

(ii) If for all other q-gaps pw, zq, z À y, then the (nonempty) set

ry,Ñs :“ tt P AˆM : y À pa, pqu

is called a quasi-component of pA ˆM,Àq.

(iii) If pu, vq is another q-gap, distinct from px, yq with y ă v, and for all

other q-gaps pw, zq, z À y or u À w, then the (nonempty) set

ry, us :“ tt P AˆM : y À t À uu

is called a quasi-component or q-component of pAˆM,Àq.

(iv) If there are no q-gaps in pA ˆM,Àq, then the set A ˆM is itself a

quasi-component.

Definition 3.12 (Component). If the quasi-gap(s) that identify a quasi-

component ru, vs are gap(s), then ru, vs is also called a component.

Definition 3.13. A quasi-gap pw, zq is said to be distinct from another quasi-

gap px, yq if either w ă x or y ă z. One quasi-component is said to be distinct

from another if at least one of the quasi-gaps that define it is distinct from

each of the quasi-gaps of the other. A collection of distinct quasi-components

is such that every pair in the collection is mutually distinct.
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The following lemma together with the fact that for every q-gap px, yq the

set sx, yr is empty shows that the definition of q-components is such that for

all x P AˆM, x belongs to some q-component.

Lemma 3.14. For every q-gap px, yq in pAˆM,Àq, there exists w, z P AˆM

such that rw, xs and ry, zs are q-components.

Proof. If for every q-gap pw1, wq in pA ˆ M,Àq, x À w1, then by (i) of

the definition of q-components, rÐ, xs is a q-component. The fact that

rÐ, xs “ rw, xs for some w P A ˆM follows from the fact that A is fi-

nite and M is compact. The same is true of ry,Ñs if w À y for every q-gap

pw1, wq.

Now suppose that there exists a q-gap pv1, vq with v1 ă x. I will first show

that there exists a q-gap pw1, wq with the property that every q-gap pu1, uq

with v1 À u1 À x satisfies u1 À w1.

Suppose not. That is, for every q-gap pw1, wq such that w1 ă x, there exists

another pu1, uq with w1 ă u1 ă x. Starting with v1, I may, using the first

element in the pair that defines each of these q-gaps, construct a sequence

tv1
i : i P Nu with the property that v1

1
“ v1 and for all i ě 2, v1

i´1
ă v1

i ă x.

By assumption this sequence is infinite. However, by lemma (3.10) I know

that for all i, v1
i „ lapiq for some apiq P A; now the fact that v1

i´1
ă v1

i for each

i implies that A is an infinite set, a contradiction of my assumption that it

is finite.

Thus there exists a q-gap pw1, wq such that every other q-gap lies outside

the set rw, xs; part (iii) of definition (3.11) then states that this is a q-

component.

Lemma 3.15. For all a P A, tau ˆM is a subset of some q-component
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ru, vs. Moreover, if ăa‰ H, then tau ˆM belongs to at most one (distinct)

q-component, otherwise it belongs to at most two.

Proof. Lemma (3.14) implies that x “ pa, pq P A ˆ M lies in some q-

component ru, vs. In turn, lemma (3.9) implies that the q-gaps that define

ru, vs must lie outside tau ˆM, and this is sufficient for the first part of

lemma.

It is also sufficient for the the fact that tau ˆM belongs to ru, vs alone

whenever ăa is nonempty. For in this case, even if for instance ga „ u, there

exists q P M such that ga ă pa, qq, so that pa, qq cannot belong to any q-

component in the set rÐ, us. In the same way, we know that la À v, so that

pa, qq R rv,Ñs.

To see that when ăa“ H, the set tau ˆM can belong to more than one

q-component, note that if ga „ u and ry, us is also a q-component for some

y P AˆM, then the fact that la „ u implies that tau ˆM belongs to both

q-components. For any other q-component rw, zs that is distinct from both

ry, us and ru, vs, either w ă y or v ă z, in either of these cases, one cannot

have u P rw, zs.

Remark 3.16. By this last lemma, denote any q-component ru, vs as BˆM

for some B Ă A such that there are no q-gaps in B ˆM. Moreover, also by

this lemma, for some Q P N I may write

A ˆM “
Qď

i“1

Bi ˆM,

where for each i, Bi ˆM is a quasi-component.

Lemma 3.17. For any q-component ru, vs :“ B ˆM, if u ă v, then there

exists b P B such that ăb‰ H and u „ gb. If on the other hand u „ v, then

ru, vs is a component.
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Proof. Suppose that despite the fact that u ă v, it holds that for all b P B,

the set ăb is empty. By this assumption, together with lemma (3.10), we

know that u „ la „ ga and v „ gc „ lc for some a, c P A. Now since ru, vs

contains no q-gaps, there exists d P Bzta, cu such that ga ă gd „ ld ă gc.

In turn, there exists e P Bzta, c, du such that ga ă ge „ le ă gd. A finite

iteration of this argument exhausts the elements of the finite set B, so that

we contradict the fact that there are no gaps in ru, vs; I conclude that there

exists b P B with ăb‰ H.

An identical argument to the preceding paragraph shows that it is not the

case that for all b P B with ăb‰ H we have u ă gb; thus u „ gb for some

such b.

Suppose that u „ v and ru, vs is a q-component but not a component, that

is the q-gaps that identify ru, vs are not gaps. Then let px, uq pv, yq be quasi-

gaps with x „ u and v „ y. Transitivity, via condition (O), then implies that

these two quasi-gaps are not distinct and so ru, vs is not a q-component.

Lemma 3.18. The number Q of (distinct) quasi-components in pAˆM,Àq

is less than or equal to the cardinality of A. The number of (distinct) quasi-

gaps is one less than the number of quasi-components.

Proof. By lemma (3.15) we know that every q-component ru, vs “ B ˆM

contains at least one set tbu ˆM. If if u ă v then by lemma (3.17) gb ă lb

for some b P B and by lemma (3.15) therefore, ru, vs is the only q-component

to which the set belongs. If u „ v, then gb „ lb for all b P B, and ru, v, s

is a component, and in this case every b in the nonempty set B satisfies the

property that ru, vs is the only q-component to which tbu ˆM belongs.

This in itself is sufficient for the proof of the first part of this lemma. For the

second part, I proceed by induction. First consider the “lowest” q-component

25



in the order À which is denoted by rÐ, v1s. Either there are no q-gaps in

pAˆM,Àq, so that AˆM is the only q-component, or there exists y1 such

that pv1, y1q is a q-gap. In the former case the statement of this lemma is

true, and in the latter there are once more two possibilities. By lemma (3.14),

there exists v2 such that ry1, v2s is a q-component, either ry1, v2s “ ry1,Ñs is

a q-component, or there exists y2 such that pv2, y2q is a q-gap. Once again,

in the former case, the statement of the lemma is true, and in the latter

there are two similar possibilities. It is clear that for each 2 ď j ď |A| the

inductive step is identical to the above and is therefore omitted.

Lemma 3.19. If ru, vs “ B ˆM is a q-component, then either u „ v or

there exists a minimal sequence ta1, . . . ahu in A such that for all j “ 1, . . . , h,

taju ˆM is a subset of ru, vs, and

g1 ă g2 ă l1 À g3 ă l2 À g4 ă ¨ ¨ ¨ ă gh´1 ă lh´2 À gh ă lh´1 ă lh.

Definition 3.20. The set ta1, . . . , ahu ˆM is called a strict cover of ru, vs.

Proof. Let u ă v, then by lemma (3.17) we may suppose that gb ă lb for

some b P B and take gb to be the glb of ru, vs. By the fact that B is finite

together with condition (O), choose b such that for every c with gc „ u,

lc À lb. Consider the set

Lb :“ ta P A : ga ă lb ă lau.

First observe that Lb Ă B, for I know that lb À v. If Lb is empty, then for

every a P AzLb, either lb À ga or la À lb. The former of these two relation-

ships implies that if for some p PM, lb ă pa, pq then lb À ga, whilst together

they imply for all a P B, la À lb. Thus whenever Lb is empty ru, vs “ rgb, lbs

and the sequence I seek is simply tgb, lbu with h “ 1.

If Lb is nonempty, then let a1 :“ b, g1 :“ gb and L1 :“ Lb. Then take
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a2 P Lb and l2 :“ la2 to satisfy lc À l2 for all c P L1. Such an element exists

because of condition (O) and the fact that L1 is nonempty and finite. Now

consider the set

L2 :“ ta P A : ga ă l2 ă lau.

By the same argument as for L1 above, I see that L2 Ă Bzta1u. If it is empty

I have found a strict cover:

u „ g1 ă g2 ă l1 ă l2.

If not, then let a3 be the element of L2 satisfying la À l3 for all a P L2. If L3,

defined recursively as for L1 and L2 is empty then I claim my sequence is

g1 ă g2 ă l1 À g3 ă l2 ă l3.

The only relationship that needs further explanation is l1 À g3. This holds

because otherwise a3 P L1 and the fact that l2 ă l3 would contradict the fact

that l2 was maximal. The general case follows by induction, the argument

of which is identical to the one just given and is hence omitted.

The fact that the strict cover is minimal follows immediately from the con-

struction.

Lemma 3.21. If pa, pq „ pb, qq and pa, p1q „ pb, q1q, then, for all 0 ă λ ă 1,

pa, pλp1q „ pb, qλq1q.

Proof. Without loss of generality, let pa, pq ă pa, p1q, so that, by transi-

tivity, pb, qq ă pb, q1q. By condition (CB), pa, p1

2
p1q „ pb, q 1

2
q1q. Succes-

sive applications of this condition show that for all dyadic rational numbers,

0 ă π “
řnpπq

i“1
ζi{2

i ă 1, where ζi “ 0 or 1, we have pa, pπp1q „ pb, qπq1q.

For the remainder of this proof, π will refer to the binary expansion of some

dyadic rational number. Recall the fact that the set of such numbers is dense

in the real numbers and so every 0 ă λ ă 1 is the limit of some such sequence
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tπj : j P Nu.

For 0 ă λ ă 1 consider the set Tb :“ tx P A ˆM : x À pb, qλq1qu. If tπju

is such that πj ă λ for each j and limj πj “ λ, then pb, qπjq
1q ă pb, qλq1q for

all j by theorem 4 of [HM]. By condition (BC) and transitivity, pa, pπjp
1q ă

pb, qλq1q for each j and so tpa, pπjp
1qu Ă Tb. By condition (C’ty) Tb is closed,

and because limj pπjp
1 “ pλp1 this implies that pa, pλp1q À pb, qλq1q.

By the same argument Ta :“ tx P A ˆM : x À pa, pλp1qu is closed and

contains the set tpb, qπjq
1qu which converges to pb, qλq1q. Thus pb, qλq1q À

pa, pλp1q, so that by asymmetry of ă the proof is complete.

Theorem 3.22 (Mixture preserving representation on q-components). B ˆ

M is a quasi-component of the extended vNM ordered space pA ˆM,Àq if

and only if both the following conditions hold.

(i) There exists a mixture preserving function U : B ˆM Ñ R such that

for all x, y P B ˆM

x À y ô Upxq ď Upyq.

(ii) If V is any other function with the same properties as U , then, for

some θ, κ P R with θ ą 0, V “ θU ` κ.

Proof. If for all x, y P BˆM, x „ y, then take U to satisfy Up¨q ” 1 and re-

mark (3.3) ensures that every other representation V is the form V “ θU `κ

for a one-dimensional set of suitable θ, κ combinations. In the opposite di-

rection, suppose that B ˆM is not a quasi-component. Then by lemma

(3.15) B ˆM is a union of q-components and so it contains at least one

q-gap which, by lemma (3.10), which I denote by pla, gbq for some a, b P B.

Now by the definition of q-gap, a and b belong to different q-gaps, indeed

there exists p, q PM such that pa, pq ă pb, qq. Of course this contradicts the
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assumption that on B ˆM, ă is empty.

To prove the theorem, suppose that the set of pairs of elements in B ˆM

for which strict preference holds is nonempty. By lemma (3.19) there exists

a subset Bh of B with |Bh| “ h ď |A| and an enumeration of its elements

ta1, . . . , ahu such that if gj :“ gaj and lj :“ laj , then

g1 ă g2 ă l1 À g3 ă l2 À g4 ă ¨ ¨ ¨ ă gh´1 ă lh´2 À gh ă lh´1 ă lh.

I first show that the conditions that constitute a vNM space imply part (i) of

the present theorem. By lemma (3.1) the exists a mixture preserving function

U1 : ta1u ˆMÑ R such that for all p, q PM

pa1, pq À pa1, qq ô U1pa1, pq ď U1pa1, qq

By compactness of M, for some β1, γ1 P R I have U1pa1,Mq “ rβ1, γ1s with

U1pg1q “ U1pa1, pq and U1pl1q “ U1pa1, pq for some p, p PM.

Since g1 ă g2 ă l1, lemma (3.4) implies that there exists unique 0 ă λ ă 1,

and ppλq :“ pλp such that pa1, ppλqq „ g2. Similarly, let g2 “ pa2, qq and

l2 “ pa2, qq, then there exists unique 0 ă ν ă 1 such that l1 „ pa2, qpνqq,

where qpνq :“ qνq.

By lemma (3.1), the vNM ordered set defined by projecting preferences onto

the set ta2uˆM, has a mixture preserving representation U 1
2
: ta2uˆMÑ R.

Thus, with a view to leaving the image of U1 unchanged in my construction

of a mixture preserving representation on the projection of preferences onto

ta1, a2u ˆM, I recall lemma (3.2) states that: for any interval rβ2, γ2s in R,

there exists unique θ2, κ2 P R, θ2 ą 0 such that

rθ2U
1
2
pg2q ` κ2, θ2U

1
2
pl2q ` κ2s “ rβ2, γ2s.
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The content of two preceding paragraphs suggests that I should choose β2

and γ2 to satisfy β2 “ λβ1`p1´λqγ1 and γ1 “ νβ2`p1´νqγ2. Substituting

for β2 in the second of these two equations, I obtain γ2 “
1

1´ν
pγ1´ νβ2q. Let

U2 : ta1, a2u ˆMÑ R be defined as

U2pxq “

$
&
%

U1pxq if x P ta1u ˆM

θ2U
1
2
pxq ` κ2 if x P ta2u ˆM

U2 is clearly mixture preserving and its image is the interval rβ1, γ2s. In or-

der to show that it is also a representation, it suffices to check pairs x and y

where x :“ pa1, p
1q and y :“ pa2, q

1q for some p1, q1 PM.

First consider the more straightforward cases, that is where x ă g2 À y

and x À l1 ă y. For the former, since

U2pg2q “ β2 “ λβ1 ` p1´ λqγ1 “ U2pa1, ppλqq,

the fact that x “ pa1, p
1q ă g2 „ pa1, ppλqq together with theorem 4 and 6 of

[HM] imply that there is a unique λx ă λ such that x „ pa1, ppλxq. In this

case,

U2pxq “ U2pa1, ppλxqq “ λxβ1 ` p1´ λxqγ1 ă β2 ď U2pyq,

and so I conclude that whenever x ă g2 À y

x À y ô U2pxq ď U2pyq,

as required. (Note that in making this statement I have made use of the fact

that in this case there are no pairs x, y such that y À x.) For the set of pairs

x, y where x À l1 ă y the proof that U2 is a representation on such pairs is

the same.

Now consider the remaining case where x “ pa1, p
1q and y “ pa2, q

1q for

some p1, q1 PM and g2 À x, y À l1. I recall that

pa2, qq “ g2 „ pa1, ppλqq and pa1, pq “ l1 „ pa2, qpνqq,
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and once again by theorem 6 of [HM], there exists a unique 0 ď µ ď 1 with

p1 „a1 ppλqµp such that x „
`
a1, ppλqµpq. By lemma (3.21) therefore

x „
`
a1, ppλqµp

˘
„

`
a2, qµqpνq

˘
.

Now suppose that x „ y. In this case, transitivity implies that y „
`
a2, qµqpνq

˘
. Then since U2pa1, ppλqq “ β2 “ U2pa2, qq and U2p1, pq “ γ1 “

U2pa2, qpνqq and U2 is mixture preserving (whenever the mixture operation

is defined) I have

U2pa1, p
1q “ U2pa1, ppλqµpq “ µβ2 ` p1´ µqγ1

and

U2pa2, q
1q “ U2pa1, qµqpνqq “ µβ2 ` p1´ µqγ1

as required.

The remaining cases, where x ă y and y ă x follow by virtue of the following

facts: by theorem 6 of [HM], I may find two unique values 0 ă µx, µy ă 1

such that p1 „a1 ppλqµxp and q1 „a2 qµyqpνq; by lemma (3.21) I know that

pa, ppλqµpq „ pa2, qµqpνqq for all 0 ď µ ď 1; and by theorem 4 of [HM] I have

µx ă µy if and only if both

qµxqpνq ăa2 qµyqpνq and ppλqµxp ăa1 ppλqµyp.

Thus far we’ve seen that U2 is a mixture preserving representation of the

projection of preferences À onto the subset ta1, a2u ˆM of the strict cover

Bh ˆM. In order to extend U2 to the rest of this strict cover, I proceed

by induction and the proof follows by precisely the same argument as above.

The resulting representation is a function Uh : Bh ˆM Ñ rβ1, γhs that is a

standard mixture preserving representation on each of the sets tajuˆM and

an extended mixture preserving representation on the whole set.
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In order to extend Uh to the rest of the quasi-component B ˆ M, note

that for all b P BzBh, g1 À gb À lb À lh. In fact, because a strict cover is

minimal, I conclude that gj À gb À lb À lj`1 for some j P t1, . . . , j´ 1u. (See

the proof of lemma (3.19) for the construction of a strict cover.) Thus for

some x, y P taj , aj`1u ˆM I have x „ gb and y „ lb.

Now by the proof that U2 is a representation of the projection of prefer-

ences onto ta1, a2uˆM, and the fact that my construction of Uh is recursive

in j, I know that for each j, Uh restricted to taj , aj`1u ˆM will have image

rβj , γj`1s where βj ă γj`1. If I choose βb “ Uhpxq and γb “ Uhpyq then by

lemma (3.2) or remark (3.3) given any representation Ub of the projection of

preferences onto tbuˆM there exists a positive affine transformation θb ą 0,

κb P R that is geometrically unique and satisfies

rβb, γbs “ rθbUbpgbq ` κb, θbUbplbq ` κbs.

Indeed because this is true for all b P BzBh, the proof that

UBpxq :“

$
&
%

Uhpxq if x P Bh ˆM

θbUbpxq ` κb if x P tbu ˆM, b P BzBh

is a representation for the projection of preferences onto the quasi-component

B ˆM follows by the same techniques that I have used in showing that U2

is a representation.

It remains to be shown that the fact that pAˆM,Àq is a vNM ordered space

implies part (ii) of the present theorem. That is, if V is any other mixture

preserving representation of there exists a single positive affine transforma-

tion θ ą 0, κ P R such that V “ θU ` κ. If V pB ˆMq “ rπ, ρs for some

π ă ρ in R, then by the proof of lemma (3.2), I let θ satisfy θpγh ´ β1q “ ρ

and κ satisfy θβ1 ` κ “ π. I recall that in the construction of the image

of Uh, the representation of the strict cover of B ˆM, only β1 and γ1 were
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free variables. The degrees of freedom associated with every other repre-

sentation rUj of taju ˆM were used to obtain the unique transformation

θj rU ` κj with image rβj, γjs, where for each j, βj “ λjβj´1 ` p1 ´ λjqγj´1

and γj “
1

1´νj
pγj´1´ νjβjq and where the λj and νj are uniquely determined

by preferences. As such it suffices to check that U and V agree on ta1uˆM.

This of course directly follows by lemma (3.2).

This complete the proof that the conditions that constitute an extended

vNM ordered space imply (i) and (ii) of the present theorem. In the opposite

direction, conditions (O), (C’ty) and (I) are standard and therefore omitted.

The necessity of (CB) is seen by noting that if it fails, that is there exists

a, b P B, p, q, p1, q1 PM with pa, pq „ pb, qq and pa, p1q „ pb, q1q but

pa, p1

2
p1q  pb, q 1

2
q1q.

Without loss of generality, suppose that pa, pq ă pb, qq, then for any mixture

preserving representation U of such preferences β “ Upa, pq “ Upb, qq and

γ “ Upa, p1q “ Upb, q1q for some β ă γ in R. However, the fact that U is

mixture preserving on each of tau ˆM and tbu ˆM implies

Uppµp1q “ µβ ` p1´ µqγ

“ Upb, qµq1q

for all 0 ă µ ă 1; which clearly implies the desired contradiction.

The necessity of the assumption that B ˆM is a quasi-component of pA ˆ

M,Àq follows from the fact that if it is not then there exists at least two

quasi-components B1ˆM and B2ˆM whose union is BˆM. I will obtain

a contradiction for the case where there are only two q-components. Let

g1, g2, l1 and l2 be the respective glbs and lubs of B1 and B2. It will suffice

to consider the cases where they are components, that is g1 ă l1 ă g2 ă l2,
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and where they are quasi-components but not components, that is where

g1 ă l1 „ g2 ă l2.

First consider the case where l1 ă g2. Let U be a mixture preserving

representation of B ˆM with Upg1q “ β 1, Upl1q “ γ1, Upg2q “ β2 and

Upl2q “ γ2. Now let rπ1, ρ1s and rπ2, ρ2s be any pair of intervals such that

π1 ă ρ1 ă π2 ă ρ2. It is clear that in general I will need two different positive

affine transformations θ1, θ2 ą 0 and κ1, κ2 P R are needed to shift and rescale

the intervals rβ 1, γ1s and rβ2, γ2s so that rθ1β 1 ` κ1, θ1γ1 ` κ1s “ rπ1, ρ1s and

rθ2β2 ` κ2, θ2γ2 ` κ2s “ rπ2, ρ2s. However it is also clear that any mixture

preserving function that maps B1ˆM into rπ1, ρ1s and B2ˆM into rπ2, ρ2s

and which is representation on each of these quasi-components is also a rep-

resentation on BˆM. This implies that (ii) is violated. So that in this case,

the fact that B ˆM is a quasi-component is necessary.

The case where g1 ă l1 „ g2 ă l2 follows by an identical argument and

is therefore omitted. This completes the proof of the theorem.

Theorem 3.23 (Mixture preserving representation).

Let M be a compact mixture space and A a finite set. Then pA ˆM,Àq is

an extended vNM ordered space if and only if both the following conditions

hold.

(1) There exists a mixture preserving function U : A ˆM Ñ R such that

for all x, y P A ˆM

x À y ô Upxq ď Upyq.

(2) the number Q of quasi-components9 has the property that if V is any

9For those who have not read the construction of quasi-components above, these should

be interpreted as corresponding to maximal intervals in the image of the utility function
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other function satisfying (1), then for each a P A

V pa, ¨q “ θiUpa, ¨q ` κi

for some i “ 1, . . . , Q, κi P R and θi ą 0.

Proof. (ñ p1q) Since AˆM can be written as the union of an arbitrary enu-

meration of its q-components AiˆM, i “ 1, . . . , Q ď |A|. (Recall that we are

implicitly referring to distinct q-components.) Each q-component, by theo-

rem (3.22), has a mixture preserving representation rU i : taiu ˆMÑ rβ 1
i, γ

1
is

for some β 1
i ď γ1

i in R. I proceed by rearranging the intervals rβ 1
i, γ

1
is, to

match the order À.10

The proof then follows by lemma (3.2) as we are free to take the neces-

sary positive affine transformations of the representations rU i such that the

transformed representation U i has image equal to the desired interval rβi, γis.

My mixture preserving representation will be the function that coincides with

each of the functions U i for each q-component Ai ˆM.

Let rβ1, γ1s “ r0, 1s if β 1
1
ă γ1

1
and t0u otherwise. By induction, for the

ith interval in the enumeration, consider the following cases:

• li ă gm for all m ď i´ 1: if so let rβi, γis “ r´2
i´ 1,´2is if β 1

i ă γ1
i and

t´2iu otherwise;

• lm ă gi for all m ď i ´ 1: if so let rβi, γis “ r2
i, 2i ` 1s if β 1

i ă γ1
i and

t2iu otherwise;

in R that are non-overlapping except, possibly, at the endpoints. It is this slightly messy

property that leads the construction to be involved even though the concept is straight-

forward.
10This method of proof allows for a countable set A, although my construction of q-

components precludes the theorem from applying to that case.
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• lh ă gi À li ă gk for some 1 ď h, k ď i ´ 1 and for every m ď i ´ 1 I

have either lm À lh or gk À gm.

If the last of these is true and β 1
i ă γ1

i, then let βi “
1

2
pγh ` βk ´

βk´γh
2i
q and

γi “
1

2
pγh ` βk `

βk´γh
2i
q and let them both equal 1

2
pγh ` βkq otherwise.

In the first of these cases, for each i ě 2, then γi “ ´2
i ă ´2i´1 ´ 1 where

´2i´1 ´ 1 is a lower bound for βm for every m ď i ´ 1. The second case is

similar. For the third case, it is also clear that for all i ě 2 γh ă βi ď γi ă βk.

Now consider the remaining cases where the q-component rgi, lis shares an

indifference set with either one or two q-components with respect to which it

is distinct. Recall, that by lemma (3.17) in this case, we cannot have gi „ li.

• li „ gh, where gh À gm for all m ď i´ 1: if so let rβi, γis “ rβh´ 1, βhs;

• lk „ gi, where lm À lk for all m ď i´ 1: if so let rβi, γis “ rγk, γk ` 1s;

• lh À gi ă li À gk for some 1 ď h, k ď i´ 1 and for every m ď i´ 1 we

have either lm À lh or gk À gm.

If the last of these is true, then there are three sub-cases to consider. If

lh „ gi ă li „ gk, then I simply set rβi, γis “ rγh, βks. If lh ă gi ă li „ gk,

then let γi “ βk and βi “ βk ´
βk´γh

2i
. Similarly, if lh „ gi ă li ă gk, then I

let βi “ γh and γi “ γh `
βk´γh

2i
.

For the special case, where ∆ is the set of probability distributions over fixed

finite set, I obtain the following representation.

Theorem 3.24 (vNM for Aˆ∆).

Let A and S be finite sets and let ∆ be the set of probability measures on S.

Then pA ˆ∆,Àq is an extended vNM ordered space if and only if both the

following conditions hold.
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(1) There exists a function U : Aˆ∆Ñ R, pa, pq ÞÑ Upa, pq “
ř

sPS psupa, sq

such that for all x, y P A ˆ∆

x À y ô Upxq ď Upyq.

(2) The number Q of quasi-components11 satisfies the property that if V is

any other function satisfying (1), then for each a P A

V pa, ¨q “ θiUpa, ¨q ` κi

for some i “ 1, . . . , Q, κi P R and θi ą 0.

To conclude this section, the following remark describes the relationship be-

tween condition (CB) and the corresponding condition of [KS].

Remark 3.25. The following is the constrained independence condition of

[KS]. I emphasize that this is not assumed anywhere in this paper, and is

only presented so as to show that it is somewhat stronger than (CB).

Definition 3.26 (Constrained independence). For any b, c P A, p, q, p1, q1 P

M, and λ P r0, 1s if pb, pq „ pc, qq then pb, p1q À pc, q1q if and only if

pb, pλp1q À pc, qλq1q.

The fact that constrained independence implies condition (CB) follows im-

mediately if we take λ “ 1

2
, consider the fact that „ĂÀ and use the “only

if” part of the statement. Moreover, it is clear that in the absence of condi-

tion (O), (CB) does not imply the “if” part of constrained independence, for

pb, p1q and pc, q1q may be incomparable. We claim without proof, that in the

presence of (O) and (C’ty) the conditions are equivalent

11We recall that these should be interpreted as corresponding to maximal intervals in

the image of the utility function in R that are non-overlapping except, possibly, at the

endpoints.
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The remaining conditions of [KS] serve only to ensure that the representation

is state-independent and is particular to the relationship between the the set

A and the mixture space M that they consider. That is to say, their paper is

a special case, with additional conditions on preferences and structure on the

space on which preferences are defined. Thus to my knowledge, this paper

constitutes the most general in its class, and is the natural generalization

of vNM and [HM] to the setting where there are is more than one mixture

space, or where the mixture operation is not everywhere defined.

4 Separating the issue of comparability from

state-dependence

Consider the following change in interpretation of the space A ˆM of the

above theorems. Take A to be the product space

ź

sPS

As

for some finite set of states S and, for each s P S a finite set of state-outcomes

As. Then take M to be the set of probability distributions ∆pSq on S. Now

as an element of Aˆ∆pSq is of the form pa, pq :“
`
pa1, . . . , a|S|q, pp1, . . . , p|S|q

˘

which, in the case where the elements of A are also vectors in R|S|, may be

rewritten as an inner product

xa, py “
ÿ

sPS

ps as.

Or, in the usual lottery form where δpasq is the lottery assigning probability

one to the state-outcome as ÿ

sPS

δpasq ps.

Now for each a in the finite set A, a ˆ ∆pSq is a mixture space, and so by

theorem (3.24) preferences satisfy (O), (C’ty) and (CB), if and only if there
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exists a function U : A ˆ∆pSq Ñ R, pa, pq ÞÑ Upa, pq “
ř

sPS psuspasq such

that for all pb, qq, pc, rq P Aˆ∆

pb, qq À pc, rq ô
ÿ

sPS

uspbsq qs ď
ÿ

sPS

uspcsq rs .

Note that the means to which we obtain this may be easier to see if we write

uspasq “ upas, δsq, but it is standard in the literature to make this small

abuse of notation. Now this is clearly a state dependent utility function.

That is, for any pair of states s, t P S, it may well be that bs “ bt “ b.,

cs “ ct “ c., uspb.q ă uspc.q and utpc.q ă utpb.q simultaneously hold. By

contrast, theorem (3.24) implies that the uniqueness properties of the repre-

sentation depend entirely upon preferences. Suppose that the extended vNM

ordered set pAˆ∆pSq,Àq defines a single component. In this case, any other

representation of preferences can be rewritten as a positive affine transforma-

tion of U . Thus, in the presence of condition (CB), full comparability across

states and state-dependence of preferences is possible.

Indeed, this is the property that ensures the representation of [KS] and Karni

(2009) has the uniqueness form that it does. They obtain this by assuming

a condition called “coordinate essentiality”. This states that, for each state

s, there exists b, c P A such that pb, δsq ă pc, δsq. Whilst this condition is suf-

ficient for the representation to be unique in the sense I have just described,

contrary to what [KS] and Karni (2009) claim, it is certainly not necessary.

The following example highlights this fact.

Example 4.1. Suppose there are two states. Take A1 to be a singleton.12

Then preferences do not satisfy the condition in question. Now take A2 to

be of cardinality 2 and note that the cardinality of A is therefore also two.

Now suppose that pb, δ2q ă pc, δ2q and that pb, δ1q ” pc, δ1q ă pb, δ2q. Then

by lemma (3.4) we know that there exists a unique 0 ă λ ă 1 such that

12We could also suppose that pb, δ1q „ pc, δ1q for all b, c P A.
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pb, δ2q „ pc, δ1λδ2q. We conclude from the fact that there are two distinct

indifference sets each of which contains elements of both the mixture spaces

tbuˆ r0, 1s and tcuˆ r0, 1s, and so given a particular utility representation U

of preferences, any other can be written as a positive affine transformation

of U .

The “certainty principle” of [KS] states that for all states s, when the decision-

maker is certain of being in state s, what might happen in other states doesn’t

matter, that is, she reduces the comparison of pa, δsq and pb, δsq to the com-

parison of as and bs. Whilst this is not necessary for the uniqueness discussion

above, it is necessary and sufficient for there to be a state-independent utility

representation of the form

U : Aˆ∆pSq Ñ R, pa, pq ÞÑ Upa, pq “
ÿ

sPS

psupasq,

where now, since upas, δsq “ upasq for all s, we see that the function u depends

only on the state through the state-outcome as.

5 Incompletely defined preferences and the

Allais Paradox

By preferences that are incompletely defined we mean that there exist entire

sets of lotteries, say, that the decision-maker has not even considered, but

wherever preferences are defined they are complete. This is a special case of

incomplete preferences which holds when there exists at least one pair of al-

ternatives for which preferences have nothing to say, perhaps as a result of the

decision-maker genuinely being unable to state preference in either direction.

For instance, for incomplete preferences in general, it may be the case that x

is worse than both y and z, whilst y and z are incomparable as in some ways

y dominates z and in others z dominates y. The following diagram presents
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such a scenario for a standard (element by element) ordering of vectors in R2.

✻

✲

r

z

r

x

r

y

Instead, by incompletely defined preferences we suppose that comparabil-

ity is transitive. When two lotteries, x and y, are comparable, we mean that

either x is preferred to y or y is preferred to x. By transitivity of the relation

of of being comparable that if x is comparable to both y and z, then y is

comparable with z. If we denote “comparable” by “Ø” then this condition

is summarized thus: for all x, y and z

if xØ y and y Ø z then xØ z.

This assumption ensures that the sets where preferences are complete are

distinct from those where they are complete. By itself it is stronger than

the usual transitivity of preference condition, but it is not strong enough to

partition X into two sets, one containing comparable elements and the other

elements for which preferences are not defined. There may be two or more

sets within each of which all elements are comparable, but across which ele-

ments are not, or at least not comparable in the same way.

The concept at play is closely related to the approach of Schmeidler (1989).

On p.576 he concedes that completeness is the most restrictive and impos-

ing assumption of expected utility theory, but notes that “One can view the

weakening of the completeness assumption as a main contribution of all the
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other axioms.” Indeed he then goes on to weaken the independence condi-

tion so that it applies only for a particular subclass of lotteries. The present

application pertains to the same viewpoint.

Specifically, suppose that, for a fixed set of prizes such as t$0, $10, $50u,

a given decision-maker has been offered the choice between two pairs of lot-

teries over the prizes such as the pair p “ 0.01 ¨ δ0 ` 0.99 ¨ δ10 (win nothing

with probability 0.01 and win $10 with probability 0.99) and

q “ 0.17 ¨ δ0 ` 0.83 ¨ δ50,

and the pair

r “ 0.9 ¨ δ0 ` 0.1 ¨ δ50 and u “ 0.11 ¨ δ0 ` 0.89 ¨ δ10,

where, once again, δx is the measure assigning probability one to outcome

x. Now the chances are she will not have given much thought to the vast

number of other possible lotteries over the set of prizes. However, she would

almost certainly agree that both of p and q are strictly better than either

r or u. In fact this may be so apparent that, when making such compar-

isons, the decision-maker may have no need for the high resolution scale of

measurement the vNM model implies. After all, is it not the case that a

person who is asked to state which of two rather different weights is heavier

would have no need to ask if they could use scales before providing an answer?

By contrast, her decisions between p and q, on the one hand, and r and

u on the other, are likely to require a good deal more consideration. More-

over, whilst for a given pair, such as p and q, mixtures nearby or in between

may give rise to similar judgements, and be approximated by the vNM con-

ditions, this need not hold globally. Unless more lotteries are placed before

the decision-maker, thus allowing her to explore her own attitude to risk, her
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preferences may not even be defined globally. Near r and u, for instance,

there may be another region where the model of vNM is a good approxima-

tion, but across the two regions, other than ordinal statements of the form

“anything in the region near p and q dominates anything in the region near

r and u, the decision-maker may be agnostic.

It seems reasonable that the utility function that characterizes such a decision-

maker’s preferences should reflect this reflect this asymmetry in the decision-

making task across and within regions of the simplex. Furthermore, without

further probing by the experimenter, say, the decision-maker may have no

cause whatsoever to compare mixtures of elements in one region with those

of the other, and if preferences are not defined there, then why should the

utility function be?

In the example we have been considering we have so far left the preferences

of the decision-maker unspecified. If however they took the form we see in

figure (5) (see final page) we obtain an example of preferences that satisfy the

Allais paradox, and which are also well described by the discussion above.

If, as in the shaded regions of the diagram, we assume that each of these

sets are convex, then they are mixture spaces and the model of this paper

provides a simple way of representing preferences with a family of mixture

preserving utility functions (a simple generalization of an expected utility

function that is defined below). Each member of this family being defined

on one of the regions for which preferences are well defined. Moreover, these

functions combine to define a single mixture preserving utility function on

the union of the given regions.

On the complement of this union, preferences and hence the above utility

function is simply not defined. However, if we extend each of the mixture
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preserving utility functions from their domain of definition to the whole sim-

plex, each will take the form of a vNM expected utility function (also defined

below). Together, over the entire simplex, these combine to form a multi-

expected utility function that resembles that of Dubra, Maccheroni and Ok

(2001).

The resulting representation may well fail to characterize preferences in the

sense that, for some pair of lotteries p, q each of the vNM expected util-

ity functions may happen to agree that p assigns greater utility than q,

even though they both lie outside the regions where preferences are defined.

Nonetheless, further research into finding appropriate conditions may pro-

vide a way of completing preferences for such pairs.

Another important difference between the representations is in the unique-

ness properties the multi-expected utility functions possess. In the present

model preferences may be such that each member of the family of utilities

is numerically fully comparable with one or more of the others. That is,

there may even be a single (multi-)utility scale. This may well be useful in

applications.
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Figure 1: The Allais paradox and incomplete preferences. The decision-

maker’s preferences are such that the slope of the indifference curves in the

triangular region containing δ0 are shallower than those in the rectangular

region containing p and q. If preferences satisfy the conditions for the main

theorem of this paper over the union of these two regions, then the decision

maker has a mixture preserving utility representation on this union. The

representation is the restriction of two distinct expected utility functions to

the respective regions. Since every element in the rectangle dominates every

element in the triangle, preferences are lexicographic across regions and so

comparing the utility value of an element in the rectangle with that of an ele-

ment in the triangle is meaningless. Only ordinal statements are meaningful.

By contrast, within each region, the representation is numerically meaningful

in the sense of vNM and HM53.
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