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Introduction 

Safety First Programming 
A Zero-One Approach 

Safety-first methods have been proposed as an approach to making 

decisions in a risky environment (see Roy, Kataoka, Telser, Roummasset,, 

and others). In general the methods to implement safety-first programm

ing have required assumptions of tractable multivariate distributions 

(Pyle and Turnovsky) or the use of conservative stochastic inequalities 
~ 

(Telser, Sengupta, or Atwood). The methods presented in this paper allow 

safety-first modeling with finitely discrete multivariate populations or 

samples. The method uses exact probabilities or estimates of probabili

ties rather than the usually conservative probability bounds of the 

stochastic inequality methods presented by Atwood, or Atwood et al. The 

method is not without cost, however, in that a zero-one optimization 

algorithm is required. 

This paper is organized as follows. A brief discussion of three 

safety first ciiteria is followed by a presentation of the mathematical 

models for each of the criteria. An empirical example concludes the 

paper. 

Safety-First Criteria 

Safety first models attempt to minimize (or are constrained by) the 

probability of failing to achieve certain goals of a decision maker. The 

probability and goal of concern can be denoted as 

Pr(z < g) 

where Pr(•) denotes the probability of the event(•), 

z denotes a random variable (usually income), and 

g is a goal level for the income random variable. 

(1) 
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Several forms of safety-first behavior have been def:ined! andl 

discussed. Roy proposed that decision makers might choose .fij;omi am~ 

their feasible alternative that alternative which minimizei: ((ll)) 011.· ttfue 

Pr(z < g). If mixtures of alternatives are availab~e (a mmmonl ~s~:umy 

tion in portfolio analysis), let xi denote the level of tlw ilttfu aillttemi.u

tive in an activity mix i = 1,2, ••• k. These xi values cam lei 1li'1stied1 :ilL:n a 

k x 1 vector!.· Roy's criterion becomes to select an actiwntl)3/mi~{:« ftnrn 
. - -l;;! 

the set of feasible activity mixes X which minimizes the pinBa.friiilii:tty; cmif 

aggregate income falling below some goal g. If c is a k x U ~eQ~o.n- Giff. 

per unit inco111e levels, aggregate income z can be written l!Sl zi '-=' ~:1'~_.. 
Further assume for this paper that the feasible set X can Ile, desc-rr:i:il:hml 1lvy 

a set of conventional linear inequalities· or A!, ~ E. and ~]!_I!)~, R.crw'1s.: 

criterion can be written as 

Roy's Criterion 

Minimize Pr(z = ctx < g) 
X 

X ) 0 - - -
with ct a tran.sposed k x 1 random vector of per unit incmm., De..v.eillsi,) 

X a k X 1 Vector of activity levels, 

g a fixed goal, 
\ 

A an m x k matrix of technical coefficients, 

ban m x 1 vector of available resource levels, and 

0 an ~ppropriately dimensioned vector of zeros. 

Kataoka suggested an alternative version of safety-fiitcSJi,: Befim,Tf.iimtr" 

Kataoka suggested .that a decision maker might select an ru.:ttiiv:,il.ti~; md.iz:.: 

which generates the largest income goal for which there ~ ml1iR17 a:, g9i,~ 



probability of falling below that goal. By modifying system (2) 

slightly, Kataoka's criterion can be written as 

Kataoka's Criterion 

Maximize g 
X 

Subject to A~~£ 
Pr(z = ctx < g) < o 

with o a probability limit (fixed exogenously) and the other 

parameters and variables one as previously defined. 

(3) 

Telser offered a third safety-first condition in which expected 

income is maximized subject to satisfying a probabilistic constraint on 

an income goal. Telser's criterion can be written as 

Telser's Criterion 

Maximize Etx 
X 

Subject to A~~£ 
Pr(z = ctx < g) < o 

~ ~ Q, o and g fixed. 

with E a k x 1 vector of--expected per unit income levels and the 

other variables as previously defined. 

(4) 

In each of the above models, the income vector ct is assumed to be a 

random vector. Let there be n discrete possib.le states of nature and £.i 

beak x 1 vector of income levels should state i occur for i = 1,2, ... n. 

Given a choice vector~. aggregate income in state i can be denoted as zi 

= £{~· Define the matrix C as C = [£1,£2,···£n]t. A vector z of 

possible aggregate income values can be constructed as z = Cx. Let the 
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probability of state i be ri and let the vector r be an n x 1 vector of 

these probability levels. Expected aggregate income can be written as Ez 

=·rtz = rtcx • .!.f The probability that z = £t~ falls below g can be 

computed as 

n 
Pr(z = ctx < g) = E ri I (zi) = 

i=l (-oo,g) 

n 
E ri I (£{~) 

i=l (-oo,g) 

where I (zi) is an indicator or zero-one function which multiplies 
(-oo,g) 

(5) 

by 1 if - 00 <£I~< g or O if g i zi = £I~· The following system allows 

the. computation of (S)'by effectively constructing a zero-one function. 

The example presents Roy's criterion 

Roys Criterion 

Minimize Pr(z = ctx < g) = rtd 
X 

Subject to A~ i Q 

c~ - .!. g + mI g ~ Q 

~ ~ Q, di= 0 or 1, g fixed 

where dis an n x 1 vector whose elements are O or 1, 

1 is an n x 1 vector of ones 

mis a number larg~r than the worst possible loss 

I is an n x n identity matrix 

(6) 

(7) 

(8) 

the other variables and parameters are as previously defined. 

The ith inequality of (8) is 

ctx - g + m d· > 0 (9) 
-1- 1 

with ma large number and di= 0 or 1. When £I~< g, (9) can be 

satisfied only with di= 1. When ctx > g, (9) can be satisfied 
-1- -

with di= 0. If the value rtd from (6) is minimized or 
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constrained, the i th element of d will be 1 only when £I!< g. 

The expression !t.Q. then becomes 

n 
rtd = ~ ri l (£f!) = Pr(£t! < g) 

i=l (-oo,g) 

(lo) 

By slightly modifying expressions (6) -(8), Kataoka's and Telser's 

criteria can be modeled as follows: 

Kataoka's Criterion 

Maximize g 
X 

Subject to Ax< b 

C! -lg+ ml .Q. ~ Q 

rta < o 

! ~ Q, di= 0 or 1, g.free. 

Telser 1 s Criterion 

Maximize Etx 
-C-

X 

Subject to Ax< b 

C! -lg+ ml .Q. ~ Q 

~ta< o 

~-~ Q, di = 0 or 1, g fixed. 

An Example 

To demonstrate the potential of the above models, zero-one safety 

first solutions will be contrasted to results reported by Atwood et al. 

Atwood et al. generated safety-first solutions using a linear stochastic 

inequality. Table 1 replicates their Table 3 with modification so as to 

obtain zero-one Telser criterion solutions. The probability of income 

falling below $95000 is constrained to be less than 20%. Table 2 
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presents solutions obtained using the zero-one algorithm for varying 

levels of probability. For all solutions when the probability_limit 

exceeded .1 the objective function of exact solutions exceed those 

generated with the stochastic inequality as reported by Atwood et al. 

For example when o = .1 the stochastic inequality model selected a 

solution with an objective value equal to $154074 while the zero-one 

solution's objective value equaled $158232. In general solutions 

obtained with the zero-one algorithm, being exact, will usually be less 

conservative than those generated with the stochastic inequality model. 

At this point the reader might be concerned with the computational 

time required to obtain solutions to zero-one safety first models. This 

is a legitimate concern given the state of the art in mixed integer and 

zero-one algorithms. A limited Monte Carlo experiment was conducted to 

examine tradeoffs in computational time versus conservativeness of 

solutions between the stochastic inequality model and the zero-one model. 

Five multivariate normal samples of sizes 5, 10, 15, and 20 were 

generated and used for the C matrix in the above system. To avoid 

infeasabilities Kataoka's criterion was used with a probability limit of 

--
.25. Table 3 presents the population mean vector, variance covariance 

matrix used in generating the multivariate sample. Table 4 presents the 

mean solution time (using MICP87 on a personal computer) for the 

continuous stochastic inequality versus the zero-one model. Table 4 also 

presents average proportions of the approximate solutions divided by the 

exact solutions objective values. The reader will note that obtaining 

the continuous solutions required substantially less computation time for 

all sample sizes. As sample size increases, the required computation 
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time increases much faster for the zero-one method than for the con

tinuous method. The reader will also note, however, that the Kataoka 

values obtained with the continuous model were conservative at about 90 

percent of the actual optimal objective value. 

Summary and Conclusions 

This paper has presented a method whereby exact solutions to 

probabilistically constrained problems can be obtained given a finitely 

discrete multivariate distribution of states. The solutions will 

generally be less conservative than those obtained using linear stochas

tic inequalities. However the model requires a zero-one algorithm to 

obtain the more accurate solutions. As sample size increases, the 

required computational time increases much faster for the zero-one model 

as contrasted to the model using the stochastic inequality and continuous 

linear programming code. This suggests that the researcher will need to 

consider tradeoffs in accuracy of solutions versus computer time and 

expense. For very large (or nonlinear) problems the ability to obtain 

solutions using the zero-one algorithm may be quire limited. In such 

cases, the ability to impose probabilistic constraints by enforcing 

continuous linear constraints may be·attractive. However for smaller 

scale problems which are linear in the objective and constraints, the 

zero-one safety first model is a viable and more accurate alternative. 
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Footnotes 

1. Suppose the decision maker or researcher possess a independently and 

identically distributed random sample of size_ n. Replacing the 

vector r with an n x 1 vector fr land the matrix C with the sample 

values allows the use of nonparametrically unbiased and strongly 

convergent estimators in the following models. 
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Table 1 

Partial Tableau for ExamQle Problem 

- ·----·----·---·- ---
OBJECTIVE: IIAX VARIABLES: 12 OAIE OJ-03-1989 

0 (1)NSTRAINIS: 27 SLACKS: 26 Tltf 08:16:26 

XI X2 X5 x, XS X6 G 01 02 ... D9 DID 

5!.S.6& 318.88 260. 78 m.11 123.0& 20.590 
1.0000 1.0000 1.0000 1.0000 1.0000 
2. 97()1) 1.7700 1.8200 1.8500 I. 9000 .41000 
1.0800 1.0900 1.2500 1.2800. .25000 
2.UOO 3.7100 3.0800 3.1&00 .96000 
2.3900 l. ?100 4.4300 .64000 1.2300 
5.6800 1.7400 .27000 
2. 7200 1.5600 1.6100 1.6300 .67000 
1.0400 I. 9QI)') 1.2000 1.2200 .08000 
.57000 .58000 .30000 .83000 .36000 
.190'.JO 3.1500 3.6400 .08000 .15000 
5.3000 l. 5800 

1.0000 
-1.0000 .07800 

-1.000IJ .10100 
-. 80000 .10100 

516.52 217.99 296.50 132.1& 106.22 -50.160 -1.00IJO 999999 

781. St '12.95 343.04 203.08 126.16 -92.120 -1.0000 999999 

420.07 322.18 213.42 114.53 111.55 200.(9 -1.00IJ() 

250. 77 139.IJIJ 16~.14 105.55 101.09 IU.89 -1.0000 . 
332.2& 4Q7,U 198.0IJ IOU3 65. 790 -9.6300 -1.000IJ 

273.25 117. 71 339. 72 174.31 m.26 62. 760 -1.0000 • 
507.20. 27&.63 262.26 273. 91 139. 97 -50.020 -1.0000 

1137. 6 
801. 75 
335. 62 

XI 

~69.% 287.19 348.87 19&.90 -1&3.17 -1.0000 
4'10. IIJ 313.?6 302. 71) 158.U 119. 93 -1.0000 999999 

136.89 187. 58 117. 73 53.510 26.070 -1.0000 999999 

.10000 .10000 • IOIJOO .10000 

1.0000 

X2 X3 x, X5 X6 G • . DI 02 . . . 09 DID 

Table 2 
Selected Solutions to Zero-One ExamQle Problem 

With an Income Goal of $95000 

------·. -···-----

RHS 
LOI/ER 
lfFER 

.OOOOJIJIJ REIURN 
<= RI 

-.:, 
,00.0000 

<= 108&.000 R2 
(: 1127.000 Rl 
(: 1611.000 R& 
(• 1232.000 RS 
(: 108&.000 R6 
(: 805.0000 R7 
(: 768.0000 RS 
(: 1230.000 R9 
(: 90&.0000 RIO 
(• 897.0000 Rll 
(: 300.0000 Rl2 
(• .0000000 Rl3 
(= .0000000 RU 
(• .0000001) RIS 
l• . .OOOIJOIJO Cl 
): .0000000 C2 
): .OOIJOOJQ CJ 
): .0000000 C4 
): • 0000000 cs 
l= .0000000 C6 

l• .OOOOIJQO C7 
l= .000l1000 cs 
): .OOOOOIJO C9 
): .0000000 CID 
(: • 2000000 DEVIATES 

95000.00 GOAL 
.RHS 

Probability Zero-One Activity Levels Continuous Model 
Level Expected Income X1 Xz X3 X4 X5 X5 Expected Income 

0 154074 163 91 100 20 26 203 154074 
.1 158232 164 153 47 16 20 159 154074 
.2 161088 165 195 10 13 16 128 157531 
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Table 3 
Population Mean and Variance-Covariance Matrix for 

Monte Carlo Generation of Multivariate Discrete States of Nature 

Variate 
X1 X2 X3 X4 X5 

Mean Vector 100-· 120 120 130 115 

Variance/Covariance X1 650 325 -445 -920 -390 

Mean 

Matrix X2 325 2678 475 -1020 . 620 
X3 -445 475 2622 700 510 
X4 -920 -1020 700 5125 -403 
X5 -390 620 510 -403 850 

Table 4 -~-
Average Computation Time Required to Obtain Solutions and 

Proportion of Optimal Objective Value Obtained with 
Inequality Approximation by Sample.Size 

Sample Size 
5 10 15 20 

Solution Time (seconds) 

Inequality Model · 3.2 5.8 10.6 15.2 

Zero-One Model 23.8 106. 357 696 

Mean Proportion of 
Objective Achieved .878 .909 .885 .896 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012

